Academic literature on the topic 'Protein folding machinery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Protein folding machinery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Protein folding machinery"
Chiu, Wah. "Center for protein folding machinery." Nanomedicine: Nanotechnology, Biology and Medicine 2, no. 4 (December 2006): 289. http://dx.doi.org/10.1016/j.nano.2006.10.069.
Full textZhang, Xiaodong, Fabienne Beuron, and Paul S. Freemont. "Machinery of protein folding and unfolding." Current Opinion in Structural Biology 12, no. 2 (April 2002): 231–38. http://dx.doi.org/10.1016/s0959-440x(02)00315-9.
Full textBuchner, J. "Introduction: the cellular protein folding machinery." Cellular and Molecular Life Sciences 59, no. 10 (October 2002): 1587–88. http://dx.doi.org/10.1007/pl00012484.
Full textFink, Anthony L. "Chaperone-Mediated Protein Folding." Physiological Reviews 79, no. 2 (April 1, 1999): 425–49. http://dx.doi.org/10.1152/physrev.1999.79.2.425.
Full textRassow, J., K. Mohrs, S. Koidl, I. B. Barthelmess, N. Pfanner, and M. Tropschug. "Cyclophilin 20 is involved in mitochondrial protein folding in cooperation with molecular chaperones Hsp70 and Hsp60." Molecular and Cellular Biology 15, no. 5 (May 1995): 2654–62. http://dx.doi.org/10.1128/mcb.15.5.2654.
Full textHartl, F. Ulrich. "Unfolding the chaperone story." Molecular Biology of the Cell 28, no. 22 (November 2017): 2919–23. http://dx.doi.org/10.1091/mbc.e17-07-0480.
Full textSorokina, Irina, Arcady R. Mushegian, and Eugene V. Koonin. "Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process?" International Journal of Molecular Sciences 23, no. 1 (January 4, 2022): 521. http://dx.doi.org/10.3390/ijms23010521.
Full textChoudhury, P., Y. Liu, and RN Sifers. "Quality Control of Protein Folding: Participation in Human Disease." Physiology 12, no. 4 (August 1, 1997): 162–66. http://dx.doi.org/10.1152/physiologyonline.1997.12.4.162.
Full textPedone, Emilia, Danila Limauro, and Simonetta Bartolucci. "The Machinery for Oxidative Protein Folding in Thermophiles." Antioxidants & Redox Signaling 10, no. 1 (January 2008): 157–70. http://dx.doi.org/10.1089/ars.2007.1855.
Full textAller, Isabel, and Andreas J. Meyer. "The oxidative protein folding machinery in plant cells." Protoplasma 250, no. 4 (October 23, 2012): 799–816. http://dx.doi.org/10.1007/s00709-012-0463-x.
Full textDissertations / Theses on the topic "Protein folding machinery"
Talmon, Esther [Verfasser]. "The periplasmic domain of the barrel assembly machinery protein A (BamA) from Escherichia coli assists folding of outer membrane protein A / Esther Talmon." Kassel : Universitätsbibliothek Kassel, 2016. http://d-nb.info/1124028420/34.
Full textAlnahi, Haitham G. "A machine induction approach to the protein folding problem." Thesis, Brunel University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326864.
Full textAshok, Anupama 1985. "TANGO1 asembles a machine for collagen folding and export." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/666036.
Full textLes vesícules COPII, que tenen un diàmetre de 60-90nm, transporten les proteïnes que seran secretades des del reticle endoplasmàtic (RE). No obstant, aquestes vesícules no poden ser usades per transportar proteïnes molt voluminoses, com els col·làgens que poden arribar a mesurar 400 nm de longitud. Els col·làgens, el tipus de proteïna secretada més abundant, suposen el 25% del pes sec del nostre cos i són necessaris per construir la matriu extracel·lular, així com per generar els ossos mineralitzats. El descobriment de la proteïna TANGO1 ha permès l’anàlisi molecular del procés d’exportació dels col·làgens des del RE. Un dels objectius d’aquesta tesi era identificar quines proteïnes interaccionen amb TANGO1 usant un enfocament de biotinilació per proximitat conjugat amb una espectrometria de masses. Els meus resultats han mostrat que TANGO1 serveix de connexió entre la maquinària d’exportació citoplasmàtica i la maquinària de plegament de la llum del RE. És important destacar que una quantitat important de les proteïnes identificades que interaccionen amb TANGO1 al RE estan dedicades exclusivament al correcte plegament i modificació dels col·làgens. Aquesta investigació també ha revelat la identitat d’una proteïna anomenada Torsin-1A, i les meves dades han demostrat que la seva funció potencial és en la degradació de col·làgens que no han sigut correctament plegats. Una altra de les preguntes que he respost en aquesta tesi és si TANGO1 és necessari també per l’exportació de col·làgens amb un domini transmembrana. Aquests col·làgens són únics ja que tenen un domini citoplasmàtic que en teoria pot reclutar directament les proteïnes COPII per facilitar la seva exportació del RE. Els meus resultats han mostrat una dependència mínima en TANGO1 per l’exportació del col·lagen amb domini transmembrana XVII. No obstant, és interessant remarcar que TANGO1 pot unir col·lagen XVII independentment de si està correctament o incorrectament plegat. En conclusió, les meves dades suggereixen que TANGO1 funciona predominantment per exportar col·làgens solubles, i la seva habilitat per unir col·làgens tant si estan correctament o incorrectament plegats és usada per les cèl·lules per eliminar aquells col·làgens mal plegats per assegurar que només els col·làgens totalment estructurats i funcionals seran secretats.
Ishikawa, Yoshihiro. "A molecular chaperone complex as a protein folding machine involved in collagen biosynthesis." 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/120704.
Full textMauricio-Sanchez, David, Andrade Lopes Alneu de, and higuihara Juarez Pedro Nelson. "Approaches based on tree-structures classifiers to protein fold prediction." Institute of Electrical and Electronics Engineers Inc, 2017. http://hdl.handle.net/10757/622536.
Full textProtein fold recognition is an important task in the biological area. Different machine learning methods such as multiclass classifiers, one-vs-all and ensemble nested dichotomies were applied to this task and, in most of the cases, multiclass approaches were used. In this paper, we compare classifiers organized in tree structures to classify folds. We used a benchmark dataset containing 125 features to predict folds, comparing different supervised methods and achieving 54% of accuracy. An approach related to tree-structure of classifiers obtained better results in comparison with a hierarchical approach.
Revisión por pares
NEGRI, MATTEO. "Is Evolution an Algorithm? Effects of local entropy in unsupervised learning and protein evolution." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2972307.
Full textGuan, Wei. "New support vector machine formulations and algorithms with application to biomedical data analysis." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41126.
Full textGoswami, Arvind Vittal. "Role of Grp 75 Chaperone Folding Machinery in the Maintenance of Mitochondrial Protien Quality Control." Thesis, 2013. http://etd.iisc.ernet.in/2005/3333.
Full textLi, Zhixiu. "Computational protein design: assessment and applications." Thesis, 2015. http://hdl.handle.net/1805/7949.
Full textComputational protein design aims at designing amino acid sequences that can fold into a target structure and perform a desired function. Many computational design methods have been developed and their applications have been successful during past two decades. However, the success rate of protein design remains too low to be of a useful tool by biochemists whom are not an expert of computational biology. In this dissertation, we first developed novel computational assessment techniques to assess several state-of-the-art computational techniques. We found that significant progresses were made in several important measures by two new scoring functions from RosettaDesign and from OSCAR-design, respectively. We also developed the first machine-learning technique called SPIN that predicts a sequence profile compatible to a given structure with a novel nonlocal energy-based feature. The accuracy of predicted sequences is comparable to RosettaDesign in term of sequence identity to wild type sequences. In the last two application chapters, we have designed self-inhibitory peptides of Escherichia coli methionine aminopeptidase (EcMetAP) and de novo designed barstar. Several peptides were confirmed inhibition of EcMetAP at the micromole-range 50% inhibitory concentration. Meanwhile, the assessment of designed barstar sequences indicates the improvement of OSCAR-design over RosettaDesign.
Smock, Robert G. "Components of a Protein Machine: Allosteric Domain Assembly and a Disordered C-terminus Enable the Chaperone Functions of Hsp70." 2011. https://scholarworks.umass.edu/open_access_dissertations/447.
Full textBooks on the topic "Protein folding machinery"
Nakamura, Tomohiro, and Stuart A. Lipton. Neurodegenerative Diseases as Protein Misfolding Disorders. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190233563.003.0002.
Full textStructure and Action of Molecular Chaperones: Machines That Assist Protein Folding in the Cell. World Scientific Publishing Co Pte Ltd, 2016.
Find full textBook chapters on the topic "Protein folding machinery"
Hartman, D., and M. J. Gething. "Normal protein folding machinery." In Stress-Inducible Cellular Responses, 3–24. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9088-5_2.
Full textJena, Bhanu P. "Chaperonin: Protein Folding Machinery in Cells." In Cellular Nanomachines, 49–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44496-9_3.
Full textTheocharopoulou, Georgia, and Panayiotis Vlamos. "Modeling the Critical Activation of Chaperone Machinery in Protein Folding." In Advances in Experimental Medicine and Biology, 351–58. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-32622-7_33.
Full textPratt, William B., Yoshihiro Morishima, and Yoichi Osawa. "The Hsp90 Chaperone Machinery Acts at Protein Folding Clefts to Regulate Both Signaling Protein Function and Protein Quality Control." In Heat Shock Proteins in Cancer, 1–30. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6401-2_1.
Full textHildenbrand, Zacariah L., and Ricardo A. Bernal. "Chaperonin-Mediated Folding of Viral Proteins." In Viral Molecular Machines, 307–24. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0980-9_13.
Full textNanni, Luca. "Computational Inference of DNA Folding Principles: From Data Management to Machine Learning." In Special Topics in Information Technology, 79–88. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85918-3_7.
Full textSingh, Lavneet, Girija Chetty, and Dharmendra Sharma. "A Hybrid Approach to Increase the Performance of Protein Folding Recognition Using Support Vector Machines." In Machine Learning and Data Mining in Pattern Recognition, 660–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31537-4_51.
Full textMurugesan, Janaranjani, Ajithkumar Balakrishnan, Premkumar Kumpati, and Hemamalini Vedagiri. "Cellular Functions of ER Chaperones in Regulating Protein Misfolding and Aggregation: An Emerging Therapeutic Approach for Preeclampsia." In Preeclampsia. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101271.
Full textLorch, Mark. "3. Proteins." In Biochemistry: A Very Short Introduction, 34–51. Oxford University Press, 2021. http://dx.doi.org/10.1093/actrade/9780198833871.003.0003.
Full textMayer, Matthias P., Dirk Brehmer, Claudia S. Gässler, and Bernd Bukau. "Hsp70 chaperone machines." In Protein Folding in the Cell, 1–44. Elsevier, 2001. http://dx.doi.org/10.1016/s0065-3233(01)59001-4.
Full textConference papers on the topic "Protein folding machinery"
Lin, Guan Ning, Zheng Wang, Dong Xu, and Jianlin Cheng. "Sequence-Based Prediction of Protein Folding Rates Using Contacts, Secondary Structures and Support Vector Machines." In 2009 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2009. http://dx.doi.org/10.1109/bibm.2009.21.
Full text