Journal articles on the topic 'Protein folding machinery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Protein folding machinery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chiu, Wah. "Center for protein folding machinery." Nanomedicine: Nanotechnology, Biology and Medicine 2, no. 4 (2006): 289. http://dx.doi.org/10.1016/j.nano.2006.10.069.
Full textZhang, Xiaodong, Fabienne Beuron, and Paul S. Freemont. "Machinery of protein folding and unfolding." Current Opinion in Structural Biology 12, no. 2 (2002): 231–38. http://dx.doi.org/10.1016/s0959-440x(02)00315-9.
Full textBuchner, J. "Introduction: the cellular protein folding machinery." Cellular and Molecular Life Sciences 59, no. 10 (2002): 1587–88. http://dx.doi.org/10.1007/pl00012484.
Full textFink, Anthony L. "Chaperone-Mediated Protein Folding." Physiological Reviews 79, no. 2 (1999): 425–49. http://dx.doi.org/10.1152/physrev.1999.79.2.425.
Full textRassow, J., K. Mohrs, S. Koidl, I. B. Barthelmess, N. Pfanner, and M. Tropschug. "Cyclophilin 20 is involved in mitochondrial protein folding in cooperation with molecular chaperones Hsp70 and Hsp60." Molecular and Cellular Biology 15, no. 5 (1995): 2654–62. http://dx.doi.org/10.1128/mcb.15.5.2654.
Full textHartl, F. Ulrich. "Unfolding the chaperone story." Molecular Biology of the Cell 28, no. 22 (2017): 2919–23. http://dx.doi.org/10.1091/mbc.e17-07-0480.
Full textSorokina, Irina, Arcady R. Mushegian, and Eugene V. Koonin. "Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process?" International Journal of Molecular Sciences 23, no. 1 (2022): 521. http://dx.doi.org/10.3390/ijms23010521.
Full textChoudhury, P., Y. Liu, and RN Sifers. "Quality Control of Protein Folding: Participation in Human Disease." Physiology 12, no. 4 (1997): 162–66. http://dx.doi.org/10.1152/physiologyonline.1997.12.4.162.
Full textPedone, Emilia, Danila Limauro, and Simonetta Bartolucci. "The Machinery for Oxidative Protein Folding in Thermophiles." Antioxidants & Redox Signaling 10, no. 1 (2008): 157–70. http://dx.doi.org/10.1089/ars.2007.1855.
Full textAller, Isabel, and Andreas J. Meyer. "The oxidative protein folding machinery in plant cells." Protoplasma 250, no. 4 (2012): 799–816. http://dx.doi.org/10.1007/s00709-012-0463-x.
Full textSantos, João D., Sara Canato, Ana S. Carvalho, et al. "Folding Status Is Determinant over Traffic-Competence in Defining CFTR Interactors in the Endoplasmic Reticulum." Cells 8, no. 4 (2019): 353. http://dx.doi.org/10.3390/cells8040353.
Full textAlonzi, Dominic S., Kathryn A. Scott, Raymond A. Dwek, and Nicole Zitzmann. "Iminosugar antivirals: the therapeutic sweet spot." Biochemical Society Transactions 45, no. 2 (2017): 571–82. http://dx.doi.org/10.1042/bst20160182.
Full textKang, Ji An, and Young Joo Jeon. "How Is the Fidelity of Proteins Ensured in Terms of Both Quality and Quantity at the Endoplasmic Reticulum? Mechanistic Insights into E3 Ubiquitin Ligases." International Journal of Molecular Sciences 22, no. 4 (2021): 2078. http://dx.doi.org/10.3390/ijms22042078.
Full textMak, Wai Shun, Tsz Ming Tsang, Tsz Yin Chan, and Georgi L. Lukov. "Novel Binding Partners for CCT and PhLP1 Suggest a Common Folding Mechanism for WD40 Proteins with a 7-Bladed Beta-Propeller Structure." Proteomes 9, no. 4 (2021): 40. http://dx.doi.org/10.3390/proteomes9040040.
Full textChristian Wigley, W., Rosalind P. Fabunmi, Min Goo Lee, et al. "Dynamic Association of Proteasomal Machinery with the Centrosome." Journal of Cell Biology 145, no. 3 (1999): 481–90. http://dx.doi.org/10.1083/jcb.145.3.481.
Full textMeimaridou, Eirini, Sakina B. Gooljar, and J. Paul Chapple. "From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery." Journal of Molecular Endocrinology 42, no. 1 (2008): 1–9. http://dx.doi.org/10.1677/jme-08-0116.
Full textRoy, Joydeep, Sahana Mitra, Kaushik Sengupta, and Atin K. Mandal. "Hsp70 clears misfolded kinases that partitioned into distinct quality-control compartments." Molecular Biology of the Cell 26, no. 9 (2015): 1583–600. http://dx.doi.org/10.1091/mbc.e14-08-1262.
Full textHadden, M. Kyle, Lakshmi Galam, Jason E. Gestwicki, Robert L. Matts, and Brian S. J. Blagg. "Derrubone, an Inhibitor of the Hsp90 Protein Folding Machinery." Journal of Natural Products 70, no. 12 (2007): 2014–18. http://dx.doi.org/10.1021/np070190s.
Full textBrownrigg, George P., James Johnson та Elizabeth J. Rideout. "80 - Sex Differences in β-Cell Protein Folding Machinery". Canadian Journal of Diabetes 44, № 7 (2020): S32. http://dx.doi.org/10.1016/j.jcjd.2020.08.086.
Full textChambers, Joseph E., and Stefan J. Marciniak. "Cellular Mechanisms of Endoplasmic Reticulum Stress Signaling in Health and Disease. 2. Protein misfolding and ER stress." American Journal of Physiology-Cell Physiology 307, no. 8 (2014): C657—C670. http://dx.doi.org/10.1152/ajpcell.00183.2014.
Full textZhao, Rongmin, and Walid A. Houry. "Hsp90: a chaperone for protein folding and gene regulation." Biochemistry and Cell Biology 83, no. 6 (2005): 703–10. http://dx.doi.org/10.1139/o05-158.
Full textParray, Zahoor Ahmad, Mohammad Shahid, and Asimul Islam. "Insights into Fluctuations of Structure of Proteins: Significance of Intermediary States in Regulating Biological Functions." Polymers 14, no. 8 (2022): 1539. http://dx.doi.org/10.3390/polym14081539.
Full textGandhi, Jason, Anthony C. Antonelli, Adil Afridi, et al. "Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics." Reviews in the Neurosciences 30, no. 4 (2019): 339–58. http://dx.doi.org/10.1515/revneuro-2016-0035.
Full textScheuner, Donalyn, та Randal J. Kaufman. "The Unfolded Protein Response: A Pathway That Links Insulin Demand with β-Cell Failure and Diabetes". Endocrine Reviews 29, № 3 (2008): 317–33. http://dx.doi.org/10.1210/er.2007-0039.
Full textZhang, Yongli, and Frederick M. Hughson. "Chaperoning SNARE Folding and Assembly." Annual Review of Biochemistry 90, no. 1 (2021): 581–603. http://dx.doi.org/10.1146/annurev-biochem-081820-103615.
Full textLim, Shion A., Kathryn M. Hart, Michael J. Harms, and Susan Marqusee. "Evolutionary trend toward kinetic stability in the folding trajectory of RNases H." Proceedings of the National Academy of Sciences 113, no. 46 (2016): 13045–50. http://dx.doi.org/10.1073/pnas.1611781113.
Full textShepherd, Colin, Ojore B. V. Oka та Neil J. Bulleid. "Inactivation of mammalian Ero1α is catalysed by specific protein disulfide-isomerases". Biochemical Journal 461, № 1 (2014): 107–13. http://dx.doi.org/10.1042/bj20140234.
Full textBenham, Adam M., Marcel van Lith, Roberto Sitia, and Ineke Braakman. "Ero1–PDI interactions, the response to redox flux and the implications for disulfide bond formation in the mammalian endoplasmic reticulum." Philosophical Transactions of the Royal Society B: Biological Sciences 368, no. 1617 (2013): 20110403. http://dx.doi.org/10.1098/rstb.2011.0403.
Full textBerner, Nicole, Karl-Richard Reutter, and Dieter H. Wolf. "Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin–Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path." Annual Review of Biochemistry 87, no. 1 (2018): 751–82. http://dx.doi.org/10.1146/annurev-biochem-062917-012749.
Full textSchlebach, Jonathan P., and Charles R. Sanders. "The safety dance: biophysics of membrane protein folding and misfolding in a cellular context." Quarterly Reviews of Biophysics 48, no. 1 (2014): 1–34. http://dx.doi.org/10.1017/s0033583514000110.
Full textHood, David A., and Anna-Maria Joseph. "Mitochondrial assembly: protein import." Proceedings of the Nutrition Society 63, no. 2 (2004): 293–300. http://dx.doi.org/10.1079/pns2004342.
Full textDaverkausen-Fischer, Lea, Margarethe Draga, and Felicitas Pröls. "Regulation of Translation, Translocation, and Degradation of Proteins at the Membrane of the Endoplasmic Reticulum." International Journal of Molecular Sciences 23, no. 10 (2022): 5576. http://dx.doi.org/10.3390/ijms23105576.
Full textStubenrauch, Christopher J., Gordon Dougan, Trevor Lithgow, and Eva Heinz. "Constraints on lateral gene transfer in promoting fimbrial usher protein diversity and function." Open Biology 7, no. 11 (2017): 170144. http://dx.doi.org/10.1098/rsob.170144.
Full textZhu, Lu, H. Ronald Kaback, and Ross E. Dalbey. "YidC Protein, a Molecular Chaperone for LacY Protein Folding via the SecYEG Protein Machinery." Journal of Biological Chemistry 288, no. 39 (2013): 28180–94. http://dx.doi.org/10.1074/jbc.m113.491613.
Full textShen, Gang, and Brian S. J. Blagg. "Radester, a Novel Inhibitor of the Hsp90 Protein Folding Machinery." Organic Letters 7, no. 11 (2005): 2157–60. http://dx.doi.org/10.1021/ol050580a.
Full textHamazaki, Jun, and Shigeo Murata. "ER-Resident Transcription Factor Nrf1 Regulates Proteasome Expression and Beyond." International Journal of Molecular Sciences 21, no. 10 (2020): 3683. http://dx.doi.org/10.3390/ijms21103683.
Full textPety de Thozée, Cédric, and Michel Ghislain. "ER-Associated Degradation of Membrane Proteins in Yeast." Scientific World JOURNAL 6 (2006): 967–83. http://dx.doi.org/10.1100/tsw.2006.191.
Full textYoo, Yoon Seon, Hye Gyeong Han, and Young Joo Jeon. "Unfolded Protein Response of the Endoplasmic Reticulum in Tumor Progression and Immunogenicity." Oxidative Medicine and Cellular Longevity 2017 (December 21, 2017): 1–18. http://dx.doi.org/10.1155/2017/2969271.
Full textLatorre, Victor, Florian Mattenberger, and Ron Geller. "Chaperoning the Mononegavirales: Current Knowledge and Future Directions." Viruses 10, no. 12 (2018): 699. http://dx.doi.org/10.3390/v10120699.
Full textVoss-Andreae, Julian. "Protein Sculptures: Life's Building Blocks Inspire Art." Leonardo 38, no. 1 (2005): 41–45. http://dx.doi.org/10.1162/leon.2005.38.1.41.
Full textLiu, Yi-Chang, Danica Galonić Fujimori, and Jonathan S. Weissman. "Htm1p–Pdi1p is a folding-sensitive mannosidase that marks N-glycoproteins for ER-associated protein degradation." Proceedings of the National Academy of Sciences 113, no. 28 (2016): E4015—E4024. http://dx.doi.org/10.1073/pnas.1608795113.
Full textBöttinger, Lena, Agnieszka Gornicka, Tomasz Czerwik, et al. "In vivo evidence for cooperation of Mia40 and Erv1 in the oxidation of mitochondrial proteins." Molecular Biology of the Cell 23, no. 20 (2012): 3957–69. http://dx.doi.org/10.1091/mbc.e12-05-0358.
Full textHerrmann, Johannes M., and Roman Köhl. "Catch me if you can! Oxidative protein trapping in the intermembrane space of mitochondria." Journal of Cell Biology 176, no. 5 (2007): 559–63. http://dx.doi.org/10.1083/jcb.200611060.
Full textSaris, Nina, Heidi Holkeri, Rachel A. Craven, Colin J. Stirling, and Marja Makarow. "The Hsp70 Homologue Lhs1p Is Involved in a Novel Function of the Yeast Endoplasmic Reticulum, Refolding and Stabilization of Heat-denatured Protein Aggregates." Journal of Cell Biology 137, no. 4 (1997): 813–24. http://dx.doi.org/10.1083/jcb.137.4.813.
Full textVelasco, Dublang, Moro, and Muga. "The Complex Phosphorylation Patterns that Regulate the Activity of Hsp70 and Its Cochaperones." International Journal of Molecular Sciences 20, no. 17 (2019): 4122. http://dx.doi.org/10.3390/ijms20174122.
Full textKojer, Kerstin, Valentina Peleh, Gaetano Calabrese, Johannes M. Herrmann, and Jan Riemer. "Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space." Molecular Biology of the Cell 26, no. 2 (2015): 195–204. http://dx.doi.org/10.1091/mbc.e14-10-1422.
Full textRabhi, Nabil, Elisabet Salas, Philippe Froguel та Jean-Sébastien Annicotte. "Role of the Unfolded Protein Response inβCell Compensation and Failure during Diabetes". Journal of Diabetes Research 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/795171.
Full textRaj, Kritika, Soram Idiyasan Chanu, and Surajit Sarkar. "Protein Misfolding and Aggregation in Neurodegenerative Disorders: Focus on Chaperone-Mediated Protein Folding Machinery." International Journal of Neurology Research 1, no. 2 (2015): 72–78. http://dx.doi.org/10.17554/j.issn.2313-5611.2015.01.14.
Full textNaganathan, Athi N. "Molecular origins of folding rate differences in the thioredoxin family." Biochemical Journal 477, no. 6 (2020): 1083–87. http://dx.doi.org/10.1042/bcj20190864.
Full textAnas, Mohammad, Ankita Shukla, Aradhya Tripathi, et al. "Structural–functional diversity of malaria parasite's PfHSP70-1 and PfHSP40 chaperone pair gives an edge over human orthologs in chaperone-assisted protein folding." Biochemical Journal 477, no. 18 (2020): 3625–43. http://dx.doi.org/10.1042/bcj20200434.
Full text