Academic literature on the topic 'Protein-small molecule interactions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Protein-small molecule interactions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Protein-small molecule interactions"
Kuusk, Ave, Helen Boyd, Hongming Chen, and Christian Ottmann. "Small-molecule modulation of p53 protein-protein interactions." Biological Chemistry 401, no. 8 (July 28, 2020): 921–31. http://dx.doi.org/10.1515/hsz-2019-0405.
Full textOttmann, Christian. "Small-molecule modulation of protein–protein interactions." Drug Discovery Today: Technologies 10, no. 4 (December 2013): e499-e500. http://dx.doi.org/10.1016/j.ddtec.2013.08.001.
Full textPollock, Julie A., Courtney L. Labrecque, Cassidy N. Hilton, Justin Airas, Alexis Blake, Kristen J. Rubenstein, and Carol A. Parish. "Small Molecule Modulation of MEMO1 Protein-Protein Interactions." Journal of the Endocrine Society 5, Supplement_1 (May 1, 2021): A1031. http://dx.doi.org/10.1210/jendso/bvab048.2110.
Full textLinhares, Brian M., Jolanta Grembecka, and Tomasz Cierpicki. "Targeting epigenetic protein–protein interactions with small-molecule inhibitors." Future Medicinal Chemistry 12, no. 14 (July 2020): 1305–26. http://dx.doi.org/10.4155/fmc-2020-0082.
Full textGuo, Z. "Designing Small-Molecule Switches for Protein-Protein Interactions." Science 288, no. 5473 (June 16, 2000): 2042–45. http://dx.doi.org/10.1126/science.288.5473.2042.
Full textLi, Xiyan, Xin Wang, and Michael Snyder. "Systematic investigation of protein-small molecule interactions." IUBMB Life 65, no. 1 (December 7, 2012): 2–8. http://dx.doi.org/10.1002/iub.1111.
Full textD’Abramo, C. M. "Small Molecule Inhibitors of Human Papillomavirus Protein - Protein Interactions." Open Virology Journal 5, no. 1 (July 4, 2011): 80–95. http://dx.doi.org/10.2174/1874357901105010080.
Full textSong, Yun, and Peter Buchwald. "TNF Superfamily Protein-Protein Interactions: Feasibility of Small- Molecule Modulation." Current Drug Targets 16, no. 4 (April 6, 2015): 393–408. http://dx.doi.org/10.2174/1389450116666150223115628.
Full textde Vink, Pim J., Sebastian A. Andrei, Yusuke Higuchi, Christian Ottmann, Lech-Gustav Milroy, and Luc Brunsveld. "Cooperativity basis for small-molecule stabilization of protein–protein interactions." Chemical Science 10, no. 10 (2019): 2869–74. http://dx.doi.org/10.1039/c8sc05242e.
Full textAeluri, Madhu, Srinivas Chamakuri, Bhanudas Dasari, Shiva Krishna Reddy Guduru, Ravikumar Jimmidi, Srinivas Jogula, and Prabhat Arya. "Small Molecule Modulators of Protein–Protein Interactions: Selected Case Studies." Chemical Reviews 114, no. 9 (March 27, 2014): 4640–94. http://dx.doi.org/10.1021/cr4004049.
Full textDissertations / Theses on the topic "Protein-small molecule interactions"
Napoleon, Raeanne L. "Understanding small molecule-protein interactions." Thesis, Boston University, 2012. https://hdl.handle.net/2144/31592.
Full textPLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
The binding of small molecules to a protein is among the most important phenomena in the chemistry of life; the activity and functionality of many proteins depend critically on binding small molecules. A deep understanding of protein-small molecule interactions and the interplay between ligation and function can give valuable insight into key systems of interest. The complete characterization of any small molecule-protein interaction requires quantification of many interactions and the pursuit of such information is the purpose of this body of work. The discovery of binding regions on proteins, or "hot spots," is an important step in drug development. To this end, a highly regarded and robust fragment-based protocol has been developed for the detection of hot spots. Firstly, we use this protocol in conjunction with other computation techniques, such as homology modeling, to locate the allosteric binding site of £-phenylalanine in Phenylalanine Hydroxylase. Secondly, computational fragment mapping was employed to locate the site of allostery for Ras, an important signaling protein. Lastly, the identification of hot spots for many unligated protein targets is presented highlighting the importance of a reliable way to predict druggability computationally. The second part of this dissertation shifts focus to the development of electrostatic models of small molecules. It is widely believed that classical potentials can describe neither vibrational frequency shifts in condensed phases nor the response of vibrational frequencies to an applied electric field, the vibrational Stark effect. In this work, an improved classical molecular electrostatic model for the CO ligand was developed to faithfully model these phenomena. This model is found to predict the vibrational Stark effect and Fe-CO binding energy with unprecedented accuracy for such a classical model. As an extension of this work, a geometrically dependent water potential was developed. This work has shown that comparison of results obtained from current water models against experimentally determined proton momentum distributions is an invaluable benchmark
2031-01-01
Albertoni, Barbara [Verfasser]. "Biophysical analysis of protein-protein and protein-small molecule interactions / Barbara Albertoni." Bonn : Universitäts- und Landesbibliothek Bonn, 2011. http://d-nb.info/1044846909/34.
Full textPark, Chihyo. "Combinatorial design and synthesis of peptidomimics and small molecules for protein-protein interactions." Texas A&M University, 2006. http://hdl.handle.net/1969.1/4692.
Full textJackson, Matthew. "Assay development and investigation of small molecule and amyloid protein interactions." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/6549/.
Full textMittal, Sumit [Verfasser], Elsa [Gutachter] Sanchez-Garcia, and Simon [Gutachter] Ebbinghaus. "Small molecule modulation of protein-protein interactions / Sumit Mittal ; Gutachter: Elsa Sanchez-Garcia, Simon Ebbinghaus." Bochum : Ruhr-Universität Bochum, 2017. http://d-nb.info/1133361854/34.
Full textNilsson, Jonas. "Design, Synthesis and Characterization of Small Molecule Inhibitors and Small Molecule : Peptide Conjugates as Protein Actors." Doctoral thesis, Linköpings universitet, Organisk Kemi, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-3943.
Full textFagiewicz, Robert Mateusz. "Structural analysis of protein-small molecule interactions by a crystallographic and spectroscopic approach." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13892/.
Full textKung, Wei-Wei. "Protein-protein interactions and small molecule targeting of the multisubunit SOCS2-EloBC-Cul5-Rbx2 E3 ubiquitin ligase." Thesis, University of Dundee, 2018. https://discovery.dundee.ac.uk/en/studentTheses/b2dd4bc4-9a13-428b-a45a-bc46b1d9c116.
Full textWang, Lin. "DEVELOPMENT OF A NEW SCREENING AND DETECTION METHOD FOR IDENTIFYING PROTEIN-SMALL MOLECULE INTERACTIONS." OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/861.
Full textKrumm, Stefanie A. [Verfasser], and Dieter [Akademischer Betreuer] Wolf. "Protein-protein and protein-small-molecule inhibitor interactions in the measles virus replication complex / Stefanie A. Krumm. Betreuer: Dieter Wolf." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2015. http://d-nb.info/1069815470/34.
Full textBooks on the topic "Protein-small molecule interactions"
Waldmann, H., and M. Koppitz, eds. Small Molecule — Protein Interactions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0.
Full textname, No. Small molecule-protein interactions. Berlin: Springer, 2003.
Find full textH, Waldmann, and Koppitz M. 1965-, eds. Small molecule--protein interactions. Berlin: Springer, 2003.
Find full textVassilev, Lyubomir, and David Fry, eds. Small-Molecule Inhibitors of Protein-Protein Interactions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17083-6.
Full textByun, Wan Gi. Discovery of Small-Molecule Modulators of Protein–RNA Interactions for Treating Cancer and COVID-19. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7814-2.
Full textSheng, Chunquan, and Gunda I. Georg, eds. Targeting Protein-Protein Interactions by Small Molecules. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0773-7.
Full textWaldmann, Herbert, and Marcus Koppitz. Small Molecule -- Protein Interactions. Springer London, Limited, 2013.
Find full textWaldmann, Herbert. Small Molecule - Protein Interactions. Springer, 2012.
Find full textWaldmann, Herbert, and Marcus Koppitz. Small Molecule - Protein Interactions. Springer, 2014.
Find full textFry, David, and Lyubomir Vassilev. Small-Molecule Inhibitors of Protein-Protein Interactions. Springer, 2011.
Find full textBook chapters on the topic "Protein-small molecule interactions"
Reinhard-Rupp, J., and G. Wess. "Drug Discovery Opportunities." In Small Molecule — Protein Interactions, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_1.
Full textBriem, H. "De Novo Design Methods." In Small Molecule — Protein Interactions, 153–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_10.
Full textBreinbauer, R., I. R. Vetter, and H. Waldmann. "From Protein Domains to Drug Candidates — Natural Products as Guiding Principles in Compound Library Design and Synthesis." In Small Molecule — Protein Interactions, 167–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_11.
Full textWeber, L. "Discovery of New MCRs, Chemical Evolution and Lead Optimization." In Small Molecule — Protein Interactions, 189–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_12.
Full textHermkens, P. H. H., and G. Müller. "The Impact of Combinatorial Chemistry on Drug Discovery." In Small Molecule — Protein Interactions, 201–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_13.
Full textHopkins, A. L., and C. R. Groom. "Target Analysis: A Priori Assessment of Druggability." In Small Molecule — Protein Interactions, 11–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_2.
Full textWells, J., M. Arkin, A. Braisted, W. DeLano, B. McDowell, J. Oslob, B. Raimundo, and M. Randal. "Drug Discovery at Signaling Interfaces." In Small Molecule — Protein Interactions, 19–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_3.
Full textWillson, T. "Chemical Genomics of Orphan Nuclear Receptors." In Small Molecule — Protein Interactions, 29–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_4.
Full textJhoti, H. "High-Throughput X-Ray Techniques and Drug Discovery." In Small Molecule — Protein Interactions, 43–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_5.
Full textKessler, H., M. Heller, G. Gemmecker, T. Diercks, E. Planker, and M. Coles. "NMR in Medicinal Chemistry." In Small Molecule — Protein Interactions, 59–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_6.
Full textConference papers on the topic "Protein-small molecule interactions"
Jongwan, Kim, Hocheol Lim, and K. T. No. "Abstract A45: In silico drug discovery targeting Hippo pathway and YAP-TEAD protein-protein interactions for small-molecule anticancer agent." In Abstracts: AACR Special Conference on the Hippo Pathway: Signaling, Cancer, and Beyond; May 8-11, 2019; San Diego, CA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1557-3125.hippo19-a45.
Full textKabir, Abbas, and Aaron Muth. "Abstract 1311: Inhibition of gankyrin-tumor suppressor protein interactions due to small molecule induced conformational change." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-1311.
Full textKabir, Abbas, and Aaron Muth. "Abstract 1311: Inhibition of gankyrin-tumor suppressor protein interactions due to small molecule induced conformational change." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-1311.
Full textTseng, Fan-Gang. "From High Performance Protein Micro Chip Toward Ultra High Sensitive Single Molecule Nano Array." In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82291.
Full textToretsky, Jeffrey A., Hayriye V. Erkizan, Yali Kong, Melinda Merchant, Julie S. Barber-Rotenberg, Milton L. Brown, and Aykut Üren. "Abstract 3411: Targeting of EWS-FLI1 with small molecule YK-4-279 reduces xenograft growth by disruption of disordered protein-protein interactions." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-3411.
Full textAl Balushi, Ahmed A., and Reuven Gordon. "Real-Time Dynamics of Single Protein-Small Molecule Interactions with Label-Free, Free-Solution Double-Nanohole Optical Trapping." In Frontiers in Optics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/fio.2014.fth1e.7.
Full textHuang, Cindy, Vivian Zhang, Ning Deng, Irene Yuan, Linda Pullan, C. Glenn Begley, and Ping Cao. "Abstract P098: A chemoproteomic platform for identifying small-molecule modulators of protein-protein interactions, discovering new cancer targets, and revealing previously unknown targets for well-known drugs." In Abstracts: AACR-NCI-EORTC Virtual International Conference on Molecular Targets and Cancer Therapeutics; October 7-10, 2021. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1535-7163.targ-21-p098.
Full textTavousi, Pouya, Morad Behandish, Kazem Kazerounian, and Horea T. Ilieş. "An Improved Free Energy Formulation and Implementation for Kinetostatic Protein Folding Simulation." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12671.
Full textLiu, Yuanjie, Jeremy W. Prokop, Hongzhuang Peng, and Frank J. Rauscher. "Abstract 1061: High resolution DNA recognition by the Snail zinc finger protein: Testing of a molecular dynamics based model defines the atomic level interactions required for high affinity binding, E-box specificity and reveals potential strategies for small molecule control of EMT transcriptional programs." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1061.
Full textJewel, Yead, Prashanta Dutta, and Jin Liu. "Coarse-Grained Molecular Dynamics Simulations of Sugar Transport Across Lactose Permease." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52337.
Full textReports on the topic "Protein-small molecule interactions"
Chamovitz, Daniel A., and Zhenbiao Yang. Chemical Genetics of the COP9 Signalosome: Identification of Novel Regulators of Plant Development. United States Department of Agriculture, January 2011. http://dx.doi.org/10.32747/2011.7699844.bard.
Full textMcClure, Michael A., Yitzhak Spiegel, David M. Bird, R. Salomon, and R. H. C. Curtis. Functional Analysis of Root-Knot Nematode Surface Coat Proteins to Develop Rational Targets for Plantibodies. United States Department of Agriculture, October 2001. http://dx.doi.org/10.32747/2001.7575284.bard.
Full textHorwitz, Benjamin, and Barbara Gillian Turgeon. Secondary Metabolites, Stress, and Signaling: Roles and Regulation of Peptides Produced by Non-ribosomal Peptide Synthetases. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696522.bard.
Full textDickman, Martin B., and Oded Yarden. Characterization of the chorismate mutase effector (SsCm1) from Sclerotinia sclerotiorum. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600027.bard.
Full text