Journal articles on the topic 'Protein patterning'

To see the other types of publications on this topic, follow the link: Protein patterning.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Protein patterning.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Blawas, A. S., and W. M. Reichert. "Protein patterning." Biomaterials 19, no. 7-9 (April 1998): 595–609. http://dx.doi.org/10.1016/s0142-9612(97)00218-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Biancardo, Susan B. N., Henrik J. Pranov, and Niels B. Larsen. "Protein In-Mold Patterning." Advanced Materials 20, no. 10 (May 19, 2008): 1825–29. http://dx.doi.org/10.1002/adma.200702859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bélisle, Jonathan M., Dario Kunik, and Santiago Costantino. "Rapid multicomponent optical protein patterning." Lab on a Chip 9, no. 24 (2009): 3580. http://dx.doi.org/10.1039/b911967a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ekblad, Tobias, and Bo Liedberg. "Protein adsorption and surface patterning." Current Opinion in Colloid & Interface Science 15, no. 6 (December 2010): 499–509. http://dx.doi.org/10.1016/j.cocis.2010.07.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Atsuta, K., H. Noji, and S. Takeuchi. "Protein patterning by micro fabrication technology." Seibutsu Butsuri 43, supplement (2003): S118. http://dx.doi.org/10.2142/biophys.43.s118_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Takamatsu, Seiichi, Kazunori Hoshino, Kiyoshi Matsumoto, Tsutomu Miyasaka, and Isao Shimoyama. "Photosensitive protein patterning with electrophoretic deposition." IEICE Electronics Express 7, no. 11 (2010): 779–84. http://dx.doi.org/10.1587/elex.7.779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ando, A., M. A. Sayed, T. Asano, R. Tero, K. Kitano, T. Urisu, and S. Hamaguchi. "Protein patterning by atmospheric-pressure plasmas." Journal of Physics: Conference Series 232 (June 1, 2010): 012019. http://dx.doi.org/10.1088/1742-6596/232/1/012019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ganesan, Ramakrishnan, Karl Kratz, and Andreas Lendlein. "Multicomponent protein patterning of material surfaces." Journal of Materials Chemistry 20, no. 35 (2010): 7322. http://dx.doi.org/10.1039/b926690a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hoff, J. Damon, Li-Jing Cheng, Edgar Meyhöfer, L. Jay Guo, and Alan J. Hunt. "Nanoscale Protein Patterning by Imprint Lithography." Nano Letters 4, no. 5 (May 2004): 853–57. http://dx.doi.org/10.1021/nl049758x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zervoudis, Nicholas A., and Allie C. Obermeyer. "The effects of protein charge patterning on complex coacervation." Soft Matter 17, no. 27 (2021): 6637–45. http://dx.doi.org/10.1039/d1sm00543j.

Full text
Abstract:
Charge patterned polypeptides modulate the complex coacervation of globular proteins with polymers. These protein coacervates have applications in protein encapsulation and delivery and in determining the function of biomolecular condensates.
APA, Harvard, Vancouver, ISO, and other styles
11

Liu, Xiangyu, Mohit Kumar, Annalisa Calo’, Edoardo Albisetti, Xiaouri Zheng, Kylie B. Manning, Elisabeth Elacqua, Marcus Weck, Rein V. Ulijn, and Elisa Riedo. "High-throughput protein nanopatterning." Faraday Discussions 219 (2019): 33–43. http://dx.doi.org/10.1039/c9fd00025a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Pshennikova, Elena S., and Anna S. Voronina. "The ved protein patterning in zebrafish embryos." Stem Cell Investigation 5 (May 2018): 17. http://dx.doi.org/10.21037/sci.2018.05.03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shiu, J. Y., and P. L. Chen. "Addressable Protein Patterning via Switchable Superhydrophobic Microarrays." Advanced Functional Materials 17, no. 15 (October 15, 2007): 2680–86. http://dx.doi.org/10.1002/adfm.200700122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hong, Ye, Peter Krsko, and Matthew Libera. "Protein Surface Patterning Using Nanoscale PEG Hydrogels." Langmuir 20, no. 25 (December 2004): 11123–26. http://dx.doi.org/10.1021/la048651m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Anwar, Mekhail, Piyush B. Gupta, Raja Palaniapan, and Paul Matsudaira. "Protein Array Patterning by Diffusive Gel Stamping." PLoS ONE 7, no. 10 (October 10, 2012): e46382. http://dx.doi.org/10.1371/journal.pone.0046382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Aslan, Hüsnü, Abhichart Krissanaprasit, Flemming Besenbacher, Kurt V. Gothelf, and Mingdong Dong. "Protein patterning by a DNA origami framework." Nanoscale 8, no. 33 (2016): 15233–40. http://dx.doi.org/10.1039/c6nr03199d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kim, Heesuk, Keel Yong Lee, Soo Ryeon Ryu, Kwang-Hwan Jung, Tae Kyu Ahn, Yeonhee Lee, Oh-Sun Kwon, Sung-Jin Park, Kevin Kit Parker, and Kwanwoo Shin. "Charge-selective membrane protein patterning with proteoliposomes." RSC Advances 5, no. 7 (2015): 5183–91. http://dx.doi.org/10.1039/c4ra12088d.

Full text
Abstract:
A novel method to fabricate transmembrane protein (TP) embedded lipid bilayers has been developed, resulting in an immobilized, but biologically functioning TP embedded lipid layer precisely in the targeted patterns.
APA, Harvard, Vancouver, ISO, and other styles
18

Nandwana, Vikas, Rubul Mout, Yi-Cheun Yeh, Stefan Dickert, Mark T. Tuominen, and Vincent M. Rotello. "Patterning of Protein/Quantum Dot Hybrid Bionanostructures." Journal of Inorganic and Organometallic Polymers and Materials 23, no. 1 (October 2, 2012): 227–32. http://dx.doi.org/10.1007/s10904-012-9772-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Mutanwad, Krishna Vasant, Isabella Zangl, and Doris Lucyshyn. "The Arabidopsis O-fucosyltransferase SPINDLY regulates root hair patterning independently of gibberellin signaling." Development 147, no. 19 (September 14, 2020): dev192039. http://dx.doi.org/10.1242/dev.192039.

Full text
Abstract:
ABSTRACTRoot hairs are able to sense soil composition and play an important role in water and nutrient uptake. In Arabidopsis thaliana, root hairs are distributed in the epidermis in a specific pattern, regularly alternating with non-root hair cells in continuous cell files. This patterning is regulated by internal factors such as a number of hormones, as well as by external factors like nutrient availability. Thus, root hair patterning is an excellent model for studying the plasticity of cell fate determination in response to environmental changes. Here, we report that loss-of-function mutants for the Protein O-fucosyltransferase SPINDLY (SPY) show defects in root hair patterning. Using transcriptional reporters, we show that patterning in spy-22 is affected upstream of GLABRA2 (GL2) and WEREWOLF (WER). O-fucosylation of nuclear and cytosolic proteins is an important post-translational modification that is still not very well understood. So far, SPY is best characterized for its role in gibberellin signaling via fucosylation of the growth-repressing DELLA protein REPRESSOR OF ga1-3 (RGA). Our data suggest that the epidermal patterning defects in spy-22 are independent of RGA and gibberellin signaling.
APA, Harvard, Vancouver, ISO, and other styles
20

Yu, Ling, Qiong Chen, Yun Li Tian, An Xiu Gao, Yuan Li, Man Li, and Chang Ming Li. "One-post patterning of multiple protein gradients using a low-cost flash foam stamp." Chemical Communications 51, no. 99 (2015): 17588–91. http://dx.doi.org/10.1039/c5cc07096a.

Full text
Abstract:
Versatile chemical and biological inks were printed using a cost-effective flash foam stamp (FFS) for one-post patterning of multiple protein gradients, demonstrating an accessible solution for resource-limited laboratories conducting molecular patterning experiments.
APA, Harvard, Vancouver, ISO, and other styles
21

Hengsakul, Manchumas, and Anthony E. G. Cass. "Protein Patterning with a Photoactivatable Derivative of Biotin." Bioconjugate Chemistry 7, no. 2 (January 1996): 249–54. http://dx.doi.org/10.1021/bc960007z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hnilova, M., X. Liu, E. Yuca, C. Jia, B. Wilson, A. Y. Karatas, C. Gresswell, F. Ohuchi, K. Kitamura, and C. Tamerler. "Multifunctional Protein-Enabled Patterning on Arrayed Ferroelectric Materials." ACS Applied Materials & Interfaces 4, no. 4 (April 3, 2012): 1865–71. http://dx.doi.org/10.1021/am300177t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Allazetta, Simone, Steffen Cosson, and Matthias P. Lutolf. "Programmable microfluidic patterning of protein gradients on hydrogels." Chem. Commun. 47, no. 1 (2011): 191–93. http://dx.doi.org/10.1039/c0cc02377a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Heinz, William F., Maria Hoh, and Jan H. Hoh. "Laser inactivation protein patterning of cell culture microenvironments." Lab on a Chip 11, no. 19 (2011): 3336. http://dx.doi.org/10.1039/c1lc20204a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lee, Ji-Hye, Hyun-Woo Shim, Ho-Suk Choi, Young-A. Son, and Chang-Soo Lee. "Protein patterning on self-assembled polyelectrolyte thin films." Journal of Physics and Chemistry of Solids 69, no. 5-6 (May 2008): 1581–84. http://dx.doi.org/10.1016/j.jpcs.2007.10.124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Márquez-Posadas, M. C., J. Ramiro, J. Becher, Y. Yang, A. Köwitsch, I. Pashkuleva, R. Díez-Ahedo, et al. "Surface microstructuring and protein patterning using hyaluronan derivatives." Microelectronic Engineering 106 (June 2013): 21–26. http://dx.doi.org/10.1016/j.mee.2013.01.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kumar, Nitin, and Jong-in Hahm. "Nanoscale Protein Patterning Using Self-Assembled Diblock Copolymers." Langmuir 21, no. 15 (July 2005): 6652–55. http://dx.doi.org/10.1021/la050331v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Al-Bataineh, Sameer A., and Robert D. Short. "Protein Patterning on Microplasma-Activated PEO-Like Coatings." Plasma Processes and Polymers 11, no. 3 (January 14, 2014): 263–68. http://dx.doi.org/10.1002/ppap.201300140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

TAKAHASHI, Yasufumi, Hitoshi SHIKU, Tomoyuki YASUKAWA, and Tomokazu MATSUE. "Protein Patterning Techniques and Analysis of Interfaces Phenomenon." Hyomen Kagaku 27, no. 10 (2006): 613–16. http://dx.doi.org/10.1380/jsssj.27.613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Xu, Youyong, Yosuke Hoshi, and Christopher K. Ober. "Photo-switchable polyelectrolyte brush for dual protein patterning." Journal of Materials Chemistry 21, no. 36 (2011): 13789. http://dx.doi.org/10.1039/c1jm12062j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Reuther, Cordula, Robert Tucker, Leonid Ionov, and Stefan Diez. "Programmable Patterning of Protein Bioactivity by Visible Light." Nano Letters 14, no. 7 (June 9, 2014): 4050–57. http://dx.doi.org/10.1021/nl501521q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Fiddes, Lindsey K., Ho Ka C. Chan, Bryan Lau, Eugenia Kumacheva, and Aaron R. Wheeler. "Durable, region-specific protein patterning in microfluidic channels." Biomaterials 31, no. 2 (January 2010): 315–20. http://dx.doi.org/10.1016/j.biomaterials.2009.09.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Waskiewicz, Andrew Jan, Holly A. Rikhof, Rafael E. Hernandez, and Cecilia B. Moens. "Zebrafish Meis functions to stabilize Pbx proteins and regulate hindbrain patterning." Development 128, no. 21 (November 1, 2001): 4139–51. http://dx.doi.org/10.1242/dev.128.21.4139.

Full text
Abstract:
Homeodomain-containing Hox proteins regulate segmental identity in Drosophila in concert with two partners known as Extradenticle (Exd) and Homothorax (Hth). These partners are themselves DNA-binding, homeodomain proteins, and probably function by revealing the intrinsic specificity of Hox proteins. Vertebrate orthologs of Exd and Hth, known as Pbx and Meis (named for a myeloid ecotropic leukemia virus integration site), respectively, are encoded by multigene families and are present in multimeric complexes together with vertebrate Hox proteins. Previous results have demonstrated that the zygotically encoded Pbx4/Lazarus (Lzr) protein is required for segmentation of the zebrafish hindbrain and proper expression and function of Hox genes. We demonstrate that Meis functions in the same pathway as Pbx in zebrafish hindbrain development, as expression of a dominant-negative mutant Meis results in phenotypes that are remarkably similar to that of lzr mutants. Surprisingly, expression of Meis protein partially rescues the lzr– phenotype. Lzr protein levels are increased in embryos overexpressing Meis and are reduced for lzr mutants that cannot bind to Meis. This implies a mechanism whereby Meis rescues lzr mutants by stabilizing maternally encoded Lzr. Our results define two functions of Meis during zebrafish hindbrain segmentation: that of a DNA-binding partner of Pbx proteins, and that of a post-transcriptional regulator of Pbx protein levels.
APA, Harvard, Vancouver, ISO, and other styles
34

Sohn, Young-Soo, Junhai Kai, and Chong H. Ahn. "Protein Array Patterning on Cyclic Olefin Copolymer (COC) for Disposable Protein Chip." Sensor Letters 2, no. 3 (September 1, 2004): 171–74. http://dx.doi.org/10.1166/sl.2004.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hosokawa, Yoichiroh, Satoshi Matsumura, Hiroshi Masuhara, Keiko Ikeda, Ai Shimo-oka, and Hajime Mori. "Laser trapping and patterning of protein microcrystals: Toward highly integrated protein microarrays." Journal of Applied Physics 96, no. 5 (September 2004): 2945–48. http://dx.doi.org/10.1063/1.1777400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gao, Yibo, Jingxuan Tian, Jinbo Wu, Wenbin Cao, Bingpu Zhou, Rong Shen, and Weijia Wen. "Digital microfluidic programmable stencil (dMPS) for protein and cell patterning." RSC Advances 6, no. 104 (2016): 101760–69. http://dx.doi.org/10.1039/c6ra17633j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Stephenson, James D., Roman A. Laskowski, Andrew Nightingale, Matthew E. Hurles, and Janet M. Thornton. "VarMap: a web tool for mapping genomic coordinates to protein sequence and structure and retrieving protein structural annotations." Bioinformatics 35, no. 22 (June 13, 2019): 4854–56. http://dx.doi.org/10.1093/bioinformatics/btz482.

Full text
Abstract:
Abstract Motivation Understanding the protein structural context and patterning on proteins of genomic variants can help to separate benign from pathogenic variants and reveal molecular consequences. However, mapping genomic coordinates to protein structures is non-trivial, complicated by alternative splicing and transcript evidence. Results Here we present VarMap, a web tool for mapping a list of chromosome coordinates to canonical UniProt sequences and associated protein 3D structures, including validation checks, and annotating them with structural information. Availability and implementation https://www.ebi.ac.uk/thornton-srv/databases/VarMap. Supplementary information Supplementary data are available at Bioinformatics online.
APA, Harvard, Vancouver, ISO, and other styles
38

Seirin-Lee, Sungrim, Eamonn A. Gaffney, and Adriana T. Dawes. "CDC-42 Interactions with Par Proteins Are Critical for Proper Patterning in Polarization." Cells 9, no. 9 (September 5, 2020): 2036. http://dx.doi.org/10.3390/cells9092036.

Full text
Abstract:
Many cells rearrange proteins and other components into spatially distinct domains in a process called polarization. This asymmetric patterning is required for a number of biological processes including asymmetric division, cell migration, and embryonic development. Proteins involved in polarization are highly conserved and include members of the Par and Rho protein families. Despite the importance of these proteins in polarization, it is not yet known how they interact and regulate each other to produce the protein localization patterns associated with polarization. In this study, we develop and analyse a biologically based mathematical model of polarization that incorporates interactions between Par and Rho proteins that are consistent with experimental observations of CDC-42. Using minimal network and eFAST sensitivity analyses, we demonstrate that CDC-42 is predicted to reinforce maintenance of anterior PAR protein polarity which in turn feedbacks to maintain CDC-42 polarization, as well as supporting posterior PAR protein polarization maintenance. The mechanisms for polarity maintenance identified by these methods are not sufficient for the generation of polarization in the absence of cortical flow. Additional inhibitory interactions mediated by the posterior Par proteins are predicted to play a role in the generation of Par protein polarity. More generally, these results provide new insights into the role of CDC-42 in polarization and the mutual regulation of key polarity determinants, in addition to providing a foundation for further investigations.
APA, Harvard, Vancouver, ISO, and other styles
39

O’Donnell, Cian, and Terrence J. Sejnowski. "Selective Memory Generalization by Spatial Patterning of Protein Synthesis." Neuron 82, no. 2 (April 2014): 398–412. http://dx.doi.org/10.1016/j.neuron.2014.02.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Dhruv, H., R. Pepalla, M. Taveras, and D. W. Britt. "Protein Insertion and Patterning of PEG Bearing Langmuir Monolayers." Biotechnology Progress 22, no. 1 (February 3, 2006): 150–55. http://dx.doi.org/10.1021/bp050173y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dosch, Roland, and Christof Niehrs. "Requirement for anti-dorsalizing morphogenetic protein in organizer patterning." Mechanisms of Development 90, no. 2 (February 2000): 195–203. http://dx.doi.org/10.1016/s0925-4773(99)00245-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Berejnov, Viatcheslav, and Robert E. Thorne. "Enhancing drop stability in protein crystallization by chemical patterning." Acta Crystallographica Section D Biological Crystallography 61, no. 12 (November 19, 2005): 1563–67. http://dx.doi.org/10.1107/s0907444905028866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lum, William, Dinesh Gautam, Jixin Chen, and Laura B. Sagle. "Single molecule protein patterning using hole mask colloidal lithography." Nanoscale 11, no. 35 (2019): 16228–34. http://dx.doi.org/10.1039/c9nr05630k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Romet-Lemonne, Guillaume, Martijn VanDuijn, and Marileen Dogterom. "Three-Dimensional Control of Protein Patterning in Microfabricated Devices." Nano Letters 5, no. 12 (December 2005): 2350–54. http://dx.doi.org/10.1021/nl0507111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Goustouridis, D., K. Misiakos, P. S. Petrou, and S. E. Kakabakos. "Protein patterning by micromachined silicon embossing on polymer surfaces." Applied Physics Letters 85, no. 26 (December 27, 2004): 6418–20. http://dx.doi.org/10.1063/1.1841458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Didar, Tohid Fatanat, Amir M. Foudeh, and Maryam Tabrizian. "Patterning Multiplex Protein Microarrays in a Single Microfluidic Channel." Analytical Chemistry 84, no. 2 (December 27, 2011): 1012–18. http://dx.doi.org/10.1021/ac2025877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang, Qihong, Noel S. Murcia, Laura R. Chittenden, William G. Richards, Edward J. Michaud, Richard P. Woychik, and Bradley K. Yoder. "Loss of theTg737 protein results in skeletal patterning defects." Developmental Dynamics 227, no. 1 (April 11, 2003): 78–90. http://dx.doi.org/10.1002/dvdy.10289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sharma, Rajan, A. Giles Davies, and Christoph Wälti. "RecA Protein Mediated Nano-Scale Patterning of DNA Scaffolds." Journal of Nanoscience and Nanotechnology 11, no. 12 (December 1, 2011): 10629–32. http://dx.doi.org/10.1166/jnn.2011.3937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Robert, Benoît. "Bone morphogenetic protein signaling in limb outgrowth and patterning." Development, Growth & Differentiation 49, no. 6 (July 27, 2007): 455–68. http://dx.doi.org/10.1111/j.1440-169x.2007.00946.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Paroly, Suneeta S., Fengwei Wang, Lee Spraggon, Joseph Merregaert, Ekatherina Batourina, Benjamin Tycko, Kai M. Schmidt-Ott, Sean Grimmond, Melissa Little, and Cathy Mendelsohn. "Stromal Protein Ecm1 Regulates Ureteric Bud Patterning and Branching." PLoS ONE 8, no. 12 (December 31, 2013): e84155. http://dx.doi.org/10.1371/journal.pone.0084155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography