Journal articles on the topic 'Protein amyloid fibril'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Protein amyloid fibril.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Dean, Dexter N., and Jennifer C. Lee. "Modulating functional amyloid formation via alternative splicing of the premelanosomal protein PMEL17." Journal of Biological Chemistry 295, no. 21 (April 10, 2020): 7544–53. http://dx.doi.org/10.1074/jbc.ra120.013012.
Full textŠneideris, Tomas, Lina Baranauskienė, Jonathan G. Cannon, Rasa Rutkienė, Rolandas Meškys, and Vytautas Smirnovas. "Looking for a generic inhibitor of amyloid-like fibril formation among flavone derivatives." PeerJ 3 (September 24, 2015): e1271. http://dx.doi.org/10.7717/peerj.1271.
Full textBuell, Alexander K. "The growth of amyloid fibrils: rates and mechanisms." Biochemical Journal 476, no. 19 (October 11, 2019): 2677–703. http://dx.doi.org/10.1042/bcj20160868.
Full textWaterhouse, Sarah H., and Juliet A. Gerrard. "Amyloid Fibrils in Bionanotechnology." Australian Journal of Chemistry 57, no. 6 (2004): 519. http://dx.doi.org/10.1071/ch04070.
Full textStepanenko, Olga V., Maksim I. Sulatsky, Ekaterina V. Mikhailova, Olesya V. Stepanenko, Irina M. Kuznetsova, Konstantin K. Turoverov, and Anna I. Sulatskaya. "Trypsin Induced Degradation of Amyloid Fibrils." International Journal of Molecular Sciences 22, no. 9 (May 2, 2021): 4828. http://dx.doi.org/10.3390/ijms22094828.
Full textLempart, Justine, Eric Tse, James A. Lauer, Magdalena I. Ivanova, Alexandra Sutter, Nicholas Yoo, Philipp Huettemann, Daniel Southworth, and Ursula Jakob. "Mechanistic insights into the protective roles of polyphosphate against amyloid cytotoxicity." Life Science Alliance 2, no. 5 (September 18, 2019): e201900486. http://dx.doi.org/10.26508/lsa.201900486.
Full textBondarev, Stanislav, Kirill Antonets, Andrey Kajava, Anton Nizhnikov, and Galina Zhouravleva. "Protein Co-Aggregation Related to Amyloids: Methods of Investigation, Diversity, and Classification." International Journal of Molecular Sciences 19, no. 8 (August 4, 2018): 2292. http://dx.doi.org/10.3390/ijms19082292.
Full textXu, Sherry C. S., Josephine G. LoRicco, Anthony C. Bishop, Nathan A. James, Welby H. Huynh, Scott A. McCallum, Nadia R. Roan, and George I. Makhatadze. "Sequence-independent recognition of the amyloid structural motif by GFP protein family." Proceedings of the National Academy of Sciences 117, no. 36 (August 24, 2020): 22122–27. http://dx.doi.org/10.1073/pnas.2001457117.
Full textPepys, M. B. "Pathogenesis, diagnosis and treatment of systemic amyloidosis." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 356, no. 1406 (February 28, 2001): 203–11. http://dx.doi.org/10.1098/rstb.2000.0766.
Full textTrusova, Valeriya, Olga Zhytniakivska, Uliana Tarabara, Kateryna Vus, and Galyna Gorbenko. "Interactions of Fibrillar Insulin with Proteins: A Molecular Docking Study." 2, no. 2 (June 2, 2022): 133–40. http://dx.doi.org/10.26565/2312-4334-2022-2-17.
Full textRaman, Bakthisaran, Tadato Ban, Miyo Sakai, Saloni Y. Pasta, Tangirala Ramakrishna, Hironobu Naiki, Yuji Goto, and Ch Mohan Rao. "αB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid β-peptide and β2-microglobulin." Biochemical Journal 392, no. 3 (December 6, 2005): 573–81. http://dx.doi.org/10.1042/bj20050339.
Full textKarunarathne, Kanchana, Nabila Bushra, Olivia Williams, Imad Raza, Laura Tirado, Diane Fakhre, Fadia Fakhre, and Martin Muschol. "Self-Assembly of Amyloid Fibrils Into 3D Gel Clusters Versus 2D Sheets." Biomolecules 13, no. 2 (January 24, 2023): 230. http://dx.doi.org/10.3390/biom13020230.
Full textWatanabe-Nakayama, Takahiro, Kenjiro Ono, Masahiro Itami, Ryoichi Takahashi, David B. Teplow, and Masahito Yamada. "High-speed atomic force microscopy reveals structural dynamics of amyloid β1–42 aggregates." Proceedings of the National Academy of Sciences 113, no. 21 (May 9, 2016): 5835–40. http://dx.doi.org/10.1073/pnas.1524807113.
Full textFerreira, Elisabete, Zaida L. Almeida, Pedro F. Cruz, Marta Silva e Sousa, Paula Veríssimo, and Rui M. M. Brito. "Searching for the Best Transthyretin Aggregation Protocol to Study Amyloid Fibril Disruption." International Journal of Molecular Sciences 23, no. 1 (December 30, 2021): 391. http://dx.doi.org/10.3390/ijms23010391.
Full textHasanbašić, Samra, Alma Jahić, Selma Berbić, Magda Tušek Žnidarič, and Eva Žerovnik. "Inhibition of Protein Aggregation by Several Antioxidants." Oxidative Medicine and Cellular Longevity 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/8613209.
Full textZiaunys, Mantas, Tomas Sneideris, and Vytautas Smirnovas. "Exploring the potential of deep-blue autofluorescence for monitoring amyloid fibril formation and dissociation." PeerJ 7 (August 16, 2019): e7554. http://dx.doi.org/10.7717/peerj.7554.
Full textBelashova, Tatyana A., Anna A. Valina, Evgeniy I. Sysoev, Maria E. Velizhanina, Andrew A. Zelinsky, and Alexey P. Galkin. "Search and Identification of Amyloid Proteins." Methods and Protocols 6, no. 1 (February 4, 2023): 16. http://dx.doi.org/10.3390/mps6010016.
Full textHamidi Asl, Kamran, Juris J. Liepnieks, Masaaki Nakamura, and Merrill D. Benson. "Organ-Specific (Localized) Synthesis of Ig Light Chain Amyloid." Journal of Immunology 162, no. 9 (May 1, 1999): 5556–60. http://dx.doi.org/10.4049/jimmunol.162.9.5556.
Full textSelig, Emily E., Courtney O. Zlatic, Dezerae Cox, Yee-Foong Mok, Paul R. Gooley, Heath Ecroyd, and Michael D. W. Griffin. "N- and C-terminal regions of αB-crystallin and Hsp27 mediate inhibition of amyloid nucleation, fibril binding, and fibril disaggregation." Journal of Biological Chemistry 295, no. 29 (May 16, 2020): 9838–54. http://dx.doi.org/10.1074/jbc.ra120.012748.
Full textAlmeida, Zaida L., and Rui M. M. Brito. "Amyloid Disassembly: What Can We Learn from Chaperones?" Biomedicines 10, no. 12 (December 17, 2022): 3276. http://dx.doi.org/10.3390/biomedicines10123276.
Full textSneideris, Tomas, Mantas Ziaunys, Brett K. Y. Chu, Rita P. Y. Chen, and Vytautas Smirnovas. "Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates." International Journal of Molecular Sciences 21, no. 19 (October 8, 2020): 7410. http://dx.doi.org/10.3390/ijms21197410.
Full textKelly, Jeffery W., and William E. Balch. "Amyloid as a natural product." Journal of Cell Biology 161, no. 3 (May 12, 2003): 461–62. http://dx.doi.org/10.1083/jcb.200304074.
Full textSakalauskas, Andrius, Mantas Ziaunys, and Vytautas Smirnovas. "Concentration-dependent polymorphism of insulin amyloid fibrils." PeerJ 7 (December 10, 2019): e8208. http://dx.doi.org/10.7717/peerj.8208.
Full textKumar, Jatish, Hasier Eraña, Elena López-Martínez, Nathalie Claes, Víctor F. Martín, Diego M. Solís, Sara Bals, Aitziber L. Cortajarena, Joaquín Castilla, and Luis M. Liz-Marzán. "Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality." Proceedings of the National Academy of Sciences 115, no. 13 (March 12, 2018): 3225–30. http://dx.doi.org/10.1073/pnas.1721690115.
Full textPradhan, Tejaswini, Karthikeyan Annamalai, Riddhiman Sarkar, Stefanie Huhn, Ute Hegenbart, Stefan Schönland, Marcus Fändrich, and Bernd Reif. "Seeded fibrils of the germline variant of human λ-III immunoglobulin light chain FOR005 have a similar core as patient fibrils with reduced stability." Journal of Biological Chemistry 295, no. 52 (October 22, 2020): 18474–84. http://dx.doi.org/10.1074/jbc.ra120.016006.
Full textGalzitskaya, Oxana. "New Mechanism of Amyloid Fibril Formation." Current Protein & Peptide Science 20, no. 6 (May 20, 2019): 630–40. http://dx.doi.org/10.2174/1389203720666190125160937.
Full textRamshini, Hassan, Reza Tayebee, Alessandra Bigi, Francesco Bemporad, Cristina Cecchi, and Fabrizio Chiti. "Identification of Novel 1,3,5-Triphenylbenzene Derivative Compounds as Inhibitors of Hen Lysozyme Amyloid Fibril Formation." International Journal of Molecular Sciences 20, no. 22 (November 7, 2019): 5558. http://dx.doi.org/10.3390/ijms20225558.
Full textSaelices, Lorena, Kevin Chung, Ji H. Lee, Whitaker Cohn, Julian P. Whitelegge, Merrill D. Benson, and David S. Eisenberg. "Amyloid seeding of transthyretin by ex vivo cardiac fibrils and its inhibition." Proceedings of the National Academy of Sciences 115, no. 29 (June 28, 2018): E6741—E6750. http://dx.doi.org/10.1073/pnas.1805131115.
Full textHIGUCHI, Keiichi, Kumiko KOGISHI, Jing WANG, Chen XIA, Takuya CHIBA, Takatoshi MATSUSHITA, and Masanori HOSOKAWA. "Accumulation of pro-apolipoprotein A-II in mouse senile amyloid fibrils." Biochemical Journal 325, no. 3 (August 1, 1997): 653–59. http://dx.doi.org/10.1042/bj3250653.
Full textNoi, Kentaro, Kichitaro Nakajima, Keiichi Yamaguchi, Masatomo So, Kensuke Ikenaka, Hideki Mochizuki, Yuji Goto, and Hirotsugu Ogi. "Acceleration of amyloid fibril formation by multichannel sonochemical reactor." Japanese Journal of Applied Physics 61, SG (March 10, 2022): SG1002. http://dx.doi.org/10.35848/1347-4065/ac4142.
Full textYagi-Utsumi, Maho, and Koichi Kato. "Conformational Variability of Amyloid-β and the Morphological Diversity of Its Aggregates." Molecules 27, no. 15 (July 26, 2022): 4787. http://dx.doi.org/10.3390/molecules27154787.
Full textLashuel, Hilal A., and Peter T. Lansbury. "Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins?" Quarterly Reviews of Biophysics 39, no. 2 (May 2006): 167–201. http://dx.doi.org/10.1017/s0033583506004422.
Full textGALZITSKAYA, OXANA V., SERGIY O. GARBUZYNSKIY, and MICHAIL YU. LOBANOV. "IS IT POSSIBLE TO PREDICT AMYLOIDOGENIC REGIONS FROM SEQUENCE ALONE?" Journal of Bioinformatics and Computational Biology 04, no. 02 (April 2006): 373–88. http://dx.doi.org/10.1142/s0219720006002004.
Full textToleikis, Zigmantas, Mantas Ziaunys, Lina Baranauskiene, Vytautas Petrauskas, Kristaps Jaudzems, and Vytautas Smirnovas. "S100A9 Alters the Pathway of Alpha-Synuclein Amyloid Aggregation." International Journal of Molecular Sciences 22, no. 15 (July 26, 2021): 7972. http://dx.doi.org/10.3390/ijms22157972.
Full textHoepfner, Jeannine, Mandy Kleinsorge, Oliver Papp, Susanne Alfken, Robin Heiringhoff, Andreas Pich, Vanessa Sauer, et al. "In vitro modelling of familial amyloidotic polyneuropathy allows quantitative detection of transthyretin amyloid fibril-like structures in hepatic derivatives of patient-specific induced pluripotent stem cells." Biological Chemistry 398, no. 8 (July 26, 2017): 939–54. http://dx.doi.org/10.1515/hsz-2016-0258.
Full textXue, Christine, Tiffany Yuwen Lin, Dennis Chang, and Zhefeng Guo. "Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation." Royal Society Open Science 4, no. 1 (January 2017): 160696. http://dx.doi.org/10.1098/rsos.160696.
Full textHori, Yukiko, Tadafumi Hashimoto, Yosuke Wakutani, Katsuya Urakami, Kenji Nakashima, Margaret M. Condron, Satoshi Tsubuki, Takaomi C. Saido, David B. Teplow, and Takeshi Iwatsubo. "The Tottori (D7N) and English (H6R) Familial Alzheimer Disease Mutations Accelerate Aβ Fibril Formation without Increasing Protofibril Formation." Journal of Biological Chemistry 282, no. 7 (December 14, 2006): 4916–23. http://dx.doi.org/10.1074/jbc.m608220200.
Full textTarabara, Uliana, Olga Zhytniakivska, Kateryna Vus, Valeriya Trusova, and Galyna Gorbenko. "Fluorescence Study of the Interactions Between Insulin Amyloid Fibrils and Proteins." 1, no. 1 (March 17, 2022): 96–104. http://dx.doi.org/10.26565/2312-4334-2022-1-13.
Full textMusteikyte, Greta, Mantas Ziaunys, and Vytautas Smirnovas. "Methylene blue inhibits nucleation and elongation of SOD1 amyloid fibrils." PeerJ 8 (August 14, 2020): e9719. http://dx.doi.org/10.7717/peerj.9719.
Full textEst, Chandler B., Parth Mangrolia, and Regina M. Murphy. "ROSETTA-informed design of structurally stabilized cyclic anti-amyloid peptides." Protein Engineering, Design and Selection 32, no. 2 (February 2019): 47–57. http://dx.doi.org/10.1093/protein/gzz016.
Full textSelivanova, O. M., V. V. Rogachevsky, A. K. Syrin, and O. V. Galzitskaya. "Molecular mechanism of amyloid formation by Ab peptide: review of own works." Biomeditsinskaya Khimiya 64, no. 1 (January 2018): 94–109. http://dx.doi.org/10.18097/pbmc20186401094.
Full textEcroyd, Heath, David C. Thorn, Yanqin Liu, and John A. Carver. "The dissociated form of κ-casein is the precursor to its amyloid fibril formation." Biochemical Journal 429, no. 2 (June 28, 2010): 251–60. http://dx.doi.org/10.1042/bj20091949.
Full textTan, S. Y., I. E. Murdoch, T. J. Sullivan, J. E. Wright, Oanh Truong, J. J. Hsuan, P. N. Hawkins, and M. B. Pepys. "Primary Localized Orbital Amyloidosis Composed of the Immunoglobulin γ Heavy Chain CH3 Domain." Clinical Science 87, no. 5 (November 1, 1994): 487–91. http://dx.doi.org/10.1042/cs0870487.
Full textOgawa, Kenjirou, Ayumi Ishii, Aimi Shindo, Kunihiro Hongo, Tomohiro Mizobata, Tetsuya Sogon, and Yasushi Kawata. "Spearmint Extract Containing Rosmarinic Acid Suppresses Amyloid Fibril Formation of Proteins Associated with Dementia." Nutrients 12, no. 11 (November 13, 2020): 3480. http://dx.doi.org/10.3390/nu12113480.
Full textTarabara, Uliana, Olga Zhytniakivska, Kateryna Vus, Valeriya Trusova, and Galyna Gorbenko. "Multiple Docking of Fluorescent Dyes to Fibrillar Insulin." 3, no. 3 (September 2, 2022): 115–20. http://dx.doi.org/10.26565/2312-4334-2022-3-15.
Full textKisilevsky, R. "From arthritis to Alzheimer's disease: current concepts on the pathogenesis of amyloidosis." Canadian Journal of Physiology and Pharmacology 65, no. 9 (September 1, 1987): 1805–15. http://dx.doi.org/10.1139/y87-282.
Full textYu, Kun-Hua, and Cheng-I. Lee. "Quercetin Disaggregates Prion Fibrils and Decreases Fibril-Induced Cytotoxicity and Oxidative Stress." Pharmaceutics 12, no. 11 (November 11, 2020): 1081. http://dx.doi.org/10.3390/pharmaceutics12111081.
Full textKrebs, Mark R. H., Kristin R. Domike, and Athene M. Donald. "Protein aggregation: more than just fibrils." Biochemical Society Transactions 37, no. 4 (July 22, 2009): 682–86. http://dx.doi.org/10.1042/bst0370682.
Full textZiaunys, Mantas, Andrius Sakalauskas, Kamile Mikalauskaite, Ruta Snieckute, and Vytautas Smirnovas. "Temperature-Dependent Structural Variability of Prion Protein Amyloid Fibrils." International Journal of Molecular Sciences 22, no. 10 (May 11, 2021): 5075. http://dx.doi.org/10.3390/ijms22105075.
Full textKhan, Mohammad Ashhar I., Ulrich Weininger, Sven Kjellström, Shashank Deep, and Mikael Akke. "Adsorption of unfolded Cu/Zn superoxide dismutase onto hydrophobic surfaces catalyzes its formation of amyloid fibrils." Protein Engineering, Design and Selection 32, no. 2 (February 2019): 77–85. http://dx.doi.org/10.1093/protein/gzz033.
Full text