Academic literature on the topic 'Prophase I'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Prophase I.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Prophase I"
Rieder, Conly L., and Richard W. Cole. "Entry into Mitosis in Vertebrate Somatic Cells Is Guarded by a Chromosome Damage Checkpoint That Reverses the Cell Cycle When Triggered during Early but Not Late Prophase." Journal of Cell Biology 142, no. 4 (August 24, 1998): 1013–22. http://dx.doi.org/10.1083/jcb.142.4.1013.
Full textWang, Tianzuo, Mengya Xue, Peng Sha, Fei Xue, and Linxiang Wang. "Study on the Influence of Different Prophase Stress Levels on the Fatigue Damage Characteristics of Granite." Shock and Vibration 2021 (June 5, 2021): 1–12. http://dx.doi.org/10.1155/2021/5513910.
Full textFellmeth, Jessica E., Janet K. Jang, Manisha Persaud, Hannah Sturm, Neha Changela, Aashka Parikh, and Kim S. McKim. "A dynamic population of prophase CENP-C is required for meiotic chromosome segregation." PLOS Genetics 19, no. 11 (November 29, 2023): e1011066. http://dx.doi.org/10.1371/journal.pgen.1011066.
Full textWalters, Marta Sherman. "Meiosis readiness in Lilium." Canadian Journal of Genetics and Cytology 27, no. 1 (February 1, 1985): 33–38. http://dx.doi.org/10.1139/g85-007.
Full textKireeva, Natashe, Margot Lakonishok, Igor Kireev, Tatsuya Hirano, and Andrew S. Belmont. "Visualization of early chromosome condensation." Journal of Cell Biology 166, no. 6 (September 7, 2004): 775–85. http://dx.doi.org/10.1083/jcb.200406049.
Full textHajeri, Vinita A., Brent A. Little, Mary L. Ladage, and Pamela A. Padilla. "NPP-16/Nup50 Function and CDK-1 Inactivation Are Associated with Anoxia-induced Prophase Arrest in Caenorhabditis elegans." Molecular Biology of the Cell 21, no. 5 (March 2010): 712–24. http://dx.doi.org/10.1091/mbc.e09-09-0787.
Full textWang, Jianyue, and Feixiong Zhang. "Nucleolus disassembly and distribution of segregated nucleolar material in prophase of root-tip meristematic cells in Triticum aestivum L." Archives of Biological Sciences 67, no. 2 (2015): 405–10. http://dx.doi.org/10.2298/abs140810007w.
Full textLáscarez-Lagunas, Laura, Marina Martinez-Garcia, and Mónica Colaiácovo. "SnapShot: Meiosis – Prophase I." Cell 181, no. 6 (June 2020): 1442–1442. http://dx.doi.org/10.1016/j.cell.2020.04.038.
Full textFan, Xueying, Ioannis Moustakas, Vanessa Torrens-Juaneda, Qijing Lei, Geert Hamer, Leoni A. Louwe, Gonneke S. K. Pilgram, et al. "Transcriptional progression during meiotic prophase I reveals sex-specific features and X chromosome dynamics in human fetal female germline." PLOS Genetics 17, no. 9 (September 9, 2021): e1009773. http://dx.doi.org/10.1371/journal.pgen.1009773.
Full textJessus, C., C. Thibier, and R. Ozon. "Levels of microtubules during the meiotic maturation of the Xenopus oocyte." Journal of Cell Science 87, no. 5 (June 1, 1987): 705–12. http://dx.doi.org/10.1242/jcs.87.5.705.
Full textDissertations / Theses on the topic "Prophase I"
Lee, Chih-ying. "Bouquet formation, rapid prophase movements and homologous pairing during meiotic prophase in Saccharomyces cerevisiae." Oklahoma City : [s.n.], 2009.
Find full textTestori, Sarah. "Cohesin dynamics during meiotic prophase." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/29857.
Full textGhafari, Fataneh. "Oocyte progression and death during first meiotic prophase." Thesis, University of Warwick, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409952.
Full textPersico, Angela. "The Role of Golgi Fragmentation in the Regulation f G2/Prophase Transition." Thesis, Open University, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520741.
Full textCrawley, Oliver. "Investigating the regulation of cohesin dynamics during meiotic prophase in C. elegans." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/44281.
Full textEne, Adriana. "Meiotic prophase progression and germ cell elimination in fetal and neonatal mouse ovaries." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=92367.
Full textMsh5 heterozygous mutant mice were crossed and ovaries were isolated from female progeny at 14.5 22.5 days postcoitum (dpc). We studied the loss of germ cells in Msh5 -/- (MT) females comparing to the Msh5 +/+ (WT) and Msh5 (+/-) (HT) females by immunolabeling of ovarian sections for GCNA1 or MVH (both germ cell markers) or by counting GCNA1 positive germ cells in cell suspension preparations. Our results showed a continuous loss of GCNA1 positive cells in both MT and WT although the loss in MT was constantly larger than in the WT. A significant difference between WT and MT was found at 19.5 dpc.
Meiotic progression was studied by GCNA1 and SC (synaptonemal complex) or SC and ɣH2AX double immunolabeling of chromosome spread preparations. We found that meiosis in MT was blocked at zygotene-pachytene transition. No normal pachytene was observed in MT.
The role of apoptosis in elimination of oocytes during meiotic prophase was investigated by analyzing the cleavage of various caspases (caspase 2, 3, 6, 7, 9) as well as PARP1 by western blot using the lysate of whole ovaries. The activation of initiator caspase 9 increased from 17.5 to 18.5 dpc and decreased by 19.5 dpc. Caspase 2L activation also increased in a similar pattern but at much lower levels. The activation of effector caspase 3 or 6 remained at low levels. The activation of caspase 7 also was low but increased slightly at 19.5 dpc. The cleavage of PARP1 was high at all investigated stages. There were not major differences in the average level of activation between WT and MT. By immunolabeling of ovarian sections we observed that cleaved caspases and PARP1 were localized in oocytes but also in cells negative for GCNA1.
These results suggest that a mitochondrial pathway of apoptosis may play a role in the elimination of oocytes during meiotic prophase, involving activation of caspase 9 and cleavage of PARP1. However further studies are necessary for identification of an effector caspase.
Dans la plupart des espèces de mammifères, tous les oocytes cessent la prolifération mitotique et initialisent la méiose dans les ovaires ftales. En outre, plus de la moitié du nombre maximal de cellules germinales est éliminée dans les ovaires pendant la vie néonatale, limitant ainsi la réserve d'oocytes pour la reproduction. La cause ou le mécanisme de cette perte de cellules germinales femelles reste largement inconnu. Une perte majeure se produit dans les oocytes qui atteignent le stade pachytène de la prophase méiotique, suggérant que les oocytes avec des erreurs dans la méiose ou des erreurs de recombinaison peuvent être éliminés par un mécanisme de contrôle. Il reste à déterminer si les oocytes sont éliminés par apoptose, et si oui, par quel méchanisme. Le but de mon projet est d'étudier un mécanisme de perte d'oocytes dans les ovaires de souris durant la prophase méiotique. Nous avons utilisé une souche de souris mutantes pour la gene Msh5, dans lequelles tous les oocytes sont éliminés durant la vie néonatale. Msh5 code pour une protéine nécessaire à la synapse de chromosomes méiotiques.
Des souris hétérozygote Msh5 ont été croisées et les ovaires ont été isolées de la progéniture féminine de 14,5 à 22,5 dpc. Nous avons étudié la perte de cellules germinales dans les ovaires des femelles Msh5 -/- (MT) en les comparant à ceux des femelles Msh5 +/+ (WT) et Msh5 +/- (HT) par immunodétection en utilisant des anticorps anti-GCNA1 et anti-MVH (marqueurs des cellules germinales) ou par le comptage des cellules positives au GCNA1 dans des suspensions cellulaires. Nos résultats montrent une perte continue de cellules positives au GCNA1 chez les souris MT et WT, bien que la perte chez les MT a été constamment supérieure à celle des WT (différence significative à 19.5 dpc).
La progression de la méiose a été étudiée par immunodétection double pour GCNA1 et SC (complexe synaptonémal) ou pour SC et γH2AX sur des préparations de chromosomes. Nous avons constaté que la méiose chez les souris MT est bloquée dans le stage de transition zygotène-pachytène. Nous n'avons pas observé de pachytène normal chez les souris MT.
Le rôle de l'apoptose dans l'élimination d'oocytes au cours de la prophase méiotique a été étudié par analyse du clivage de diverses caspases (caspases 2, 3, 6, 7, 9) ainsi que celui de la PARP1 par immunobuvardage des protéines d'ovaires entières lysées. L'activation de la caspase 9 initiatrice a augmenté entre 17.5dpc et 18.5 dpc et a ensuite baissé à 19.5 dpc. Celle de la caspase 2L a augmenté d'une manière semblable, mais à des niveaux beaucoup plus bas. L'activation des caspases effectrice 3 et 6 est demeurée à des niveaux faibles mais celle de la caspase 7 bien que faible a augmenté légèrement à 19.5 dpc. Le clivage de PARP1 était élevé dans tous les stages. Dans tous ces cas, il n'y a pas eu de grandes différences dans le niveau moyen d'activation entre WT et MT. Par immunodétection de sections d'ovaires, nous avons observé que les caspases et PARP1 clivées étaient localisées dans des oocytes, mais aussi dans les cellules sans marquage pour GCNA1.
Ces résultats indiquent que la voie mitochondriale de l'apoptose peut jouer un rôle dans l'élimination d'oocytes au cours de la prophase méiotique, puisque les clivages de la caspase 9 et de PARP1 y sont associés. Cependant des études supplémentaires sont nécessaires pour l'identification de caspases effectrices.
Loh, Benjamin Jia Hui. "Novel screens to identify genes regulating global chromatin structure during female meiotic prophase." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4613.
Full textHanafi, Jasmin. "Identifying factors involved in chromosome movement during prophase I of meiosis in Caenorhabditis elegans." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121248.
Full textLa méiose est une division cellulaire réductionnelle qui produit des gamètes haploïdes et permet d'une façon unique l'introduction de diversité génétique à travers la recombinaison entre les chromosomes homologues. Tout problème dans le processus peut causer une impossibilité de séparation entre les chromosomes, ce qui à son tour cause l'aneuploïdie dans la génération suivante, une condition qui est généralement mortelle, mais résulte en anomalie dans le développement dans certains cas. Les chromosomes de C. elegans, au tout début de la méiose, se condensent et les régions "cis" à la fin de chaque chromosome appelées centres paires recrutent les protéines avec des doigts de zinc qui aident les chromosomes associer avec le pont de protéines sur l'enveloppe nucléaire. Le pont est connecté au réseau cytosquelette. Cette association est importante pour la facilitation du regroupement des chromosomes et la recherche de chromosomes homologues. À la retrouvaille des chromosomes homologues, le processus de division continue jusqu'à ce que quatre cellules haploïdes soient produites. Même si le succès de la coordination de chaque étape de la méiose est critique pour la survie des espèces, certain détails du processus restent inconnus.Durant la prophase I, le mouvement des chromosomes qui résulte dans le propre couplement des chromosomes homologues est contrôlé et régulé d'une manière encore inconnue. L'objectif de mes recherches est donc d'identifier des facteurs associés dans ledit mouvement des chromosomes. Pour accomplir ce but un écran de ARNi avec 482 gènes comme candidates a été mené et 156 gènes ont été positivement identifiés pour une manque de mouvement des chromosomes. Comme tout problème de formation des couples de chromosomes ainsi que dans la stabilisation des chromosomes homologues qui suit peut causer de la non-disjonction et possible mort embryonnaire (emb) suite à la perte d'un autosome ou une haute incidence de males (him) causé par la perte du chromosome X, les candidats out aussi été examinés pour emb et him. Des 156 candidats positifs, 24 ont aussi été positifs pour emb et un candidat a été additionnellement positif pour him. Ces candidats se présentent comme une source de futures recherches de validation ainsi que de caractérisation.
Guichaoua, Marie-Roberte. "L'infertilité masculine d'origine chromosomique : ses mécanismes : apport de l'étude du stade pachytène dans les spermatocytes I en prophase de Méiose." Aix-Marseille 2, 1990. http://www.theses.fr/1990AIX21904.
Full textPyatnitskaya, Alexandra. "Interplay between meiotic crossing-overs and chromosome architecture : role of the meiosis specific complex Zip2-Zip4-Spo16." Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS061.
Full textMeiosis is a highly conserved mechanism among organisms with sexual development. This process consists in producing four haploid gametes from one diploid cell by executing two successive rounds of cell division. During the first meiotic division, reciprocal exchanges of parental DNA strands, also known as crossing-overs (COs), ensure the faithful segregation of homologous chromosomes. COs arise from a specific type of DNA repair, homologous recombination. This pathway is initiated by the simultaneous induction of hundreds of double strand breaks (DSBs) in the genome. In budding yeast, the major CO pathway is promoted by a family of eight conserved proteins, named ZMMs (acronym for Zip1/2/3/4-Msh4/5-Mer3-Spo16), involved in recognizing and stabilizing DNA intermediates formed during homologous recombination. We showed that the Zip4 protein forms a stable tripartite complex with two other ZMM proteins, Zip2 and Spo16. Our data suggests that the Zip2-Zip4-Spo16 (ZZS) complex binds recombination intermediates through its XPF-ERCC1-like domain and drives them towards a CO fate. The homologs of Zip2 and Zip4 in mammals, SHOC1 and TEX11 respectively, have been described, but no Spo16 homolog has been found so far. We could identify the homolog of Spo16 in mammals by an in silico screen, MmSPO16. In addition, I could co-purify MmSPO16 with the XPF domain of SHOC1, thus revealing the potential conservation of the entire ZZS complex in mammals. ZMM-dependent COs are formed within the context of a meiosis-specific structure, named synaptonemal complex (SC). The SC is a proteinaceous structure composed of two axial elements physically maintained together at a precise distance of 100 nm by a central region. The central region encompasses a central element, composed of the two proteins Ecm11 and Gmc2, and the transverse filaments composed of Zip1. The transverse filaments from opposing axial elements overlap and bind head-to-head in the central element. However, despite evidence of a close relationship between SC assembly and CO formation, nothing is known about a direct link that could coordinate these two events spatially and temporally. During my PhD, I found a new interaction between the SC protein Ecm11 and the ZMM protein Zip4. This newly discovered interaction is necessary for Ecm11 association and polymerization on chromosomes, the SC assembly and the homolog disjunction in meiosis I. Our results suggest a direct connection that ensures SC assembly from CO sites through the Zip4-Ecm11 interaction. This way, ensuring SC polymerization from emerging CO sites could be a way of fine-tuning CO distribution, by participating to CO interference and/or by regulating nearby DSB formation. Moreover, I could identify an interaction between the mammalian ortholog of Zip4, TEX11, and one of the five members composing the SC central element, TEX12, raising the possibility that this mechanism synchronizing CO formation and SC polymerization could be conserved
Books on the topic "Prophase I"
Prophesy! London: Triangle, 1998.
Find full textKahlil, Gibran. Le prophète. Paris: Guy Trédaniel, 1999.
Find full textGibran, Kahlil. Le prophète. Boucherville, Québec: Éditions de Mortagne, 1992.
Find full textKahlil, Gibran. Le Prophète. Paris: EJL, 2003.
Find full textKahlil, Gibran. Le Prophète. [Place of publication not identified]: FMA, 1995.
Find full textMarguerite, prophète: Roman. Montréal]: Carte blanche, 2014.
Find full textLe prophète Osée. Lausanne: Georges Bridel, 1985.
Find full textTruth seer prophesy. Milton Keynes: AuthorHouse, 2008.
Find full textSeddik, Youssef. Dits du prophète. [Paris?]: Sindbad, 1997.
Find full textMalenfant, Fernand. Le prophète amoureux. Cap-Saint-Ignace, Québec: La Plume d'oie, 1999.
Find full textBook chapters on the topic "Prophase I"
Bährle-Rapp, Marina. "Prophase." In Springer Lexikon Kosmetik und Körperpflege, 454. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_8528.
Full textMana-Capelli, Sebastian, and Dannel McCollum. "Pre-Prophase Band." In Encyclopedia of Systems Biology, 1736–37. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_782.
Full textScherthan, H. "Chromosome behaviour in earliest meiotic prophase." In Chromosomes Today, 217–48. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1537-4_14.
Full textRoig, Ignasi, and Montserrat Garcia-Caldés. "Cytological Techniques to Study Human Female Meiotic Prophase." In Methods in Molecular Biology, 419–31. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-103-5_24.
Full textRodriguez-Garcia, M. I., J. D. Alché, A. Majewska-Sawka, M. C. Fernandez, and B. Jassem. "Nuclear Compartmentalization in Pollen Mother Cells During Meiotic Prophase." In Nuclear Structure and Function, 493–97. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0667-2_101.
Full textReichman, Rachel, Benjamin Alleva, and Sarit Smolikove. "Prophase I: Preparing Chromosomes for Segregation in the Developing Oocyte." In Results and Problems in Cell Differentiation, 125–73. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44820-6_5.
Full textArur, Swathi. "Signaling-Mediated Regulation of Meiotic Prophase I and Transition During Oogenesis." In Results and Problems in Cell Differentiation, 101–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44820-6_4.
Full textJaffe, Laurinda A., and Rachael P. Norris. "Initiation of the Meiotic Prophase-to-Metaphase Transition in Mammalian Oocytes." In Oogenesis, 179–97. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470687970.ch7.
Full textFu-zhou, Luo, and Wang La-Yin. "Study on Prophase Risk Management in Informatization of Chinese Construction Enterprises." In Computational Risk Management, 81–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15243-6_10.
Full textCau, Julien, Laurine Dal Toe, Akbar Zainu, Frédéric Baudat, and Thomas Robert. "“MeiQuant”: An Integrated Tool for Analyzing Meiotic Prophase I Spread Images." In Methods in Molecular Biology, 263–85. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3698-5_17.
Full textConference papers on the topic "Prophase I"
Zheng, Liu, Sun Shouqian, and Pan Yunhe. "Information framework in product design prophase analysis." In 2006 7th International Conference on Computer-Aided Industrial Design and Conceptual Design. IEEE, 2006. http://dx.doi.org/10.1109/caidcd.2006.329356.
Full textSaravanan, N. P., R. Gokul, B. Akshykumar Bhiva Mote, and K. Hariprakash. "Early Prophase of Alzheimer Disease Using Deep Learning." In 2022 International Conference on Computer Communication and Informatics (ICCCI). IEEE, 2022. http://dx.doi.org/10.1109/iccci54379.2022.9740766.
Full text"3D-microscopy of prophase nucleus in the meiosis I of wheat-rye amphihaploids." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-106.
Full textLei, Yu, Ruyu Zhang, Yan Ding, Jianfeng Lin, Lirong Liu, and Lei Qin. "The Schedule Optimization and Control of Nuclear Power Construction Project Prophase Based on Petri Network." In 2015 6th International Conference on Manufacturing Science and Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmse-15.2015.48.
Full textHong, Ke, Song Zhenhua, and Li Juan. "Research on the Application of the Virtual United Organization in the Prophase of the Construction Project." In 2010 International Conference on E-Business and E-Government (ICEE). IEEE, 2010. http://dx.doi.org/10.1109/icee.2010.701.
Full textQin, Yuan, Xinfeng Zhang, Houcheng Zhang, Wenhao Li, Ye Lin, and Han Yue. "A Prophase Simulation Study of Fuel Cell-Battery Hybrid System for eVTOL Aircraft in Steady-State Operation." In SAE 2023 Intelligent Urban Air Mobility Symposium. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-7092.
Full textMA, JU, and V. V. KHROMYKH. "ANALYSIS OF TEMPORAL AND SPATIAL CHANGE OF LAND USE IN LAOS BASED ON GEOINFORMATION TUPU." In Теоретические и прикладные проблемы ландшафтной географии. VII Мильковские чтения. Voronezh State University, 2023. http://dx.doi.org/10.17308/978-5-9273-3692-0-2023-227-230.
Full text"Order of chromosome arrangement location in late prophase – early prometaphase of mitosis in haploid maize plant obtained with the use of mutation ig." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-219.
Full textWilliams, Kelly. "Precise prophage mapping." In Proposed for presentation at the Viruses of Microbes held July 18-22, 2022 in Guimaraes, Portugal. US DOE, 2022. http://dx.doi.org/10.2172/2003938.
Full textWilliams, Kelly. "Discovery Through Precise Prophage Mapping." In Proposed for presentation at the Phages for Health and Energy held September 23-24, 2021 in Livermore, CA. US DOE, 2021. http://dx.doi.org/10.2172/1889352.
Full text