Academic literature on the topic 'Protein; Ligands'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Protein; Ligands.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Protein; Ligands"
Karasev, Dmitry, Boris Sobolev, Alexey Lagunin, Dmitry Filimonov, and Vladimir Poroikov. "Prediction of Protein–ligand Interaction Based on Sequence Similarity and Ligand Structural Features." International Journal of Molecular Sciences 21, no. 21 (October 31, 2020): 8152. http://dx.doi.org/10.3390/ijms21218152.
Full textSouthern, Craig, Jennifer M. Cook, Zaynab Neetoo-Isseljee, Debra L. Taylor, Catherine A. Kettleborough, Andy Merritt, Daniel L. Bassoni, et al. "Screening β-Arrestin Recruitment for the Identification of Natural Ligands for Orphan G-Protein–Coupled Receptors." Journal of Biomolecular Screening 18, no. 5 (February 8, 2013): 599–609. http://dx.doi.org/10.1177/1087057113475480.
Full textFinkina, Ekaterina I., Daria N. Melnikova, Ivan V. Bogdanov, Natalia S. Matveevskaya, Anastasia A. Ignatova, Ilia Y. Toropygin, and Tatiana V. Ovchinnikova. "Impact of Different Lipid Ligands on the Stability and IgE-Binding Capacity of the Lentil Allergen Len c 3." Biomolecules 10, no. 12 (December 13, 2020): 1668. http://dx.doi.org/10.3390/biom10121668.
Full textRaingeval, Claire, and Isabelle Krimm. "NMR investigation of protein–ligand interactions for G-protein coupled receptors." Future Medicinal Chemistry 11, no. 14 (July 2019): 1811–25. http://dx.doi.org/10.4155/fmc-2018-0312.
Full textHutchens, T. W., and J. O. Porath. "Protein recognition of immobilized ligands: promotion of selective adsorption." Clinical Chemistry 33, no. 9 (September 1, 1987): 1502–8. http://dx.doi.org/10.1093/clinchem/33.9.1502.
Full textMary, Sophie, Jean-Alain Fehrentz, Marjorie Damian, Pascal Verdié, Jean Martinez, Jacky Marie, and Jean-Louis Banères. "How ligands and signalling proteins affect G-protein-coupled receptors' conformational landscape." Biochemical Society Transactions 41, no. 1 (January 29, 2013): 144–47. http://dx.doi.org/10.1042/bst20120267.
Full textGalano-Frutos, Juan J., M. Carmen Morón, and Javier Sancho. "The mechanism of water/ion exchange at a protein surface: a weakly bound chloride in Helicobacter pylori apoflavodoxin." Physical Chemistry Chemical Physics 17, no. 43 (2015): 28635–46. http://dx.doi.org/10.1039/c5cp04504e.
Full textFerreira de Freitas, Renato, and Matthieu Schapira. "A systematic analysis of atomic protein–ligand interactions in the PDB." MedChemComm 8, no. 10 (2017): 1970–81. http://dx.doi.org/10.1039/c7md00381a.
Full textMehta, Simpi, and Seema R. Pathak. "INSILICO DRUG DESIGN AND MOLECULAR DOCKING STUDIES OF NOVEL COUMARIN DERIVATIVES AS ANTI-CANCER AGENTS." Asian Journal of Pharmaceutical and Clinical Research 10, no. 4 (April 1, 2017): 335. http://dx.doi.org/10.22159/ajpcr.2017.v10i4.16826.
Full textGORETZKI, Lothar, and Barbara M. MUELLER. "Low-density-lipoprotein-receptor-related protein (LRP) interacts with a GTP-binding protein." Biochemical Journal 336, no. 2 (December 1, 1998): 381–86. http://dx.doi.org/10.1042/bj3360381.
Full textDissertations / Theses on the topic "Protein; Ligands"
Almeida, T. B. "Identification and optimisation of ligands to target protein-protein interactions : EB1-SxIP proteins." Thesis, University of Liverpool, 2016. http://livrepository.liverpool.ac.uk/3004877/.
Full textHassan, Hani Mutlak Abdullah. "Chemical Synthesis of Protein Ligands." Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501975.
Full textLarsson, Emma. "Calcium-dependent affinity ligands for protein purification." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278695.
Full textDen snabba tillväxten inom bioläkemedelsindustrin har lett till ökade krav på processen för proteinproduktion. En viktig aspekt är utbytet av funktionellt protein, där valet av reningsmetod kan ha stor påverkan. Proteinrening med syraeluering kan utgöra ett problem för pH-känsliga proteiner, då stora förändringar i pH kan leda till aggregering och försämrad funktionalitet. Det låga pH som används för eluering i den traditionella reningen av antikroppar med Protein A-baserad affinitetskromatografi kan därmed vara problematiskt. Som ett svar på detta har en kalciumberoende proteindomän, vid namn ZCa, tidigare utvecklats för mild rening av antikroppar med eluering nära fysiologiskt pH. I det här arbetet presenteras nya varianter av ZCa som modifierats för att binda till andra bioläkemedel, vilka också skulle kunna gynnas av mild proteinrening. Fagdisplay av ett ZCa-baserat bibliotek har applicerats för att isolera lovande ZCa-baserade bindare mot antikroppsfragment (Fab), vävnadsplasminogenaktivator och granulocytkolonistimulerande faktor, vilka ännu inte karaktäriserats. Utöver detta identifierades och karaktäriserades tre ZCa-baserade varianter från en tidigare selektion, med affinitet för enkelkedjiga antikroppsfragment (scFv). Då dessa varianter utvärderades för rening visade alla på kalciumberoende eluering av scFv vid neutralt pH. Det här demonstrerar att ny affinitet kan introduceras till ZCa-domänen, där det kalciumberoende beteende som möjliggör mild proteinrening bevaras. Detta erbjuder en strategi för att utöka antalet proteiner som kan renas under milda kalciumberoende förhållanden, vilket med fördel kan minska aggregering och därmed öka utbytet av funktionellt protein.
Street, Ian Philip. "Protein - carbohydrate interactions in glycogen phosphorylase." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25049.
Full textScience, Faculty of
Chemistry, Department of
Graduate
Linhult, Martin. "Protein engineering to explore and improve affinity ligands." Doctoral thesis, KTH, Biotechnology, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3632.
Full textIn order to produce predictable and robust systems forprotein purification and detection, well characterized, small,folded domains descending from bacterial receptors have beenused. These bacterial receptors, staphylococcal protein A (SPA)and streptococcal protein G (SPG), possess high affinity to IgGand / or HSA. They are composed of repetitive units in whicheach one binds the ligand independently. The domains foldindependently and are very stable. Since the domains also havewellknown three-dimensional structures and do not containcysteine residues, they are very suitable as frameworks forfurther protein engineering.
Streptococcal protein G (SPG) is a multidomain proteinpresent on the cell surface ofStreptococcus. X-ray crystallography has been used todetermine the binding site of the Ig-binding domain. In thisthesis the region responsible for the HSA affinity of ABD3 hasbeen determined by directed mutagenesis followed by functionaland structural analysis. The analysis shows that the HSAbindinginvolves residues mainly in the second α-helix.
Most protein-based affinity chromatography media are verysensitive towards alkaline treatment, which is the preferredmethod for regeneration and removal of contaminants from thepurification devices in industrial applications. Here, aprotein engineering strategy has been used to improve thetolerance to alkaline conditions of different domains fromprotein G, ABD3 and C2. Amino acids known to be susceptibletowards high pH were substituted for less alkali susceptibleresidues. The new, engineered variants of C2 and ABD shownhigher stability towards alkaline pH. Also, very important forthe potential use as affinity ligands, these mutated variantsretained the secondary structure and the affinity to HSA andIgG, respectively. Moreover, dimerization was performed toinvestigate whether a higher binding capacity could be obtainedby multivalency. For ABD, binding studies showed that divalentligands coupled using non-directed chemistry demonstrated anincreased molar binding capacity compared to monovalentligands. In contrast, equal molar binding capacities wereobserved for both types of ligands when using a directed ligandcoupling chemistry involving the introduction and recruitmentof a unique C-terminal cysteine residue.
The staphylococcal protein A-derived domain Z is also a wellknown and thoroughly characterized fusion partner widely usedin affinity chromatography systems. This domain is consideredto be relatively tolerant towards alkaline conditions.Nevertheless, it is desirable to further improve the stabilityin order to enable an SPA-based affinity medium to withstandeven longer exposure to the harsh conditions associated withcleaning in place (CIP) procedures. For this purpose adifferent protein engineering strategy was employed. Smallchanges in stability due to the mutations would be difficult toassess. Hence, in order to enable detection of improvementsregarding the alkaline resistance of the Z domain, a by-passmutagenesis strategy was utilized, where a mutated structurallydestabilized variant, Z(F30A) was used as a surrogateframework. All eight asparagines in the domain were exchangedone-by-one. The residues were all shown to have differentimpact on the alkaline tolerance of the domain. By exchangingasparagine 23 for a threonine we were able to remarkablyincrease the stability of the Z(F30A)-domain towards alkalineconditions. Also, when grafting the N23T mutation to the Zscaffold we were able to detect an increased tolerance towardsalkaline treatment compared to the native Z molecule. In allcases, the most sensitive asparagines were found to be locatedin the loops region.
In summary, the work presented in this thesis shows theusefulness of protein engineering strategies, both to explorethe importance of different amino acids regarding stability andfunctionality and to improve the characteristics of aprotein.
Keywords:binding, affinity, human serum albumin (HSA),albumin-binding domain (ABD), affinity chromatography,deamidation, protein A, stabilization, Z-domain, capacity,protein G, cleaning-in-place (CIP), protein engineering, C2receptor.
Georgiou, Charis. "Rational design of isoform specific ligands." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28713.
Full textDuraj-Thatte, Anna. "Fluorescent GFP chromophores as potential ligands for various nuclear receptors." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44764.
Full textTosch, Paul. "Investigations of ephrin ligands during development." Title page, abstract and table of contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09pht713.pdf.
Full textRobinson, Daniel D. "Applications of pattern recognition and pattern analysis to molecule design." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343465.
Full textBoussert, Stéphanie Van Dorsselaer Alain Giralt Ernest. "Structural studies of proteins and protein complexes by mass spectrometry and atomic force microscopy." Strasbourg : Université Louis Pasteur, 2008. http://eprints-scd-ulp.u-strasbg.fr:8080/977/01/BOUSSERT_Stephanie_2008.pdf.
Full textBooks on the topic "Protein; Ligands"
Neve, Kim A., ed. Functional Selectivity of G Protein-Coupled Receptor Ligands. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-335-0.
Full textRoterman, Irena, and Leszek Konieczny, eds. Self-Assembled Molecules – New Kind of Protein Ligands. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-65639-7.
Full textSiegfried, Schwarz. Molecules of life & mutations: Understanding diseases by understanding proteins. Basel: Karger, 2002.
Find full textSchwarz, Siegfried. Molecules of life & mutations: Understanding diseases by understanding proteins. Basel: Karger, 2002.
Find full textSchwarz, Siegfried. Molecules of life & mutations: Understanding diseases by understanding proteins. Basel: Karger, 2002.
Find full textProtein-ligand interactions: Methods and applications. 2nd ed. New York: Humana Press, 2013.
Find full textJohnson, Michael L., Jo M. Holt, and Gary K. Ackers. Biothermodynamics. Amsterdam [Netherlands]: Elsevier/Academic Press, 2011.
Find full textEasterfield, Howard James. Analogues of phosphotyrosine: New components of ligands for protein tyrosine kinase enzymes. Birmingham: University of Birmingham, 1999.
Find full textHernandez, Marta. The study of ligand binding specificities of the lipid binding proteins: Recombinant human a-tocopherol transport protein (a-ttp), supernatant protein factor (spf) and S. cerevisiae Sec 14p for vitamin e (rrr-a-tocopherol) and other hydrophobic ligands. St. Catharines, Ont: Brock University, Dept. of Biotechnology, 2003.
Find full textNava, Phillip J. Synthesis of fluorescent analogues of a-tocopherol as ligands for the human a-tocopherol transfer protein (a-TTP). St. Catharines, Ont: Brock University, Centre for Biotechnology, 2006.
Find full textBook chapters on the topic "Protein; Ligands"
Wang, Jianpeng. "Protein Ligands Engineering." In Springer Theses, 27–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53399-4_3.
Full textDobrodziej, Jennifer, Hanqing Dong, Kurt Zimmermann, and Christopher M. Hickey. "Evaluating Ligands for Ubiquitin Ligases Using Affinity Beads." In Targeted Protein Degradation, 59–75. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1665-9_4.
Full textPitt, William R., Mark D. Calmiano, Boris Kroeplien, Richard D. Taylor, James P. Turner, and Michael A. King. "Structure-Based Virtual Screening for Novel Ligands." In Protein-Ligand Interactions, 501–19. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-398-5_19.
Full textKay, Brian K., Michael D. Scholle, and Fred J. Stevens. "EH Domains and Their Ligands." In Modular Protein Domains, 279–90. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603611.ch14.
Full textCiulli, Alessio. "Biophysical Screening for the Discovery of Small-Molecule Ligands." In Protein-Ligand Interactions, 357–88. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-398-5_13.
Full textRybarska, Joanna, Barbara Piekarska, Barbara Stopa, Grzegorz Zemanek, Leszek Konieczny, and Irena Roterman. "Supramolecular Systems as Protein Ligands." In Self-Assembled Molecules – New Kind of Protein Ligands, 1–20. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65639-7_1.
Full textChristianson, D. W., and W. N. Lipscomb. "Reaction Coordinate Approach to the Binding of Ligands to Carboxypeptidase A." In Protein Structure and Protein Engineering, 65–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-74173-9_8.
Full textSathish, Jean Gerard, and Reginald James Matthews. "SHP-1 twelve years on: structure, ligands, substrates and biological roles." In Protein Phosphatases, 301–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-40035-6_15.
Full textSousa, Isabel T., and M. Ângela Taipa. "Biomimetic Affinity Ligands for Protein Purification." In Methods in Molecular Biology, 231–62. Totowa, NJ: Humana Press, 2014. http://dx.doi.org/10.1007/978-1-62703-977-2_20.
Full textSousa, Isabel T., and M. Ângela Taipa. "Biomimetic Affinity Ligands for Protein Purification." In Methods in Molecular Biology, 167–99. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0775-6_14.
Full textConference papers on the topic "Protein; Ligands"
Timkin, Pavel, E. Timofeev, A. Chupalov, and Evgeniy Borodin. "ANALYSIS AND SELECTION OF LIGANDS FOR TRPM8 USING HARD DOCKING AND MACHINE LEARNING." In XIV International Scientific Conference "System Analysis in Medicine". Far Eastern Scientific Center of Physiology and Pathology of Respiration, 2020. http://dx.doi.org/10.12737/conferencearticle_5fe01d9b233509.17835494.
Full textHowl, John. "Chimeric ligands for G-protein-coupled receptors." In VIth Conference Biologically Active Peptides. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 1999. http://dx.doi.org/10.1135/css199903009.
Full textERGUNER, BEKIR, MASAHIRO HATTORI, SUSUMU GOTO, and MINORU KANEHISA. "CHARACTERIZING COMMON SUBSTRUCTURES OF LIGANDS FOR GPCR PROTEIN SUBFAMILIES." In Proceedings of the 10th Annual International Workshop on Bioinformatics and Systems Biology (IBSB 2010). IMPERIAL COLLEGE PRESS, 2010. http://dx.doi.org/10.1142/9781848166585_0003.
Full textCuppoletti, John. "Composite Synthetic Membranes Containing Native and Engineered Transport Proteins." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-449.
Full textTimmons, Sheila, and Jack Hawiger. "REGULATION OF PLATELET RECEPTORS FOR FIBRINOGEN AND VON WILLEBRAND FACTOR BY PROTEIN KINASE." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644674.
Full textTobysheva, P. D., L. A. Khamidullina, I. S. Puzyrev, and A. V. Pestov. "Biological activity of complexes based on polycarbonyl ligands: assessment of the mode of action using molecular docking." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.249.
Full textHerre, Jurgen, Hans Gronlund, Heather Brookes, Ben Murton, Niyi Opaleye, Edwin Chilvers, Bart Lambrecht, et al. "Allergens As Immuno-Modulatory Proteins: The Cat Dander Protein FelD1 Enhances Toll-Like Receptor Activation By Lipid Ligands." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a1415.
Full textZhu, X. D., Y. Y. Fei, J. P. Landry, and Y. S. Sun. "Label-Free Screening Small Molecule Compounds for Protein Ligands with Optically Detected Microarrays." In Bio-Optics: Design and Application. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/boda.2011.bmc7.
Full textZhu, X. D., Y. Y. Fei, J. P. Landry, and Y. S. Sun. "Screening Small Molecule Compounds for Protein Ligands with Label-Free, Optically Detected Microarrays." In Biomedical Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/biomed.2010.btud13.
Full textLee, Hae-Jeong, Marvi A. Matos, Lisa Pakstis, Marcus T. Cicerone, and Joy P. Dunkers. "Quantitation of Laminin Adsorbed Onto Polydimethylsiloxane Surfaces Using Various Treatment Protocols." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192785.
Full textReports on the topic "Protein; Ligands"
Lehnert, B., and D. Allen. Targeted in vitro evolution of protein ligands. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/767437.
Full textZhou, Xia-Ying. Effects of ancillary ligands on selectivity of protein labeling with platinum(II) chloro complexes. Office of Scientific and Technical Information (OSTI), February 1990. http://dx.doi.org/10.2172/6941351.
Full textShin, Seung-Uon. Antibody-NKG2D Ligand (Rae-1Beta) Fusion Protein for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada446435.
Full textBartsch, Richard A. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1041406.
Full textMontal, Mauricio. Channel Protein Engineering: A Novel Approach towards the Molecular Dissection Determinants in Ligand-Regulated Channels. Fort Belvoir, VA: Defense Technical Information Center, February 1990. http://dx.doi.org/10.21236/ada219134.
Full textDmitriev, Igor P., and Elena A. Kashentseva. Targeting of Adenovirus Vectors to Breast Cancer Mediated by Soluble Receptor-Ligand Fusion Proteins. Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada407364.
Full textTrewhella, J. The role of low frequency collective modes in biological function: Ligand binding and cooperativity in calcium-binding proteins. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/768788.
Full text