Academic literature on the topic 'Protein fouling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Protein fouling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Protein fouling"
Peiris, R. H., H. Budman, R. L. Legge, and C. Moresoli. "Assessing irreversible fouling behavior of membrane foulants in the ultrafiltration of natural water using principal component analysis of fluorescence excitation-emission matrices." Water Supply 11, no. 2 (April 1, 2011): 179–85. http://dx.doi.org/10.2166/ws.2011.025.
Full textYan, Linlin, Ruixue Li, Yu Song, Yanping Jia, Zheng Li, Lianfa Song, and Haifeng Zhang. "Characterization of the Fouling Layer on the Membrane Surface in a Membrane Bioreactor: Evolution of the Foulants’ Composition and Aggregation Ability." Membranes 9, no. 7 (July 16, 2019): 85. http://dx.doi.org/10.3390/membranes9070085.
Full textChen, Yian, Montserrat Rovira-Bru, Francesc Giralt, and Yoram Cohen. "Hydraulic Resistance and Protein Fouling Resistance of a Zirconia Membrane with a Tethered PVP Layer." Water 13, no. 7 (March 31, 2021): 951. http://dx.doi.org/10.3390/w13070951.
Full textSun, Chunyi, Na Zhang, Fazhan Li, Guoyi Ke, Lianfa Song, Xiaoqian Liu, and Shuang Liang. "Quantitative Analysis of Membrane Fouling Mechanisms Involved in Microfiltration of Humic Acid–Protein Mixtures at Different Solution Conditions." Water 10, no. 10 (September 22, 2018): 1306. http://dx.doi.org/10.3390/w10101306.
Full textScudeller, Luisa A., Pascal Blanpain-Avet, Thierry Six, Séverine Bellayer, Maude Jimenez, Thomas Croguennec, Christophe André, and Guillaume Delaplace. "Calcium Chelation by Phosphate Ions and Its Influence on Fouling Mechanisms of Whey Protein Solutions in a Plate Heat Exchanger." Foods 10, no. 2 (January 27, 2021): 259. http://dx.doi.org/10.3390/foods10020259.
Full textMiyoshi, Taro, Yuhei Nagai, Tomoyasu Aizawa, Katsuki Kimura, and Yoshimasa Watanabe. "Proteins causing membrane fouling in membrane bioreactors." Water Science and Technology 72, no. 6 (June 2, 2015): 844–49. http://dx.doi.org/10.2166/wst.2015.282.
Full textBuchori, Luqman, Heru Susanto, and Budiyono Budiyono. "SINTESIS MEMBRAN ULTRAFILTRASI NON FOULING UNTUK APLIKASI PEMPROSESAN BAHAN PANGAN." Reaktor 13, no. 1 (February 3, 2010): 10. http://dx.doi.org/10.14710/reaktor.13.1.10-15.
Full textBerg, Thilo H. A., Jes C. Knudsen, Richard Ipsen, Frans van den Berg, Hans H. Holst, and Alexander Tolkach. "Investigation of Consecutive Fouling and Cleaning Cycles of Ultrafiltration Membranes Used for Whey Processing." International Journal of Food Engineering 10, no. 3 (September 1, 2014): 367–81. http://dx.doi.org/10.1515/ijfe-2014-0028.
Full textPeiris, R. H., M. Jaklewicz, H. Budman, R. L. Legge, and C. Moresoli. "Characterization of hydraulically reversible and irreversible fouling species in ultrafiltration drinking water treatment systems using fluorescence EEM and LC–OCD measurements." Water Supply 13, no. 5 (September 1, 2013): 1220–27. http://dx.doi.org/10.2166/ws.2013.130.
Full textChaipetch, Wiparat, Arisa Jaiyu, Panitan Jutaporn, Marc Heran, and Watsa Khongnakorn. "Fouling Behavior in a High-Rate Anaerobic Submerged Membrane Bioreactor (AnMBR) for Palm Oil Mill Effluent (POME) Treatment." Membranes 11, no. 9 (August 25, 2021): 649. http://dx.doi.org/10.3390/membranes11090649.
Full textDissertations / Theses on the topic "Protein fouling"
Alharthi, Majed. "Fouling and cleaning studies of protein fouling at pasteurisation temperatures." Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/4892/.
Full textGotham, Simon Martyn. "Mechanisms of protein fouling of heat exchangers." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357741.
Full textChan, Robert Chemical Engineering & Industrial Chemistry UNSW. "Fouling mechanisms in the membrane filtration of single and binary protein solutions." Awarded by:University of New South Wales. Chemical Engineering and Industrial Chemistry, 2002. http://handle.unsw.edu.au/1959.4/18832.
Full textHuang, Yunqi. "Design and Evaluation of a Laboratory-Scale System for Investigation of Fouling during Thermal Processing Operation." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1494245242027853.
Full textProdan, Bjorg Noah Radu. "Modifying Membrane Surfaces via Self-Assembled Monolayers to Reduce Protein Fouling." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1091133289.
Full textRAJAM, SRIDHAR. "TWO SURFACE MODIFICATION METHODS TO REDUCE PROTEIN FOULING IN MICROFILTRATION MEMBRANES." University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1172005034.
Full textRose, Ian C. "Model investigation of initial fouling rates of protein solutions in heat transfer equipment." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0026/NQ38965.pdf.
Full textHamilton-Brown, Paul Optometry & Vision Science Faculty of Science UNSW. "A surface forces and protein adsorption study of grafted PEO layers." Awarded by:University of New South Wales. School of Optometry and Vision Science, 2006. http://handle.unsw.edu.au/1959.4/25541.
Full textMagens, Ole Mathis. "Mitigating fouling of heat exchangers with fluoropolymer coatings." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/287467.
Full textSuwal, Shyam, and Shyam Suwal. "Fractionation of Peptides from Protein Hydrolysate by Electrodialysis with Filtration Membrane : process optimization, Fouling characterization and Control mechanisms." Doctoral thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/26619.
Full textDes peptides bioactifs ont déjà été fractionnés par électrodialyse avec membrane de filtration (ÉDMF) à partir d’hydrolysats de sous-produits de crabe des neiges. L’optimisation des paramètres apparaît maintenant indispensable pour perfectionner le procédé. Ainsi, le taux de migration des peptides, leur sélectivité et l'évolution des paramètres électrodialytiques ont été étudiés pour différents paramètres (configuration, concentration en KCl et types de champ électrique). La configuration (2) de la cellule d’ÉDMF comprenant deux compartiments d'alimentation et un compartiment de récupération a démontré des valeurs de champ électrique local relativement stables par rapport à la configuration (1) constituée d’un compartiment d’alimentation et de deux compartiments de récupération. Des peptides contenant des glutamates, des aspartates, et des glycines ont été séparés avec la configuration 1 et des peptides composés d’arginines et de lysines avec la configuration 2. Un taux de migration peptidique de 13,76 ± 3,64 g/m2h a été obtenu par le maintien constant de la conductivité des solutions. La sélectivité a été accrue en augmentant la concentration en KCl de 1 à 5 g/L dans le compartiment de récupération. Une augmentation de la force ionique a amplifié la charge de surface, agrandissant ainsi la taille effective des pores et réduisant la couche d'hydratation de la membrane d’ultrafiltration. Toutefois, les membranes échangeuses d’anions et de cations ont été colmatées par des peptides et des acides aminés et détériorées pendant l’ÉDMF. Pour résoudre ces problèmes, l’effet de l’application du champ électrique pulsé (PEF) et de l'inversion de polarité (PR) a été étudié. Le taux de migration des peptides n'a pas été affecté sauf avec PR à 40 V. La sélectivité a été maximale avec PEF à 20 V. La dissociation de l'eau a été réduite tout en conservant les propriétés physico-chimiques des membranes grâce à l’application du PEF et de la PR par rapport au courant continu (DC). En outre, la plus faible quantité d'énergie a été consommée avec le PEF. Par conséquent, il a été possible d’optimiser la technologie d’ÉDMF du point de vue de l’efficacité énergétique, de la sélectivité peptidique et de l’encrassement membranaire grâce à l’application du PEF et tout en maintenant la conductivité électrique des solutions.
Bioactive peptides were efficiently separated by using electrodialysis with filtration membrane (EDFM) from snow crab byproduct hydrolysate. Meanwhile, optimization of parameters is indispensable for scaling-up. The peptide migration rate and selectivity as well as evolution of electrodialytic parameters were studied with different parameters such as EDFM cell configuration, KCl concentration and type of electric field. The EDFM stack with two feed and one recovery compartments (configuration 2) has relatively stable electric field strengths (local) than the configuration with one feed and two recovery compartments (configuration 1). Peptides containing anionic amino acids: glutamic and aspartic acid as well as glycine and cationic amino acids: arginine and lysine were fractionated using configuration 1 and 2, respectively. Maintenance of solution conductivity upheld the local electric field and peptide migration throughout the treatment resulting in a higher peptide migration rate of 13.76±3.64 g/m2.h never observed so far. The selectivity of cationic peptides containing arginine and lysine increased significantly with increase in KCl concentration from 1 to 5 g/L. An increase in ionic strength amplified the surface charge density of filtration membrane subsequently increasing effective pore size and reducing hydration layer. However, both anion- and cation-exchange membranes were fouled by peptides and amino acids and were deteriorated during EDFM treatment. To address these problems, the effect of applying pulsed electric field (PEF) and polarity reversal (PR) was studied. The peptide migration rate was unaffected among PEF, PR and DC modes except with PR at 40 V. The selectivity of cationic peptides was maximum with PEF at 20 V. Fouling and water dissociation were significantly reduced and physicochemical properties of IEMs were better-protected with PEF and PR than DC. Moreover, the least amount of energy was consumed with PEF mode. Therefore, the parameters affecting EDFM process were optimized in terms of energy efficiency, selectivity and lower deterioration of membranes by applying PEF regime with configuration 2 and maintaining the constant electrical conductivity of solutions.
Bioactive peptides were efficiently separated by using electrodialysis with filtration membrane (EDFM) from snow crab byproduct hydrolysate. Meanwhile, optimization of parameters is indispensable for scaling-up. The peptide migration rate and selectivity as well as evolution of electrodialytic parameters were studied with different parameters such as EDFM cell configuration, KCl concentration and type of electric field. The EDFM stack with two feed and one recovery compartments (configuration 2) has relatively stable electric field strengths (local) than the configuration with one feed and two recovery compartments (configuration 1). Peptides containing anionic amino acids: glutamic and aspartic acid as well as glycine and cationic amino acids: arginine and lysine were fractionated using configuration 1 and 2, respectively. Maintenance of solution conductivity upheld the local electric field and peptide migration throughout the treatment resulting in a higher peptide migration rate of 13.76±3.64 g/m2.h never observed so far. The selectivity of cationic peptides containing arginine and lysine increased significantly with increase in KCl concentration from 1 to 5 g/L. An increase in ionic strength amplified the surface charge density of filtration membrane subsequently increasing effective pore size and reducing hydration layer. However, both anion- and cation-exchange membranes were fouled by peptides and amino acids and were deteriorated during EDFM treatment. To address these problems, the effect of applying pulsed electric field (PEF) and polarity reversal (PR) was studied. The peptide migration rate was unaffected among PEF, PR and DC modes except with PR at 40 V. The selectivity of cationic peptides was maximum with PEF at 20 V. Fouling and water dissociation were significantly reduced and physicochemical properties of IEMs were better-protected with PEF and PR than DC. Moreover, the least amount of energy was consumed with PEF mode. Therefore, the parameters affecting EDFM process were optimized in terms of energy efficiency, selectivity and lower deterioration of membranes by applying PEF regime with configuration 2 and maintaining the constant electrical conductivity of solutions.
Books on the topic "Protein fouling"
Office, General Accounting. Drinking water: Stronger efforts needed to protect areas around public wells from contamination : report to the chairman, Environment, Energy, and Natural Resources Subcommittee, Committee on Government Operations, House of Representatives. Washington, D.C: GAO, 1993.
Find full textBook chapters on the topic "Protein fouling"
Le-Clech, Pierre. "Protein Fouling." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_1706-1.
Full textLe-Clech, Pierre. "Protein Fouling Mechanisms." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_1707-1.
Full textJohansson, J., H. K. Yasuda, and R. K. Bajpai. "Fouling and Protein Adsorption." In Biotechnology for Fuels and Chemicals, 747–63. Totowa, NJ: Humana Press, 1998. http://dx.doi.org/10.1007/978-1-4612-1814-2_69.
Full textFuller, K. L., and S. G. Roscoe. "Surface adsorption of dairy proteins: Fouling of model surfaces." In Protein Structure-Function Relationships in Foods, 143–62. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2670-4_7.
Full textZydney, Andrew L. "Non-Specific Protein-Membrane Interactions: Adsorption and Fouling." In Biofunctional Membranes, 279–88. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2521-6_19.
Full textReed, I. M., and J. M. Sheldon. "Investigation of Protein Fouling Characteristics of Ultrafiltration Membranes." In Effective Industrial Membrane Processes: Benefits and Opportunities, 91–99. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3682-2_6.
Full textReed, I. M., and J. M. Sheldon. "Protein Fouling and its Implications for Selection for Ultrafiltration Membranes." In Separations for Biotechnology 2, 217–26. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0783-6_24.
Full textBenavente, Juana. "Use of Streaming Potential Measurements for Characterization of Both Membrane/Electrolyte Interface and Protein Fouling Effect." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_765-3.
Full textBenavente, Juana. "Use of Streaming Potential Measurements for Characterization of Both Membrane/Electrolyte Interface and Protein Fouling Effect." In Encyclopedia of Membranes, 1957–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_765.
Full textRiool, Martijn, and Sebastian A. J. Zaat. "Biomaterial-Associated Infection: Pathogenesis and Prevention." In Urinary Stents, 245–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04484-7_20.
Full textConference papers on the topic "Protein fouling"
Agarwal, Ashutosh, Parag Katira, and Henry Hess. "Quantifying and understanding protein adsorption to non-fouling surfaces." In 2010 36th Annual Northeast Bioengineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/nebc.2010.5458217.
Full textSmith, Karl J. P., Joshua Winans, and James McGrath. "Ultrathin Membrane Fouling Mechanism Transitions in Dead-End Filtration of Protein." In ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icnmm2016-7989.
Full textLee, Yi Jae, Jung Doo Kim, and Jae Yeong Park. "Nafion coated enzyme free glucose micro-biosensors for anti-fouling of protein." In 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2009. http://dx.doi.org/10.1109/nems.2009.5068590.
Full textLiu, Yanjun, Huiying Ma, Chunying Lv, Jia Yang, and Xueqi Fu. "Protein absorption and fouling on poly(acrylic acid)-graft-polypropylene microfiltration membrane." In Second International Conference on Smart Materials and Nanotechnology in Engineering, edited by Jinsong Leng, Anand K. Asundi, and Wolfgang Ecke. SPIE, 2009. http://dx.doi.org/10.1117/12.840154.
Full textRose, Ian, A. Paul Watkinson, and Norman Epstein. "MODEL INVESTIGATION OF INITIAL FOULING RATES OF PROTEIN SOLUTIONS IN HEAT TRANSFER EQUIPMENT." In Proceedings of an International Conference on Mitigation of Heat Exchanger Fouling and Its Economic and Environmental Implications. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/1-56700-172-6.350.
Full textHuang, Guobang, Yi Chen, and Jin Zhang. "Nanocomposite coating produced by laser-assisted process to prevent bacterial contamination and protein fouling." In 2014 IEEE 14th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2014. http://dx.doi.org/10.1109/nano.2014.6967984.
Full textAmeli, Forough, Bahram Dabir, Farzin Zokaee Ashtiani, Mehdad Mozaffarian, and Kambiz Vafai. "Combined Models of Population Balance and Pore-Network to Explore the Mechanism of Protein Fouling in Porous Media." In POROUS MEDIA AND ITS APPLICATIONS IN SCIENCE, ENGINEERING, AND INDUSTRY: 3rd International Conference. AIP, 2010. http://dx.doi.org/10.1063/1.3453812.
Full textHsieh, Yi-Cheng, Huinan Liang, and Jeffrey D. Zahn. "Microdevices for Microdialysis and Membrane Separations." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-55052.
Full textUttley, Katherine, Anika Galvan, Matthew Nakatsuka, and Marco Basile. "High Temperature Compatible, Field-Deployable Heat Exchanger Nanocomposite Treatments." In Offshore Technology Conference. OTC, 2024. http://dx.doi.org/10.4043/35384-ms.
Full textFedorova, M., L. Baldaev, S. Baldaev, N. Baldaev, A. Akhmetgareeva, and V. Martyanova. "An Investigation of the Corrosion and Cavitation Resistance of Different Thermally Sprayed Coatings in River and Marine Environments." In ITSC2017, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0809.
Full text