Academic literature on the topic 'Protein-Based Molecular Bioelectronics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Protein-Based Molecular Bioelectronics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Protein-Based Molecular Bioelectronics"

1

Wang, Fang, Yingying Li, Christopher R. Gough, Qichun Liu, and Xiao Hu. "Dual-Crystallizable Silk Fibroin/Poly(L-lactic Acid) Biocomposite Films: Effect of Polymer Phases on Protein Structures in Protein-Polymer Blends." International Journal of Molecular Sciences 22, no. 4 (February 13, 2021): 1871. http://dx.doi.org/10.3390/ijms22041871.

Full text
Abstract:
Biopolymer composites based on silk fibroin have shown widespread potential due to their brilliant applications in tissue engineering, medicine and bioelectronics. In our present work, biocomposite nanofilms with different special topologies were obtained through blending silk fibroin with crystallizable poly(L-lactic acid) (PLLA) at various mixture rates using a stirring-reflux condensation blending method. The microstructure, phase components, and miscibility of the blended films were studied through thermal analysis in combination with Fourier-transform infrared spectroscopy and Raman analysis. X-ray diffraction and scanning electron microscope were also used for advanced structural analysis. Furthermore, their conformation transition, interaction mechanism, and thermal stability were also discussed. The results showed that the hydrogen bonds and hydrophobic interactions existed between silk fibroin (SF) and PLLA polymer chains in the blended films. The secondary structures of silk fibroin and phase components of PLLA in composites vary at different ratios of silk to PLLA. The β-sheet content increased with the increase of the silk fibroin content, while the glass transition temperature was raised mainly due to the rigid amorphous phase presence in the blended system. This results in an increase in thermal stability in blended films compared to the pure silk fibroin films. This study provided detailed insights into the influence of synthetic polymer phases (crystalline, rigid amorphous, and mobile amorphous) on protein secondary structures through blending, which has direct applications on the design and fabrication of novel protein–synthetic polymer composites for the biomedical and green chemistry fields.
APA, Harvard, Vancouver, ISO, and other styles
2

Martinez, William E., Jaime E. Arenas, Leo Mok, Ngo Yin Wong, Monica M. Lozano, Wan-Chen Lin, M. Gertrude Gutierrez, Rodrigo Sierra Chavera, and Joseph G. McGivern. "Bioelectronic Measurement of Target Engagement to a Membrane-Bound Transporter." SLAS DISCOVERY: Advancing the Science of Drug Discovery 26, no. 8 (May 12, 2021): 1004–13. http://dx.doi.org/10.1177/24725552211013067.

Full text
Abstract:
The ability to detect and characterize drug binding to a target protein is of high priority in drug discovery research. However, there are inherent challenges when the target of interest is an integral membrane protein (IMP). Assuming successful purification of the IMP, traditional approaches for measuring binding such as surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) have been proven valuable. However, the mass dependence of SPR signals may preclude the detection of binding events when the ligand has a significantly smaller mass than the target protein. In FRET-based experiments, protein labeling through modification may inadvertently alter protein dynamics. Graphene Bio-Electronic Sensing Technology (GBEST) aims to overcome these challenges. Label-free characterization takes place in a microfluidic chamber wherein a fluid lipid membrane is reconstituted directly above the GBEST sensor surface. By leveraging the high conductivity, sensitivity, and electrical properties of monolayer graphene, minute changes in electrostatic charges arising from the binding and unbinding of a ligand to a native IMP target can be detected in real time and in a mass-independent manner. Using crude membrane fractions prepared from cells overexpressing monocarboxylate transporter 1 (MCT1), we demonstrate the ability to (1) form a fluid lipid bilayer enriched with MCT1 directly on top of the GBEST sensor and (2) obtain kinetic binding data for an anti-MCT1 antibody. Further development of this novel technology will enable characterization of target engagement by both low- and high-molecular-weight drug candidates to native IMP targets in a physiologically relevant membrane environment.
APA, Harvard, Vancouver, ISO, and other styles
3

Bashir, Zoobia, Wenting Yu, Zhengyu Xu, Yiran Li, Jiancheng Lai, Ying Li, Yi Cao, and Bin Xue. "Engineering Bio-Adhesives Based on Protein–Polysaccharide Phase Separation." International Journal of Molecular Sciences 23, no. 17 (September 1, 2022): 9987. http://dx.doi.org/10.3390/ijms23179987.

Full text
Abstract:
Glue-type bio-adhesives are in high demand for many applications, including hemostasis, wound closure, and integration of bioelectronic devices, due to their injectable ability and in situ adhesion. However, most glue-type bio-adhesives cannot be used for short-term tissue adhesion due to their weak instant cohesion. Here, we show a novel glue-type bio-adhesive based on the phase separation of proteins and polysaccharides by functionalizing polysaccharides with dopa. The bio-adhesive exhibits increased adhesion performance and enhanced phase separation behaviors. Because of the cohesion from phase separation and adhesion from dopa, the bio-adhesive shows excellent instant and long-term adhesion performance for both organic and inorganic substrates. The long-term adhesion strength of the bio-glue on wet tissues reached 1.48 MPa (shear strength), while the interfacial toughness reached ~880 J m−2. Due to the unique phase separation behaviors, the bio-glue can even work normally in aqueous environments. At last, the feasibility of this glue-type bio-adhesive in the adhesion of various visceral tissues in vitro was demonstrated to have excellent biocompatibility. Given the convenience of application, biocompatibility, and robust bio-adhesion, we anticipate the bio-glue may find broad biomedical and clinical applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Umerani, Mehran J., Preeta Pratakshya, Atrouli Chatterjee, Juana A. Cerna Sanchez, Ho Shin Kim, Gregor Ilc, Matic Kovačič, et al. "Structure, self-assembly, and properties of a truncated reflectin variant." Proceedings of the National Academy of Sciences 117, no. 52 (December 15, 2020): 32891–901. http://dx.doi.org/10.1073/pnas.2009044117.

Full text
Abstract:
Naturally occurring and recombinant protein-based materials are frequently employed for the study of fundamental biological processes and are often leveraged for applications in areas as diverse as electronics, optics, bioengineering, medicine, and even fashion. Within this context, unique structural proteins known as reflectins have recently attracted substantial attention due to their key roles in the fascinating color-changing capabilities of cephalopods and their technological potential as biophotonic and bioelectronic materials. However, progress toward understanding reflectins has been hindered by their atypical aromatic and charged residue-enriched sequences, extreme sensitivities to subtle changes in environmental conditions, and well-known propensities for aggregation. Herein, we elucidate the structure of a reflectin variant at the molecular level, demonstrate a straightforward mechanical agitation-based methodology for controlling this variant’s hierarchical assembly, and establish a direct correlation between the protein’s structural characteristics and intrinsic optical properties. Altogether, our findings address multiple challenges associated with the development of reflectins as materials, furnish molecular-level insight into the mechanistic underpinnings of cephalopod skin cells’ color-changing functionalities, and may inform new research directions across biochemistry, cellular biology, bioengineering, and optics.
APA, Harvard, Vancouver, ISO, and other styles
5

Jiang, Tao, Biao-Feng Zeng, Bintian Zhang, and Longhua Tang. "Single-molecular protein-based bioelectronics via electronic transport: fundamentals, devices and applications." Chemical Society Reviews, 2023. http://dx.doi.org/10.1039/d2cs00519k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Balu, Rajkamal, Naba K. Dutta, Ankit K. Dutta, and Namita Roy Choudhury. "Resilin-mimetics as a smart biomaterial platform for biomedical applications." Nature Communications 12, no. 1 (January 8, 2021). http://dx.doi.org/10.1038/s41467-020-20375-x.

Full text
Abstract:
AbstractIntrinsically disordered proteins have dramatically changed the structure–function paradigm of proteins in the 21st century. Resilin is a native elastic insect protein, which features intrinsically disordered structure, unusual multi-stimuli responsiveness and outstanding resilience. Advances in computational techniques, polypeptide synthesis methods and modular protein engineering routines have led to the development of novel resilin-like polypeptides (RLPs) including modular RLPs, expanding their applications in tissue engineering, drug delivery, bioimaging, biosensors, catalysis and bioelectronics. However, how the responsive behaviour of RLPs is encoded in the amino acid sequence level remains elusive. This review summarises the milestones of RLPs, and discusses the development of modular RLP-based biomaterials, their current applications, challenges and future perspectives. A perspective of future research is that sequence and responsiveness profiling of RLPs can provide a new platform for the design and development of new modular RLP-based biomaterials with programmable structure, properties and functions.
APA, Harvard, Vancouver, ISO, and other styles
7

Balu, Rajkamal, Naba K. Dutta, Ankit K. Dutta, and Namita Roy Choudhury. "Resilin-mimetics as a smart biomaterial platform for biomedical applications." Nature Communications 12, no. 1 (January 8, 2021). http://dx.doi.org/10.1038/s41467-020-20375-x.

Full text
Abstract:
AbstractIntrinsically disordered proteins have dramatically changed the structure–function paradigm of proteins in the 21st century. Resilin is a native elastic insect protein, which features intrinsically disordered structure, unusual multi-stimuli responsiveness and outstanding resilience. Advances in computational techniques, polypeptide synthesis methods and modular protein engineering routines have led to the development of novel resilin-like polypeptides (RLPs) including modular RLPs, expanding their applications in tissue engineering, drug delivery, bioimaging, biosensors, catalysis and bioelectronics. However, how the responsive behaviour of RLPs is encoded in the amino acid sequence level remains elusive. This review summarises the milestones of RLPs, and discusses the development of modular RLP-based biomaterials, their current applications, challenges and future perspectives. A perspective of future research is that sequence and responsiveness profiling of RLPs can provide a new platform for the design and development of new modular RLP-based biomaterials with programmable structure, properties and functions.
APA, Harvard, Vancouver, ISO, and other styles
8

Fu, Tianda, Xiaomeng Liu, Shuai Fu, Trevor Woodard, Hongyan Gao, Derek R. Lovley, and Jun Yao. "Self-sustained green neuromorphic interfaces." Nature Communications 12, no. 1 (June 7, 2021). http://dx.doi.org/10.1038/s41467-021-23744-2.

Full text
Abstract:
AbstractIncorporating neuromorphic electronics in bioelectronic interfaces can provide intelligent responsiveness to environments. However, the signal mismatch between the environmental stimuli and driving amplitude in neuromorphic devices has limited the functional versatility and energy sustainability. Here we demonstrate multifunctional, self-sustained neuromorphic interfaces by achieving signal matching at the biological level. The advances rely on the unique properties of microbially produced protein nanowires, which enable both bio-amplitude (e.g., <100 mV) signal processing and energy harvesting from ambient humidity. Integrating protein nanowire-based sensors, energy devices and memristors of bio-amplitude functions yields flexible, self-powered neuromorphic interfaces that can intelligently interpret biologically relevant stimuli for smart responses. These features, coupled with the fact that protein nanowires are a green biomaterial of potential diverse functionalities, take the interfaces a step closer to biological integration.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Protein-Based Molecular Bioelectronics"

1

"Bioelectronics and Protein-Based Optical Memories and Processors." In Molecular Computing. The MIT Press, 2003. http://dx.doi.org/10.7551/mitpress/4739.003.0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography