Dissertations / Theses on the topic 'Protein-Lipid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Protein-Lipid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Deol, Sundeep Singh. "Analysis of lipid-protein interactions." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424760.
Full textRathnayake, Sewwandi S. "A BIOPHYSICAL CHARACTERIZATION OF PROTEIN-LIPID INTERACTIONS OF THE LIPID DROPLET BINDING PROTEIN, PERILIPIN 3." Kent State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=kent1469552680.
Full textCarr, Neil Owen. "Lipid binding and lipid-protein interaction in wheat flower dough." Thesis, University of Reading, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293285.
Full textPERISSINOTTO, FABIO. "Lipid raft formation and lipid-protein interactions in model membranes." Doctoral thesis, Università degli Studi di Trieste, 2018. http://hdl.handle.net/11368/2919798.
Full textMorrow, Isabel C. "Protein-lipid interactions within the cell /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18271.pdf.
Full textBromley, Emma. "Protein and lipid based bioinorganic composites." Thesis, University of Bristol, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.441316.
Full textPunyamoonwongsa, Patchara. "Synthetic analogues of protein-lipid complexes." Thesis, Aston University, 2007. http://publications.aston.ac.uk/9803/.
Full textBotelho, Ana Vitoria. "Lipid-protein interactions: Photoreceptor membrane model." Diss., The University of Arizona, 2005. http://hdl.handle.net/10150/280765.
Full textSaeed, Suhur. "Lipid oxidation mechanisms and lipid-protein interactions in frozen mackerel (Scomber scombrus)." Thesis, University of Surrey, 1998. http://epubs.surrey.ac.uk/843251/.
Full textConnell, E. J. "Protein-lipid interactions in synaptic vesicle exocytosis." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597894.
Full textPilot, Jeffrey David. "Effects of lipid on membrane protein function." Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390717.
Full textAnnangudi, Palani Suresh Babu. "Lipid-based Oxidative Protein Modifications in Glaucoma." Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1129558048.
Full textMalik, Saira. "Protein-protein and protein-lipid interactions of band 3 in native and model membranes." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302943.
Full textThurston, Victoria Louise. "Biophysical, structural and protein engineering studies on rabbit ileal lipid binding protein." Thesis, University of Nottingham, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517865.
Full textIvanova, Vesselka Petrova. "Theoretical and experimental study of protein lipid interactions." Doctoral thesis, [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961248726.
Full textRankin, Saffron Emily. "Lipid-protein interactions and nicotinic acetylcholine receptor function." Thesis, University of Oxford, 1996. https://ora.ox.ac.uk/objects/uuid:3deca85b-9f09-4f72-9db3-e34851e10542.
Full textWang, Yuqin. "Protein and lipid interactions of mammalian antibacterial peptides /." Stockholm, 2001. http://diss.kib.ki.se/2001/91-628-4698-1/.
Full textSuresh, Swetha. "Probing protein-lipid interactions using atomic force microscopy." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609231.
Full textHedger, George. "Characterisation of lipid-protein interactions through computational modelling." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:788a8496-fdcc-4962-af19-a10e746e1529.
Full textApsel, Beth. "Dual-specificity inhibitors of lipid and protein kinases." Diss., Search in ProQuest Dissertations & Theses. UC Only, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3311357.
Full textWilkinson, Dorothy Kate. "Functional characterisation of the lipid raft protein stomatin." Thesis, University of Leeds, 2005. http://etheses.whiterose.ac.uk/448/.
Full textGarner, K. L. "An investigation into protein and lipid binding by the phosphatidylinositol transfer protein RdgBβ." Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1359853/.
Full textKatsiadaki, Ioanna. "Physical and chemical attributes of cod roe." Thesis, University of Lincoln, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387667.
Full textKlemm, Robin. "Lipid rafts in protein sorting and yeast cell polarity." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1184754346185-43377.
Full textFraser, Diane Patricia. "Theoretical studies of lipid-protein interactions in biological membranes." Thesis, University of Central Lancashire, 1987. http://clok.uclan.ac.uk/20009/.
Full textZech, Tobias Nikolai. "Lipid protein interactions at sites of T cell activation." Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531794.
Full textTognoloni, Cecilia. "Formation of polymer lipid nanodiscs for membrane protein studies." Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760950.
Full textAivazian, Dikran A. (Dikran Arvid) 1971. "Lipid-protein interactions of immunoreceptor signaling subunit cytoplasmic domains." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8583.
Full textVita.
Includes bibliographical references (leaves 116-131).
Protein-lipid interactions are emerging as key components of cellular processes such as protein and membrane trafficking and cell-cell signaling. Many proteins bind lipid reversibly, including cytoplasmic proteins involved in signal transduction, such as Ras and Src. Membrane binding is vital for the function of these signaling proteins both through co-localization with other signaling proteins as well as effects of lipid on intrinsic activities. In this thesis, protein-lipid interactions of subunits of key antigen recognition receptors of the immune system are investigated. The proteins studied are the cytoplasmic domains of immunoreceptor signaling subunits that mediate transmembrane signal transduction in response to receptor engagement. The cytoplasmic domains derive from the T cell receptor, the B cell receptor, Fe receptors and Natural Killer cell stimulatory receptors. The TCR, CD3, CD3, CD3, ... and DAP12 cytoplasmic domains all bind lipid, whereas those of B cell receptor Iga and Igp do not. While all of these proteins are unstructured in solution, ... and CD3 undergo extensive increases in secondary structure upon lipid binding. Lipid binding of ... is found to inhibit its accessibility to kinase-mediated phosphorylation. Based on these results it is proposed that interactions with lipid may regulate the function of receptor cytoplasmic domains, as with many cytosolic proteins involved in signaling processes.
by Dikran A. Aivazian.
Ph.D.
Huster, Daniel. "Solid-state NMR spectroscopy to study protein-lipid interactions." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-190961.
Full textHuster, Daniel. "Solid-state NMR spectroscopy to study protein-lipid interactions." Universität Leipzig, 2014. https://ul.qucosa.de/id/qucosa%3A14047.
Full textZhu, Xiaochun. "Characterization of Protein Modification by Products of Lipid Peroxidation." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1225734704.
Full textShi, Chuan. "Protein Modification and Catabolic Fates of Lipid Peroxidation Products." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1481231287497328.
Full textGole, A. M. "Synthesis, characterization and possible applications of protein lipid and protein gold colloid biocomposite materials." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2002. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2718.
Full textKlein, Noreen [Verfasser]. "Protein-Protein- und Protein-Lipid-Wechselwirkungen beeinflussen die Oligomerisierung und Funktion des E. coli Aquaglyceroporins GlpF / Noreen Klein." Mainz : Universitätsbibliothek Mainz, 2015. http://d-nb.info/1070955701/34.
Full textBunner-Pilotelle, Anne. "Lipid-protein and protein-protein interactions in the mechanisms of photosynthetic reaction centre and the Na+, K+-ATPase." Paris 11, 2008. http://www.theses.fr/2008PA112163.
Full textReported Iiterature values of the dissociation constant, Kd, of ATP with the E1 conformation of the Na+. K++ATPase based on equilibrium titrations and kinetic methods disagree. Using isothermal titration calorimetry ((TC) and simulations of the expected equilibrium behaviour for different binding models, this thesis presents an eX~lanation for this apparent discrepancy based on protein-protein interactions. Because of the importanCE of Mg + in ATP hydrolysis, kinetic studies of Mg2+ binding to the protein were also carried out. These studies showed that ATP alone is responsible for Mg2+ complexation, with no significant contribution from the enzyme environ ment
Pilotelle-Bunner, Anne. "Lipid-protein and protein-protein interactions in the mechanisms of photosynthetic reaction centre and the Na+,K+-ATPase." Thesis, The University of Sydney, 2008. http://hdl.handle.net/2123/7774.
Full textHorton, Margaret R. (Margaret Ruth). "Influence of protein and lipid domains on the structure, fluidity and phase behavior of lipid bilayer membranes." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38982.
Full textIncludes bibliographical references (p. 136-148).
The lipid bilayer forms the basic structure of the cell membrane, which is a heterogeneous matrix of proteins and lipids that provides a barrier between the interior of a cell and its outside environment. Protein and lipid domains in cell membranes can facilitate receptor localization, stabilize membranes, and influence membrane fluidity. In this thesis, we study how ordered protein and lipid domains influence the physical properties of lipid bilayers to better understand the roles of membrane domains in biological mechanisms. Model cellular membranes that mimic the behavior of biological membranes offer a controllable environment for systematically studying the isolated effects of protein and lipid ordering on membrane organization. Using fluid and solid-supported lipid bilayers, we study ordered peripheral membrane proteins and lateral lipid phase separation with fluorescence microscopy and X-ray reflectivity. To model cellular protein coatings and peripheral proteins, we prepare biotin-functionalized membranes that bind the proteins streptavidin and avidin. Fluorescence microscopy studies demonstrate that proteins crystallized in a single layer on lipid bilayer surfaces can change the lipid curvature and stabilize lipid vesicles against osmotic collapse.
(cont.) At solid interfaces, we characterize the electron density profiles of protein-coated bilayers to determine how a water layer separates an immobile protein layer from the fluid lipid bilayer. Liquid-ordered lipid phases enriched in cholesterol and sphingomyelin can localize molecules in cell membranes and this lipid phase separation behavior may be influenced by proteins and molecules in the membrane. Caveolae are specialized liquid-ordered domains in the plasma membrane that are enriched in the protein caveolin-1. We demonstrate that caveolin-1 peptides influence the onset of lipid phase separation and bind phase-separated lipid bilayers in solution. On solid surfaces, the formation of liquid-ordered lipid phases is influenced by surface roughness; with reflectivity, we determine that lipid bilayers containing cholesterol and sphingomyelin thicken with increasing cholesterol content. The membrane receptor GM1 also thickens the lipid bilayer when it is incorporated into the bilayer upper leaflet. The diverse experimental platforms that we present are applicable to studying additional and more complex biological systems to elucidate the influence of lipid and protein domains on cell membrane structure, organization and fluidity.
by Margaret R. Horton.
Ph.D.
Ocampo, Minette C. "Protein-Lipid Interactions with Pulmonary Surfactant Using Atomic Force Microscopy." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1395050693.
Full textHermelink, Antje. "Phosphatidylinositol 3-kinase [gamma] characterization of a protein-lipid interaction." Berlin dissertation.de, 2008. http://d-nb.info/994112912/04.
Full textHeath, George R. "Atomic force microscopy studies of protein interactions with lipid membranes." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/7599/.
Full textSizer, P. J. H. "Studies of specific molecular interactions within and between membrane bilayers." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233640.
Full textHarris, Frederick. "Investigation into the membrane interactive properties of the escherichia coli low molecular weight penicillin-binding proteins." Thesis, University of Central Lancashire, 1998. http://clok.uclan.ac.uk/8692/.
Full textHorn, Patrick J., Christopher N. James, Satinder K. Gidda, Aruna Kilaru, John M. Dyer, Robert T. Mullen, John B. Ohlrogge, and Kent D. Chapman. "Identification of a New Class of Lipid Droplet-Associated Proteins in Plants." Digital Commons @ East Tennessee State University, 2013. https://dc.etsu.edu/etsu-works/4752.
Full textBreitsamer, Michaela [Verfasser], and Gerhard [Akademischer Betreuer] Winter. "Lipid-based depots : manufacturing, administration and interactions of protein drugs with lipid formulations / Michaela Breitsamer ; Betreuer: Gerhard Winter." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1193049105/34.
Full textGrachan, Jeremy J. "Characterization of Hypoxia-Inducible Lipid Droplet Associated Protein (HILPDA) Dependent Lipid Droplet Abundance in Pancreatic Cancer Tumors Cells." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586437335477715.
Full textTemprano, López Ana. "The lipin protein family in human adipocytes: lipid metabolism and obesity." Doctoral thesis, Universitat Rovira i Virgili, 2016. http://hdl.handle.net/10803/398025.
Full textLas lipinas son una familia de fosfatasas de fosfatidato (PAP1) dependientes de Mg2+ evolutivamente conservadas, que generan diacilglicerol para la síntesis de fosfolípidos y triacilglicerol. En mamíferos, la familia consiste en lipina-1, lipina-2, y lipina-3. Mientras en ratones la mutación del gen Lpin1 causa lipodistrofia, las mutaciones deletéreas en el gen LPIN1 en humanos no afectan a la distribución de grasa. Sin embargo, los individuos con diabetes tipo 2 manifiestan niveles reducidos de expresión de LPIN1 y de actividad PAP1. En esta tesis doctoral se estudia la función de las lipinas en el tejido adiposo humano, la adipogénesis y la lipólisis. Descubrimos que la expresión génica y proteica de las lipinas está alterada en el tejido adiposo de individuos con diabetes tipo 2. La depleción de cada miembro de las lipinas en la línea celular humana de preadipocitos del síndrome Simpson–Golabi–Behmel (SGBS), mostró que, a pesar de que los tres miembros tienen un papel en la adipogénesis temprana, los adipocitos deplecionados de lipinas se diferencian y acumulan lípidos neutros, llevándonos a la hipótesis de la existencia de vías alternativas para la síntesis de triacilglicerol en adipocitos humanos cuando la expresión de las lipinas es reprimida. Las lipinas también intervienen en el reciclaje de los ácidos grasos liberados por la vía lipolítica. Tras la inducción de la lipólisis, las lipinas son defosforiladas y se desplazan a la membrana del retículo endoplásmico, donde ejercen su función. Esta activación es inducida por los ácidos grasos liberados, y revertida con albúmina o triacsin C. La depleción de cada lipina en adipocitos SGBS y posterior inducción de la lipólisis, demuestra su papel en el metabolismo de lípidos neutros. En resumen, las lipinas parecen no tener un papel indispensable en la adipogénesis humana pero sí comprometer el reciclaje de ácidos grasos, importante para la homeostasis lipídica.
Lipins are evolutionarily conserved Mg2+-dependent phosphatidate phosphatases (PAP1) that generate diacylglycerol for phospholipid and triacylglycerol synthesis. In mammals the Lipin family consists of lipin-1, lipin-2 and lipin-3. Whereas mutations in the Lpin1 gene cause lipodystrophy in mouse models, LPIN1 deleterious mutations in humans do not affect fat distribution. However, reduced LPIN1 expression and PAP1 activity have been described in participants with type 2 diabetes. In this doctoral thesis we investigate the roles of all lipin family members in human adipose tissue, adipogenesis and lipolysis. We found that adipose tissue gene and protein expression of the lipin family is altered in type 2 diabetes. Depletion of every lipin family member in a human Simpson–Golabi–Behmel syndrome (SGBS) pre-adipocyte cell line showed that even though all members alter early stages of adipogenesis, lipin-silenced cells differentiate and accumulate neutral lipids, pointing to the hypothesis of alternative pathways for triacylglycerol synthesis under repression of lipin expression. Lipins also have a role in the recycling of the fatty acids released by the lipolytic pathway. They become dephosphorylated upon lipolytic induction, and translocate to their active site, the endoplasmic reticulum membrane. This activation is induced by fatty acids and reversed with albumin or triacsin C. Depletion of every lipin member and subsequently stimulation of lipolysis in SGBS adipocytes revealed a role for lipins in neutral lipid metabolism. Overall, our data support that lipins may not have an indispensable role in adipogenesis, but their depletion compromise fatty acid recycling and lipid homeostasis.
Chandrasekar, Indra. "On the lipid mediated regulation of the cell adhesion protein vinculin." [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975657429.
Full textUlrich, Anne S. "Deuterium NMR studies of lipid bilayer hydration and membrane protein structure." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334957.
Full textAndrews, Shantaya. "Localization of SIP470, a Plant Lipid Transfer Protein in Nicotiana tabacum." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3520.
Full textVadlamudi, Mallika. "Lipid-coated Magnesium Phosphate Nanoparticles for Intrapulmonary Protein Delivery in Mice." Scholarly Commons, 2019. https://scholarlycommons.pacific.edu/uop_etds/3631.
Full text