Academic literature on the topic 'Proteinaceou'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Proteinaceou.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Proteinaceou"
О.В., Скрипко. "ИЗУЧЕНИЕ ФУНКЦИОНАЛЬНО-ТЕХНОЛОГИЧЕСКИХ СВОЙСТВ БЕЛКОВО-ВИТАМИННЫХ И БЕЛКОВО-УГЛЕВОДНЫХ ДОБАВОК НА ОСНОВЕ СОИ." Bulletin of KSAU, no. 3 (March 19, 2020): 150–56. http://dx.doi.org/10.36718/1819-4036-2020-3-150-156.
Full textFuxreiter, Monika, Ágnes Tóth-Petróczy, Daniel A. Kraut, Andreas T. Matouschek, Roderick Y. H. Lim, Bin Xue, Lukasz Kurgan, and Vladimir N. Uversky. "Disordered Proteinaceous Machines." Chemical Reviews 114, no. 13 (April 4, 2014): 6806–43. http://dx.doi.org/10.1021/cr4007329.
Full textChandna, Sanya, Monarch Shah, and Ankit Agrawal. "PROTEINACEOUS COVID-19." Chest 158, no. 4 (October 2020): A551. http://dx.doi.org/10.1016/j.chest.2020.08.521.
Full textDeaton, J., C. Savva, J. Sun, S. Sharma, A. Holzenburg, J. Sacchettini, and R. Young. "GroEL: A Proteinaceous “Surfactant” ?" Microscopy and Microanalysis 8, S02 (August 2002): 840–41. http://dx.doi.org/10.1017/s1431927602102558.
Full textSvensson, Birte, Kenji Fukuda, Peter K. Nielsen, and Birgit C. Bønsager. "Proteinaceous α-amylase inhibitors." Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1696, no. 2 (February 2004): 145–56. http://dx.doi.org/10.1016/j.bbapap.2003.07.004.
Full textAkhunzada, Zahir S., Mario Hubert, Erinc Sahin, and James Pratt. "Separation, Characterization and Discriminant Analysis of Subvisible Particles in Biologics Formulations." Current Pharmaceutical Biotechnology 20, no. 3 (April 30, 2019): 232–44. http://dx.doi.org/10.2174/1389201020666190214100840.
Full textGusakov, A. V. "Proteinaceous inhibitors of microbial xylanases." Biochemistry (Moscow) 75, no. 10 (October 2010): 1185–99. http://dx.doi.org/10.1134/s0006297910100019.
Full textBraun, R., E. Brachtl, and M. Grasmug. "Codigestion of Proteinaceous Industrial Waste." Applied Biochemistry and Biotechnology 109, no. 1-3 (2003): 139–54. http://dx.doi.org/10.1385/abab:109:1-3:139.
Full textFuxreiter, Monika, Ágnes Tóth-Petróczy, Daniel A. Kraut, Andreas Matouschek, Roderick Y. H. Lim, Bin Xue, Lukasz Kurgan, and Vladimir N. Uversky. "Correction to Disordered Proteinaceous Machines." Chemical Reviews 115, no. 7 (March 26, 2015): 2780. http://dx.doi.org/10.1021/acs.chemrev.5b00150.
Full textTarr, B. D., and S. H. Bixby. "Proteinaceous grain-based fat substitute." Trends in Food Science & Technology 6, no. 9 (September 1995): 317. http://dx.doi.org/10.1016/s0924-2244(00)89157-8.
Full textDissertations / Theses on the topic "Proteinaceou"
ZEYNALI, AMIRBAHADOR. "Two-photon assisted direct laser writing of proteinaceous microarchitectures containing plasmonic nanoparticles; characterization and optimization." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/304319.
Full textMetallic nanoparticles, due to their fascinating optical and electrochemical properties, attract the attention of different science and engineering research disciplines. Among these properties, the plasmonic photothermal effect is a notable and exclusive feature of noble-metal nanoparticles that, by today, are exploited through lots of research activities for various purposes, especially for biomedical applications. This optically-tunable phenomenon uniquely increases the flexibility of the optical response of host matrices, by allowing to induce highly localized temperature increases that can be triggered via simple external stimulation device like a light source. Such matrices can be valuable tools in the field of cell treatments and, in general, tissue engineering. In the present study, the two-photon-assisted direct laser writing (DLW) technique was employed to fabricate microarchitectures with the different elastic modulus (80kPa to 800kPa) from a proteinaceous ink composed of bovine serum albumin (BSA), rose Bengal (RB), or methylene blue (MB), and non-spherical symmetric gold nanoparticles (GNPs), with the ability to generate local temperature increase by stimulation in the near-infrared spectral region. The recorded photothermal efficiency measured using focused continuous wave (CW) laser irradiation at 800nm on microstructures loaded with GNPs at low gold atom concentration (1%w/w) reached 12.2 pm 0.4 C/W, that is a record photothermal effect induced from a printed proteinaceous feature. This photo-thermal functionality arising from the GNPs embedded within the fabricated proteinaceous microstructures can then be applied for studying responses of living systems like cells and bacteria cultures under an externally triggered highly localized heat release.
López, Arolas Joan. "Structural and Functional Studies on Proteinaceous Metallocarboxypeptidase Inhibitors." Doctoral thesis, Universitat Autònoma de Barcelona, 2005. http://hdl.handle.net/10803/3531.
Full textEl primer treball inclou l'aïllament i el clonatge de l'ADNc d'un nou inhibidor de carboxipeptidases de la paparra, anomenat TCI. Els estudis realitzats sobre la forma recombinant del TCI indiquen que aquesta proteïna està fortament limitada pels seus ponts disulfur, sent molt estable enfront un ampli rang de pH i altament resistent a condicions desnaturalitzants. El TCI recombinant és un inhibidor que s'uneix fortament a TAFIa, estimulant així la fibrinòlisi in vitro, fet que li confereix potencial en aplicacions de prevenció o tractament de desordres trombòtics.
El segon treball presenta l'estructura cristal·lina del TCI unit a la carboxipeptidasa A bovina i a la carboxipeptidasa B humana. El TCI està format per dos dominis que són estructuralment molt semblants a pesar de tenir un baix grau d'homologia seqüencial. Cada domini inclou una hèlix a curta seguida per una petita fulla b antiparal·lela girada i presenta una alta homologia estructural enfront proteïnes de la família de les b-defensines. El TCI s'ancora a la superfície de les carboxipeptidases de mamífer en un mode d'unió doble que no s'havia observat abans per cap altre inhibidor de carboxipeptidases.
En el tercer treball s'examina la contribució de cadascun dels aminoàcids del lloc d'unió secundari de l'inhibidor de carboxipeptidases de patata (PCI) de cara a les propietats generals d'aquesta proteïna. Els estudis estructurals i enzimàtics demostren que el posicionament correcte del lloc d'unió primari per una unió i inhibició eficient de la carboxipeptidasa A depèn significativament del lloc d'unió secundari. A més, l'estudi comparatiu del plegament oxidatiu d'una sèrie de mutants del PCI utilitzant una aproximació de captura dels ponts disulfur indiquen que les forces no covalents dirigeixen el replegament d'aquesta petita proteïna rica en ponts disulfur a l'etapa de "reshuffling", que és el pas limitant del procés de plegament del PCI.
En el quart treball s'ha determinat els camins de plegament oxidatiu i desplegament reductor de l'inhibidor de carboxipeptidases de sangonera (LCI). L'LCI reduït i desnaturalitzat és replega ràpidament a través d'un flux seqüencial d'espècies amb un, dos, tres i quatre ponts disulfur fins assolir la forma nativa. Dins dels intermediaris de plegament de l'LCI hi trobem dues espècies predominants de tres ponts disulfur (anomenades III-A i III-B) i una població heterogènia d'isòmers "scrambled" (quatre ponts disulfur no natius) que s'acumulen consecutivament al llarg de la reacció de plegament. Aquest estudi revela que les formes III-A i III-B contenen exclusivament ponts disulfur natius i corresponen a espècies estables i parcialment estructurades que s'interconverteixen entre elles assolint l'equilibri abans que la formació dels isòmers "scrambled" tingui lloc.
En el cinquè treball s'ha purificat l'intermediari III-A directament de la reacció de plegament i se l'ha caracteritzat estructuralment per RMN. Els resultats mostren que aquesta espècie presenta una estructura força nativa, tot i que li manquen alguns elements d'estructura secundària per la qual cosa és més flexible que l'LCI natiu. III-A representa el primer exemple d'un intermediari "disulfide insecure" ("ponts disulfur insegurs") determinat estructuralment. L'oxidació directa d'aquesta espècie cap a la proteïna totalment nativa sembla estar restringida per l'enterrament de les seves dues cisteïnes dins d'una estructura semblant a la nativa. També s'han utilitzat aproximacions teòriques basades en constriccions topològiques que prediuen força bé la presència d'aquest intermediari de plegament.
L'últim treball d'aquesta tesi tracta sobre l'altre intermediari majoritari de plegament de l'LCI. En aquest treball s'ha construït i analitzat extensivament un anàleg d'aquest intermediari. Els resultats obtinguts mostren que aquesta proteïna presenta una estructura global i una activitat semblants a les de la forma salvatge de l'LCI. A més, presenta un procés de plegament més ràpid i eficient que l'LCI salvatge. Tanmateix, aquest anàleg està fortament desestabilitzat, fet que indica que el quart pont disulfur dóna alta estabilitat i especificitat estructural a l'LCI.
The present thesis consists of six independent research works that are situated in the field of metallocarboxypeptidase inhibitors: their folding, stability, structure and function are studied.
The first work comprises the isolation and cDNA cloning of a new carboxypeptidase inhibitor from ticks, named TCI. The studies performed on the recombinant form of TCI indicate that this protein is strongly constrained by its disulfide bonds, being unusually stable over a wide pH range and highly resistant to denaturing conditions. As a tight binding inhibitor of TAFIa, TCI stimulates fibrinolysis in vitro and thus may have potential for applications to prevent or treat thrombotic disorders.
The second work presents the crystal structure of TCI in complex with either bovine carboxypeptidase A or human carboxypeptidase B. The structure of TCI consists of two domains that are structurally similar despite the low degree of sequence homology. The domains, each consisting of a short a-helix followed by a small twisted antiparallel b-sheet, show high structural homology to proteins of the b-defensin-fold family. Also, TCI anchors to the surface of mammalian carboxypeptidases in a double-headed manner not previously seen for carboxypeptidase inhibitors.
In the third part, the role of each residue of the secondary binding site of potato carboxypeptidase inhibitor (PCI) in the folding, structure and function of this protein is determined. Structural and enzymatic studies demonstrate that the proper positioning of the primary site for efficiently binding and inhibition of carboxypeptidase A is significantly dependent on such a secondary contact region. In addition, a comparative study of the oxidative folding of several PCI mutants indicates that noncovalent forces drive the refolding of this small disulfide-rich protein at the reshuffling stage, the rate-limiting step of the process.
The fourth work elucidates the oxidative folding and reductive unfolding pathways of leech carboxypeptidase inhibitor (LCI). Reduced and denatured LCI refolds rapidly through a sequential flow of 1-, 2-, 3-, and 4-disulfide (scrambled) species to reach the native form. Folding intermediates of LCI comprise two predominant 3-disulfide species (III-A and III-B) and a heterogeneous population of scrambled isomers that consecutively accumulate along the folding reaction. Our study reveals that forms III-A and III-B exclusively contain native disulfide bonds and correspond to stable and partially structured species that inter-convert, reaching an equilibrium prior to the formation of the scrambled isomers.
In the fifth work, the III-A intermediate is directly purified from the folding reaction and structurally characterized by NMR spectroscopy. The data shows that this species displays a highly native-like structure although it lacks some secondary structure elements being more flexible than native LCI. III-A represents the first structurally determined example of a disulfide insecure intermediate; direct oxidation of this species to the fully native protein seems to be restricted by the burial of its two free cysteine residues inside a native-like structure. We show also that theoretical approaches based on topological constrains predict with good accuracy the presence of this folding intermediate.
The last work of this thesis deals with the other major folding intermediate of LCI: III-B intermediate. In this work, an analog of this intermediate is constructed and extensively analyzed. The derived data shows that this protein displays the same overall structure, a similar activity, a faster and more efficient folding process than wild-type LCI, but a lower stabilization, which indicates that the fourth disulfide bond provides LCI with both high stability and structural specificity.
Saikhwan, Phanida. "Cleaning behaviour of some polymeric and proteinaceous fouling layers." Thesis, University of Cambridge, 2008. https://www.repository.cam.ac.uk/handle/1810/252107.
Full textPinker, Franziska. "Structural characterization of proteinaceous RNase P from Arabidopsis thaliana." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAJ093/document.
Full textRNase P cleaves 5’ leaders of precursor tRNAs. RNase P is a ribozyme in bacteria, fungi and animal nuclei and a protein in animal organelles, plants and many other organism. There are three PRORPs in A. thaliana. MALS, SRCD and SAXS provided first structural information: 1) PRORPs are monomers in solution. 2) PRORP 1-2 have a high alpha-helical content. 3) PRORPs are composed of two distinct domains with a radius of gyration of 33 A. These results together with homology modelling enabled us to build a first model of PRORPs in complex with tRNA. Using three different methods, isothermal titration calorimetry, microscale thermophoresis and analytical ultracentrifugation, a binding constant of about 1 µM could be determined for the system PRORP2mDD and L5T0 tRNA. This helped us conducting a SAXS experiment taking into account the low resolution affinity and designed to provide the direct structural data of a complex of proteinaceous RNase P with a substrate tRNA
Gülich, Susanne. "Engineering Proteinaceous Ligands for Improved Performance in Affinity Chromatography Applications." Doctoral thesis, KTH, Biotechnology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3327.
Full textMa, Li. "Soil Organic Nitrogen - Investigation of Soil Amino Acids and Proteinaceous Compounds." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/51960.
Full textPh. D.
Flatman, Ruth H. "Specificity and mechanism of the proteinaceous xylanase inhibitor from wheat, XIP-I." Thesis, University of East Anglia, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247102.
Full textZang, Xu. "Encapsulation of Proteinaceous materials in Macromolecular Organic Matter as a mechanism for environmental preservation /." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486400446370061.
Full textMoon, Jinyoung. "Selective accrual and dynamics of proteinaceous compounds during pedogenesis: testing source and sink selection hypotheses." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/77030.
Full textPh. D.
Knowles, Timothy David James. "Following the fate of proteinaceous material in soil using a compound-specific 13C-and 15N-labelled tracer approach." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503943.
Full textBooks on the topic "Proteinaceou"
(Editor), Vladimir Uversky, and Irina A. Kataeva (Editor), eds. Cellulosome (Molecular Anatomy and Physiology of Proteinaceous Machines). Nova Science Publishers, 2006.
Find full textPolyamides and Complex Proteinaceous Materials I (Biopolymers, Vol. 7). Wiley-VCH, 2002.
Find full text(Editor), Stephen R. Fahnestock, and Alexander Steinbüchel (Editor), eds. Polyamides and Complex Proteinaceous Materials II (Biopolymers, Vol. 8). Wiley-VCH, 2003.
Find full textBook chapters on the topic "Proteinaceou"
Grinstaff, Mark W., and Kenneth S. Suslick. "Proteinaceous Microspheres." In ACS Symposium Series, 218–26. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0493.ch018.
Full textSilva, Raquel, Helena Ferreira, Andreia Vasconcelos, Andreia C. Gomes, and Artur Cavaco-Paulo. "Sonochemical Proteinaceous Microspheres for Wound Healing." In Nano-Biotechnology for Biomedical and Diagnostic Research, 155–64. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2555-3_15.
Full textRicci, P., F. Panabieres, P. Bonnet, N. Maia, M. Ponchet, J. C. Devergne, A. Marais, L. Cardin, M. L. Milat, and J. P. Blein. "Proteinaceous Elicitors of Plant Defense Responses." In Developments in Plant Pathology, 121–35. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1737-1_34.
Full textHamodrakas, Stavros J. "Molecular Architecture of Helicoidal Proteinaceous Eggshells." In Results and Problems in Cell Differentiation, 115–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-47207-0_6.
Full textKönig, H. "Comparative Aspects on Archaeobacterial Proteinaceous Cell Envelopes." In Crystalline Bacterial Cell Surface Layers, 7–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73537-0_2.
Full textCândido, Elizabete de Souza, Marlon Henrique Cardoso, Daniel Amaro Sousa, Karina Castellanos Romero, and Octávio Luiz Franco. "Proteinaceous Plant Toxins with Antimicrobial and Antitumor Activities." In Plant Toxins, 401–14. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-007-6464-4_12.
Full textKrishnamurthy, T., M. Prabhakaran, and S. R. Long. "Mass Spectrometric Investigations on Proteinaceous Toxins and Antibodies." In Advances in Experimental Medicine and Biology, 439–63. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0361-9_37.
Full textCândido, Elizabete de Souza, Marlon Henrique Cardoso, Daniel Amaro Sousa, Karina Castellanos Romero, and Octávio Luiz Franco. "Proteinaceous Plant Toxins with Antimicrobial and Antitumor Activities." In Plant Toxins, 1–14. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6728-7_12-1.
Full textKönig, Helmut, Reinhard Rachel, and Harald Claus. "Proteinaceous Surface Layers of Archaea: Ultrastructure and Biochemistry." In Archaea, 315–40. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815516.ch14.
Full textSteinberg, Christian E. W. "Utilization of Proteinaceous Nutrients—‘Becoming Strong with Meat’." In Aquatic Animal Nutrition, 43–60. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87227-4_3.
Full textConference papers on the topic "Proteinaceou"
DeSha, Michael S. "Biological Aerosol Sensor Breadboard." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cfj7.
Full textJung, Jung-Yeul, Ki-Taek Byun, Jae-Ho Hong, and Ho-Young Kwak. "Proteinaceous Bubbles and Nano Particle Flows in Microchannel." In ASME 2004 2nd International Conference on Microchannels and Minichannels. ASMEDC, 2004. http://dx.doi.org/10.1115/icmm2004-2437.
Full textDooley, Kevin, and Scott Banta. "Engineering of functional proteinaceous hydrogels for biotechnology applications." In 2014 40th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2014. http://dx.doi.org/10.1109/nebec.2014.6972777.
Full textSarkar, Anwesha. "Proteinaceous Microgels in Bulk and Interface: Applications in Food." In Virtual 2020 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2020. http://dx.doi.org/10.21748/am20.141.
Full textSerien, Daniela, and Koji Sugioka. "Hybrid additive and subtractive 3D femtosecond laser direct write for tailoring proteinaceous microstructures." In Microfluidics, BioMEMS, and Medical Microsystems XIX, edited by Bonnie L. Gray and Holger Becker. SPIE, 2021. http://dx.doi.org/10.1117/12.2578277.
Full textKılıç, Başak, Ferhan Çeçen, and Ayşe Gül Peker. "Inhibitory Effect of Silver and Nanosilver on Activated Sludge Fed with Proteinaceous Feed." In The 8th World Congress on New Technologies. Avestia Publishing, 2022. http://dx.doi.org/10.11159/icnfa22.121.
Full textSerien, Daniela, and Koji Sugioka. "Pure proteinaceous high-aspect-ratio microstructures made by femtosecond laser multiphoton cross-linking." In Microfluidics, BioMEMS, and Medical Microsystems XVII, edited by Bonnie L. Gray and Holger Becker. SPIE, 2019. http://dx.doi.org/10.1117/12.2509131.
Full textSerien, Daniela, Hiroyuki Kawano, Atsushi Miyawaki, and Koji Sugioka. "Recent advances in 3D printing of pure proteinaceous microstructures by femtosecond laser direct write." In Laser-based Micro- and Nanoprocessing XIV, edited by Udo Klotzbach, Rainer Kling, and Akira Watanabe. SPIE, 2020. http://dx.doi.org/10.1117/12.2545310.
Full textSerien, Daniela, and Aiko Narazaki. "Comparative study of proteinaceous microfabrication with different repetition rates by femtosecond direct laser write." In Laser 3D Manufacturing IX, edited by Henry Helvajian, Bo Gu, and Hongqiang Chen. SPIE, 2022. http://dx.doi.org/10.1117/12.2610445.
Full textShatrov, A. B. "LARVAE OF NEOTROMBICULA TALMIENSIS (SCHLUGER, 1955) (ACARIFORMES, TROMBICULIDAE) AND THEIR FEATURES PARASITISM ON NATURAL HOSTS." In V International Scientific Conference CONCEPTUAL AND APPLIED ASPECTS OF INVERTEBRATE SCIENTIFIC RESEARCH AND BIOLOGICAL EDUCATION. Tomsk State University Press, 2020. http://dx.doi.org/10.17223/978-5-94621-931-0-2020-84.
Full textReports on the topic "Proteinaceou"
Wicker, Louise, Ilan Shomer, and Uzi Merin. Membrane Processing of Citrus Extracts: Effects on Pectinesterase Activity and Cloud Stability. United States Department of Agriculture, October 1993. http://dx.doi.org/10.32747/1993.7568754.bard.
Full textGrafi, Gideon, and Brian Larkins. Endoreduplication in Maize Endosperm: An Approach for Increasing Crop Productivity. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575285.bard.
Full textSela, Shlomo, and Michael McClelland. Investigation of a new mechanism of desiccation-stress tolerance in Salmonella. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598155.bard.
Full text