Academic literature on the topic 'Protein Structure Networks (PSN)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Protein Structure Networks (PSN).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Protein Structure Networks (PSN)"

1

Felline, Angelo, Michele Seeber, and Francesca Fanelli. "webPSN v2.0: a webserver to infer fingerprints of structural communication in biomacromolecules." Nucleic Acids Research 48, W1 (2020): W94—W103. http://dx.doi.org/10.1093/nar/gkaa397.

Full text
Abstract:
Abstract A mixed Protein Structure Network (PSN) and Elastic Network Model-Normal Mode Analysis (ENM-NMA)-based strategy (i.e. PSN-ENM) was developed to investigate structural communication in bio-macromolecules. Protein Structure Graphs (PSGs) are computed on a single structure, whereas information on system dynamics is supplied by ENM-NMA. The approach was implemented in a webserver (webPSN), which was significantly updated herein. The webserver now handles both proteins and nucleic acids and relies on an internal upgradable database of network parameters for ions and small molecules in all
APA, Harvard, Vancouver, ISO, and other styles
2

Duong, Vy T., Elizabeth M. Diessner, Gianmarc Grazioli, Rachel W. Martin, and Carter T. Butts. "Neural Upscaling from Residue-Level Protein Structure Networks to Atomistic Structures." Biomolecules 11, no. 12 (2021): 1788. http://dx.doi.org/10.3390/biom11121788.

Full text
Abstract:
Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets thereof are represented via graph structures, is a particularly useful way of obtaining highly compressed representations of molecular structures, and simulations operating via such representations can achieve substantial computational savings. A drawback of coarse-graining, however, is the loss of atomistic detail—an effect that is especially acute for topological representations such as protein structure netwo
APA, Harvard, Vancouver, ISO, and other styles
3

Aydınkal, Rasim Murat, Onur Serçinoğlu, and Pemra Ozbek. "ProSNEx: a web-based application for exploration and analysis of protein structures using network formalism." Nucleic Acids Research 47, W1 (2019): W471—W476. http://dx.doi.org/10.1093/nar/gkz390.

Full text
Abstract:
AbstractProSNEx (Protein Structure Network Explorer) is a web service for construction and analysis of Protein Structure Networks (PSNs) alongside amino acid flexibility, sequence conservation and annotation features. ProSNEx constructs a PSN by adding nodes to represent residues and edges between these nodes using user-specified interaction distance cutoffs for either carbon-alpha, carbon-beta or atom-pair contact networks. Different types of weighted networks can also be constructed by using either (i) the residue-residue interaction energies in the format returned by gRINN, resulting in a P
APA, Harvard, Vancouver, ISO, and other styles
4

Newaz, Khalique, Mahboobeh Ghalehnovi, Arash Rahnama, Panos J. Antsaklis, and Tijana Milenković. "Network-based protein structural classification." Royal Society Open Science 7, no. 6 (2020): 191461. http://dx.doi.org/10.1098/rsos.191461.

Full text
Abstract:
Experimental determination of protein function is resource-consuming. As an alternative, computational prediction of protein function has received attention. In this context, protein structural classification (PSC) can help, by allowing for determining structural classes of currently unclassified proteins based on their features, and then relying on the fact that proteins with similar structures have similar functions. Existing PSC approaches rely on sequence-based or direct three-dimensional (3D) structure-based protein features. By contrast, we first model 3D structures of proteins as protei
APA, Harvard, Vancouver, ISO, and other styles
5

Fanelli, Francesca, Angelo Felline, Francesco Raimondi, and Michele Seeber. "Structure network analysis to gain insights into GPCR function." Biochemical Society Transactions 44, no. 2 (2016): 613–18. http://dx.doi.org/10.1042/bst20150283.

Full text
Abstract:
G protein coupled receptors (GPCRs) are allosteric proteins whose functioning fundamentals are the communication between the two poles of the helix bundle. Protein structure network (PSN) analysis is one of the graph theory-based approaches currently used to investigate the structural communication in biomolecular systems. Information on system's dynamics can be provided by atomistic molecular dynamics (MD) simulations or coarse grained elastic network models paired with normal mode analysis (ENM–NMA). The present review article describes the application of PSN analysis to uncover the structur
APA, Harvard, Vancouver, ISO, and other styles
6

Chasapis, Christos T., and Alexios Vlamis-Gardikas. "Probing Conformational Dynamics by Protein Contact Networks: Comparison with NMR Relaxation Studies and Molecular Dynamics Simulations." Biophysica 1, no. 2 (2021): 157–67. http://dx.doi.org/10.3390/biophysica1020012.

Full text
Abstract:
Protein contact networks (PCNs) have been used for the study of protein structure and function for the past decade. In PCNs, each amino acid is considered as a node while the contacts among amino acids are the links/edges. We examined the possible correlation between the closeness centrality measure of amino acids within PCNs and their mobility as known from NMR spin relaxation experiments and molecular dynamic (MD) simulations. The pivotal observation was that plasticity within a protein stretch correlated inversely to closeness centrality. Effects on protein conformational plasticity caused
APA, Harvard, Vancouver, ISO, and other styles
7

Mahmud, Khandakar Abu Hasan Al, Fuad Hasan, Md Ishak Khan, and Ashfaq Adnan. "Shock-Induced Damage Mechanism of Perineuronal Nets." Biomolecules 12, no. 1 (2021): 10. http://dx.doi.org/10.3390/biom12010010.

Full text
Abstract:
The perineuronal net (PNN) region of the brain’s extracellular matrix (ECM) surrounds the neural networks within the brain tissue. The PNN is a protective net-like structure regulating neuronal activity such as neurotransmission, charge balance, and action potential generation. Shock-induced damage of this essential component may lead to neuronal cell death and neurodegenerations. The shock generated during a vehicle accident, fall, or improvised device explosion may produce sufficient energy to damage the structure of the PNN. The goal is to investigate the mechanics of the PNN in reaction to
APA, Harvard, Vancouver, ISO, and other styles
8

Lubovac, Zelmina. "Investigating Topological and Functional Features of Multimodular Proteins." Journal of Biomedicine and Biotechnology 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/472415.

Full text
Abstract:
To generate functional modules as functionally and structurally cohesive formations in protein interaction networks (PINs) constitutes an important step towards understanding how modules communicate on a higher level of the PIN organisation that underlies cell functionality. However, we need to understand how individual modules communicate and are organized into the higher-order structure(s) of the PIN organization that underlies cell functionality. In an attempt to contribute to this understanding, we make an assumption that the proteins reappearing in several modules, termed here as multimod
APA, Harvard, Vancouver, ISO, and other styles
9

Drago, Valentina, Luisa Di Paola, Claire Lesieur, Renato Bernardini, Claudio Bucolo, and Chiara Bianca Maria Platania. "In-Silico Characterization of von Willebrand Factor Bound to FVIII." Applied Sciences 12, no. 15 (2022): 7855. http://dx.doi.org/10.3390/app12157855.

Full text
Abstract:
Factor VIII belongs to the coagulation cascade and is expressed as a long pre-protein (mature form, 2351 amino acids long). FVIII is deficient or defective in hemophilic A patients, who need to be treated with hemoderivatives or recombinant FVIII substitutes, i.e., biologic drugs. The interaction between FVIII and von Willebrand factor (VWF) influences the pharmacokinetics of FVIII medications. In vivo, full-length FVIII (FL-FVIII) is secreted in a plasma-inactive form, which includes the B domain, which is then proteolyzed by thrombin protease activity, leading to an inactive plasma intermedi
APA, Harvard, Vancouver, ISO, and other styles
10

DANICH, V. M., and S. M. SHEVCHENKO. "FORMALIZATION OF THE CONCEPT OF SOCIAL SPACE OF THE SUBJECT THROUGH THE CONCEPT OF SOCIAL NETWORKS." REVIEW OF TRANSPORT ECONOMICS AND MANAGEMENT, no. 4(20) (November 30, 2020): 182–94. http://dx.doi.org/10.15802/rtem2020/228878.

Full text
Abstract:
The purpose. To study the structure and properties of social space from the point of view of the subject's social networks, to find out the mechanisms of forming social contacts in modern conditions. Methods. The concept of "social network" is studied from the point of view of modern tools for their creation. Mechanisms for forming a personal social network are presented on the example of the "work" group from the list of "friends" of the profile. Highlighting the subject's personal social network made it possible to identify information transmission channels. The analysis of corporate social
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!