Academic literature on the topic 'Proprioception'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Proprioception.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Proprioception"
Şilil, Mehtap Kaçmaz, Serdar Sargın, Aziz Atik, Gökhan Meriç, Muhammet Özer, and Devrim Akseki. "Comparison of Knee Proprioception Between Blind and Healthy Sportsmen." Orthopaedic Journal of Sports Medicine 2, no. 11_suppl3 (November 1, 2014): 2325967114S0017. http://dx.doi.org/10.1177/2325967114s00177.
Full textHéroux, Martin E., Annie A. Butler, Lucy S. Robertson, Georgia Fisher, and Simon C. Gandevia. "Proprioception: a new look at an old concept." Journal of Applied Physiology 132, no. 3 (March 1, 2022): 811–14. http://dx.doi.org/10.1152/japplphysiol.00809.2021.
Full textAger, Amanda L., Dorien Borms, Magali Bernaert, Vicky Brusselle, Mazarine Claessens, Jean-Sébastien Roy, and Ann Cools. "Can a Conservative Rehabilitation Strategy Improve Shoulder Proprioception? A Systematic Review." Journal of Sport Rehabilitation 30, no. 1 (January 1, 2021): 136–51. http://dx.doi.org/10.1123/jsr.2019-0400.
Full textBatson, Glenna. "Upate on Proprioception." Journal of Dance Medicine & Science 13, no. 2 (June 2009): 35–41. http://dx.doi.org/10.1177/1089313x0901300201.
Full textIto, Yohei, Keitaro Kawai, Yoshifumi Morita, Tadashi Ito, Kazunori Yamazaki, Yoshiji Kato, and Yoshihito Sakai. "Evaluation Method of Immediate Effect of Local Vibratory Stimulation on Proprioceptive Control Strategy: A Pilot Study." Electronics 10, no. 3 (February 1, 2021): 341. http://dx.doi.org/10.3390/electronics10030341.
Full textLv, Shi, Yang Chen, Mingliang Liu, Lei Qin, Ziyuan Liu, Wenxin Liu, Mengmeng Cui, et al. "Progress of Proprioceptive Training in the Treatment of Traumatic Shoulder Instability." Computational and Mathematical Methods in Medicine 2022 (April 22, 2022): 1–6. http://dx.doi.org/10.1155/2022/1429375.
Full textHan, Jia, Judith Anson, Gordon Waddington, Roger Adams, and Yu Liu. "The Role of Ankle Proprioception for Balance Control in relation to Sports Performance and Injury." BioMed Research International 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/842804.
Full textDragičević-Cvjetković, Dragana, Tatjana Erceg-Rukavina, and Siniša Nikolić. "Proprioception recovery after anterior cruciate ligament reconstruction: Isokinetic versus dynamic exercises." Scripta Medica 52, no. 4 (2021): 289–93. http://dx.doi.org/10.5937/scriptamed52-35239.
Full textRibeiro Artigas, Nathalie, Giovana Duarte Eltz, Alexandre Severo do Pinho, Vanessa Bielefeldt Leotti Torman, Arlete Hilbig, and Carlos R. M. Rieder. "Evaluation of Knee Proprioception and Factors Related to Parkinson’s Disease." Neuroscience Journal 2016 (September 8, 2016): 1–6. http://dx.doi.org/10.1155/2016/6746010.
Full textLewis, R. F., D. S. Zee, B. M. Gaymard, and B. L. Guthrie. "Extraocular muscle proprioception functions in the control of ocular alignment and eye movement conjugacy." Journal of Neurophysiology 72, no. 2 (August 1, 1994): 1028–31. http://dx.doi.org/10.1152/jn.1994.72.2.1028.
Full textDissertations / Theses on the topic "Proprioception"
Parkes, Kaitlyn Louise. "Calcium Imaging of Developing Proprioceptive Dorsal Root Ganglion Neurons." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1558024016491354.
Full textRodrigues, Sandra. "Shoulder proprioception and motor control." Thesis, University of Brighton, 2016. https://research.brighton.ac.uk/en/studentTheses/c0d40a83-eb98-4148-ad0e-81a8b1f3a2f5.
Full textDowse, Rebecca. "Proprioception and performance in surfing." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2022. https://ro.ecu.edu.au/theses/2594.
Full textBALLARDINI, GIULIA. "Assessment and enhancement of proprioception." Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1083277.
Full textRappoccio, Paul. "Proprioception And Literacy In the Digital Realm." Thesis, State University of New York at Albany, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1571694.
Full textDrawing on research in the fields of neuroscience, reading cognition, and the history of writing, the author explores the condition of reading today. Rather than accepting the apocalyptic pronouncements that the Internet is "dumbing down" current readers, the author argues for a more nuanced understanding of the effects of digital media. He argues that the literacies needed for the new digital realm are not new, but are literacies developed over thousands of years. The author argues for the need of more education and instruction in the use of digital media, and that the digital realm requires new proprioceptive (spatial awareness) abilities to navigate.
Mtibaa, Khouloud. "The effect of hyperthermia on proprioception and running gait kinematics." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1337.
Full textThe objective of this PhD was to investigate the effects of hyperthermia on proprioception and their impact on running gait kinematics. We developed an experimental protocol consisting of two studies to answer this question.The first experiment explored passive hyperthermia and its effects on proprioception and balance. We hypothesized that neuromuscular disturbances induced by passive hyperthermia would impair proprioception and balance. 14 participants performed a series of tests of neuromuscular function, proprioception, as well as static and dynamic balance in an environmental chamber under hot (44°C - 50°C) and control (24°C) conditions. The results of this first study showed that an increase in rectal (39.0°C vs. 36.9°C) and skin (37.9°C vs. 32°C) temperatures in hot compared to control ambient conditions was associated with a reduction in the amplitude of the Hoffman reflex, a decrease in the proprioceptive acuity and impairments in static and dynamic balance. These results suggest that passive hyperthermia deteriorates proprioception and balance, something that could potentially affect sports movement. ln order to explore the effects of active hyperthermia on proprioception, we subsequently performed the active discrimination test in 12 trained runners before and just after a 30-minute running time-trials under hot (39°C) and control (22°C) conditions. The results of this study showed a larger increase in thermal, perceptual and cardiovascular stresses when running in the heat as compared to running in a temperate environment. ln addition, we observed a decrease in proprioceptive acuity following exercising in the heat only. This showed that the proprioceptive impairments identified during the first study are also present following exercise-induced hyperthermia, but not exercise-induced fatigue without hyperthermia. During this study, we have also explored the impact of hyperthermia-induced alterations in proprioception on running gait kinematics. To do so, we measured angular kinematics and spatiotemporal stride parameters at a constant speed (i.e., 70% of the maximum aerobic speed) during the first and last minute of the exercise (whilst speed was freely chosen from the 2nd to the 29th minute). Results showed that fatigue decreased step frequency and increase step length under both conditions, along inducing a few little changes in the angular kinematic parameters limited to an increase of the PELVlS angle and a decrease of the ANKLE angle. However, no interaction effect was found for any of the spatiotemporal or angular stride parameters. These results suggest that exercise-induced hyperthermia impairs ankle proprioception, but that this alteration does not affect running kinematics. ln summary, proprioception is affected by hyperthermia induced either by passive or active methods. These alterations could be due to the effects of hyperthermia on neuromuscular and cognitive functions. However, the degradation of proprioceptive acuity with an increase in rectal temperature above 39 °C does not affect the kinematics of running, suggesting that running pattern remains stable despite proprioception and neuromuscular functions impairments
FERREL, CAROLE. "Production et controle des mouvements de pointage de cible : adaptation a une decorrelation vision-proprioception." Grenoble 2, 1998. http://www.theses.fr/1998GRE29049.
Full textSeveral studies on motor control suggest that amplitude and direction parameters involve different processes. In remote operation, operators carry out various visual-motor tasks while viewing their hands by means of video feedback. This situation usually entails a discrepancy between the information provided by visual and proprioceptive systems. Among numerous studies that analyzed the adaptation of the perceptual-motor system to visual spatial distortions, many focused on perceptual-motor adaptation to directional distortions. The present study concerns the adaptation of motor system to the distortion of distance when the production of movement is visually controlled through a video display. The subjects had to perform a pointing movement with information provided by video screen. By changing the zoom of the camera, the amplitude of the movement perceived on the screen was different from the actual movement. Results showed that the movement adapted more quickly to the distortions of distance than to directional distortions. However, adaptation did not transfer to other situations since it was specific to the target and scale. Adaptation occurred at task level, i. E. , was based on information relating to the displacement of the hand. Most of subjects tended to use mainly the information provided by the visual system. The spatial cues (e. G. Reference frame, known objects) facilitated this adaptation. In conclusion, adaptation to distance distortion depends on two processes. The first one leads to a local visual-motor adaptation. The second one, which is necessary for the transfer of adaptation, is slower and involves a general remapping of the whole grasping space
Davis, Justin Robert. "Fear of falling, proprioception and spinal reflex modulation." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/30527.
Full textWeigelt, Cornelia. "Vision and proprioception in lower limb interceptive actions." Thesis, Liverpool John Moores University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343198.
Full textBirmingham, Trevor B. "Knee orthoses and measures of proprioception and postural control." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ58395.pdf.
Full textBooks on the topic "Proprioception"
Kaya, Defne, Baran Yosmaoglu, and Mahmut Nedim Doral, eds. Proprioception in Orthopaedics, Sports Medicine and Rehabilitation. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-66640-2.
Full textGünther, Knoblich, ed. Human body perception from the inside out. Oxford: Oxford University Press, 2005.
Find full textRamsay, Jill Rosamond Edith. Proprioception in normal and brain damaged populations: Assessment and rehabilitation of the upper limb. Birmingham: University of Birmingham, 2001.
Find full textInternational Workshop on Proprioception of the Ocular Muscles (1986 Matsuyama, Japan). Acta: International Workshop on Proprioception of the Ocular Muscles : June 14-16, 1986, Hakone-Matsuyama, Japan. Edited by Tamura Osamu. [Matsuyama, Japan]: Ehime University Press, 1986.
Find full text1952-, Beckers Dominiek, and Buck Math 1948-, eds. PNF in practice: An illustrated guide. 2nd ed. Berlin: Springer, 2000.
Find full text1952-, Beckers Dominiek, and Buck Math 1948-, eds. PNF in practice: An illustrated guide. Berlin: Springer-Verlag, 1993.
Find full textSmets, Martin P. H. The effect of whole-body vibration exposure as experienced during the operation of surface haulage trucks on proprioception in the lumbar spine. Sudbury, Ont: Laurentian University, School of Graduate Studies, 2006.
Find full textMcCredie, Scott. Balance. New York: Little, Brown and Company, 2009.
Find full textA manual therapist's guide to movement: Teaching motor skills to the orthopedic patient. Edinburgh: Churchill Livingstone/Elsevier, 2006.
Find full textT, Dempster P., and Ames Research Center, eds. Proprioceptive isokinetic exercise test. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1993.
Find full textBook chapters on the topic "Proprioception"
Tabot, Gregg. "Proprioception." In Encyclopedia of Computational Neuroscience, 2498–501. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_381.
Full textTodd, Teri A. "Proprioception." In Encyclopedia of Clinical Neuropsychology, 2849–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_776.
Full textTodd, Teri A. "Proprioception." In Encyclopedia of Clinical Neuropsychology, 1–4. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56782-2_776-2.
Full textTabot, Gregg. "Proprioception." In Encyclopedia of Computational Neuroscience, 1–4. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7320-6_381-1.
Full textPhelps, Brady I. "Proprioception." In Encyclopedia of Child Behavior and Development, 1164–65. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-79061-9_2272.
Full textHonaker, Julie A., and Amanda K. Wolfe. "Proprioception." In Encyclopedia of Otolaryngology, Head and Neck Surgery, 2228. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-23499-6_200056.
Full textKhalil, Michael. "Proprioception." In Encyclopedia of Evolutionary Psychological Science, 1–6. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-16999-6_1008-1.
Full textMassey, Dunecan, Nick Cunniffe, and Imran Noorani. "Proprioception." In Carpenter's Neurophysiology, 99–109. 6th ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780429323720-7.
Full textKhalil, Michael. "Proprioception." In Encyclopedia of Evolutionary Psychological Science, 6313–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-19650-3_1008.
Full textTodd, Teri A. "Proprioception." In Encyclopedia of Clinical Neuropsychology, 2050–52. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-79948-3_776.
Full textConference papers on the topic "Proprioception"
Soltys, Joseph, and Sara Wilson. "A Pneumatic Vibrator Created Using Rapid Prototyping Technology for the fMRI Environment." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53777.
Full textSoltys, Joseph S., and Sara E. Wilson. "The Role of the Central Nervous System in the Integration of Proprioceptive Activity." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80693.
Full textTorabi, Faraz, Garrett Warnell, and Peter Stone. "Imitation Learning from Video by Leveraging Proprioception." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/497.
Full textSchnipke, Jeremy R., Thomas G. Rounds, Jacob P. Sroka, Zachary B. Lowe, Gregory M. Freisinger, Margaret A. Nowicki, Kenneth L. Cameron, Brittany R. Hotaling, and Richard B. Westrick. "Shoulder Proprioception Device (S.P.D.): A Novel Design for Measuring Shoulder Joint Proprioception." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11948.
Full textContu, Sara, Francesca Marini, Leonardo Cappello, and Lorenzo Masia. "Robot-assisted assessment of wrist proprioception: Does wrist proprioceptive acuity follow Weber's law?" In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016. http://dx.doi.org/10.1109/embc.2016.7591754.
Full textLin, Hsiu-Chen, Weng-Hang Lai, Chia-Ming Chang, and Horng-Chaung Hsu. "Assessing Laxity Characteristics of Hyperextension Knee in Healthy Young Females Using a Knee Ligament Arthrometer." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176725.
Full textLahiff, Christina-Anne, Millicent Schlafly, and Kyle Reed. "Effects on Balance When Interfering With Proprioception at the Knee." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71573.
Full textPistohl, Tobias, Andrew Jackson, Ganesh Gowrishankar, Deepak Joshi, and Kianoush Nazarpour. "Artificial proprioception for myoelectric control." In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6609820.
Full textAberšek, Boris, Kosta Dolenc, and Andrej Flogie. "RESEARCH BASED LEARNING AND PROPRIOCEPTION." In Proceedings of the 2nd International Baltic Symposium on Science and Technology Education (BalticSTE2017). Scientia Socialis Ltd., 2017. http://dx.doi.org/10.33225/balticste/2017.11.
Full textLeMoyne, Robert, and Timothy Mastroianni. "Virtual Proprioception for eccentric training." In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2017. http://dx.doi.org/10.1109/embc.2017.8037870.
Full textReports on the topic "Proprioception"
Guede-Rojas, Francisco, Alexis Benavides-Villanueva, Sergio Salgado-González, Cristhian Mendoza, Gonzalo Arias-Álvarez, and Claudio Carvajal-Parodi. Effect of strength training on knee proprioception in patients with knee osteoarthritis. A systematic review and meta-analysis protocol. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2023. http://dx.doi.org/10.37766/inplasy2023.5.0102.
Full textLi, Xuan, Jing Yuan, Ning Wang, and Wei Wang. Effect of whole body vibration training on proprioception :a meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, February 2024. http://dx.doi.org/10.37766/inplasy2024.2.0121.
Full textGuede-Rojas, Francisco, Bárbara Cáceres-Vejar, Melanie Godoy-Escobar, Aracely Tripaili-Fernández, and Camila Vera-Nanjari. Effectiveness of exergames on proprioception in older adults. A systematic review protocol. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, July 2021. http://dx.doi.org/10.37766/inplasy2021.7.0060.
Full textHua, Yinghui. Chronic ankle instability is associated with proprioception deficits: A systematic review with meta-analysis. INPLASY - International Platform of Registered Systematic Review Protocols, April 2020. http://dx.doi.org/10.37766/inplasy2020.4.0125.
Full textChen, Yue, Yimei Hu, Panyun Mu, Yanni Zhou, Feng Jie, Peihua Qu, Feng Xiong, and Xu Ma. Do traverse-couple trainings improve proprioception in patients with scapular dyskinesis ? A systematic review with meta-analyses. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, December 2020. http://dx.doi.org/10.37766/inplasy2020.12.0059.
Full textXue, Xiao'ao, Ziyi Chen, Tengjia Ma, Qianru Li, Xiaoyun Xu, and Yinghui Hua. Do external supports influence proprioception in patients with chronic ankle instability? A systematic review with meta-analyses. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, September 2020. http://dx.doi.org/10.37766/inplasy2020.9.0020.
Full textTao, Weichu, Xiao'ao Xue, Qianru Li, and Yinghui Hua. Do functional trainings influence proprioception in patients with chronic ankle instability ? A systematic review with meta-analyses. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, September 2020. http://dx.doi.org/10.37766/inplasy2020.9.0056.
Full textGlaister, Brian. A Prosthesis to Train the Proprioceptive Capabilities of the Residual Limb of Military Personnel Recovering from Lower Limb Amputation. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada562667.
Full textGlaister, Brian. A Prosthesis to Train the Proprioceptive Capabilities of the Residual Limb of Military Personnel Recovering from Lower Limb Amputation. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada577360.
Full textliu, qing, peng Wang, shufan Li, xiaojing Zhou, xing Wang, and zhichao Cao. A meta-analysis of the effects of MOTOmed intelligent exercise training on balance function and neurological function in patients with hemiplegia with stroke. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2023. http://dx.doi.org/10.37766/inplasy2023.3.0045.
Full text