Contents
Academic literature on the topic 'Propriété RD'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Propriété RD.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Propriété RD"
Mustapha, Sami. "La propriété (RD) pour les groupes algébriques p-adiques." Comptes Rendus Mathematique 348, no. 7-8 (April 2010): 411–13. http://dx.doi.org/10.1016/j.crma.2010.01.027.
Full textKasongo, Ruben Koy, Prosper Kanyankogote, Ann Verdoodt, Geert Baert, Mathijs Dumon, and Eric Van Ranst. "Effet in vitro de la roche verte de Gangila sur les propriétés physico-chimiques des sols sableux de l'hinterland de Kinshasa (RD Congo)." Canadian Journal of Soil Science 92, no. 5 (August 2012): 787–97. http://dx.doi.org/10.4141/cjss2011-116.
Full textWaziri, Mwinyi, Lebisabo Bungamuzi, Kanyama Joseph, Rammeloo Jan, NshimbaSeya Wa Malale, and Degreef Jérôme. "Culture de Pleurotus tuber-regium (Fr.) Singer sur substrat ligno-cellulosique en République Démocratique du Congo." Tropicultura, no. 1 (2021). http://dx.doi.org/10.25518/2295-8010.1695.
Full textEt-Touys, A., A. Bouyahya, I. Bourais, N. Dakka, and Y. Bakri. "Étude in vitro des propriétés antioxydante, antiproliférative et antimicrobienne de Salvia clandestina du Maroc." Phytothérapie, 2019. http://dx.doi.org/10.3166/phyto-2019-0202.
Full textDissertations / Theses on the topic "Propriété RD"
Boyer, Adrien. "Sur certains aspects de la propriété RD pour des représentations sur les bords de Poisson-Furstenberg." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4723.
Full textWe study property RD in terms of decay of matrix coefficients for unitary representations. We focus our attention on unitary representations arising from action of Lie groups and discrete groups of isometries of a CAT(-1) space on their appropriate boundary. We use some techniques of harmonic analysis, and ergodic theory to start a new approach of Valette's conjecture
Zarka, Benjamin. "La propriété de décroissance rapide hybride pour les groupes discrets." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4057.
Full textA finitely generated group G has the property RD when the Sobolev space H^s(G) embeds in the group reduced C^*-algebra C^*_r(G). This embedding induces isomorphisms in K-theory, and allows to upper-bound the operator norm of the convolution on l^2(G) by weighted l^2 norms. It is known that if G contains an amenable subgroup with superpolynomial growth, then G cannot have property RD. In another hand, we always have the canonical inclusion of l^1(G) in C^*_r(G), but this estimation is generally less optimal than the estimation given by the property RD, and in most of cases, it needs to combine Bost and Baum-Connes conjectures to know if that inclusion induces K-theory isomorphisms. That's the reason why, in this thesis, we define a relative version of property RD by using an interpolation norm between l^1 and l^2 which depends on a subgroup H of G, and we call that property: property RD_H. We will see that property RD_H can be seen as an analogue for non-normal subgroups to the fact that G/H has property RD, and we will study what kind of geometric properties on G/H can imply or deny the property RD_H. In particular, we care about the case where H is a co-amenable subgroup of G, and the case where G is relatively hyperbolic with respect to H. We will show that property RD_H induces isomorphisms in K-theory, and gives us a lower bound concerning the return probability in the subgroup H for a symmetric random walk. Another part of the thesis is devoted to show that if G is a certain kind of semi-direct product, the inclusion l^1(G)subset C^*_r(G) induces isomorphisms in K-theory, we prove this statement by using two types of exact sequences without using Bost and Baum-Connes conjectures