Journal articles on the topic 'Propene aromatization'

To see the other types of publications on this topic, follow the link: Propene aromatization.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Propene aromatization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Popova, Z., K. Aristirova, and C. Dimitrov. "Aromatization of propene on ZSM-5 zeolites." Reaction Kinetics & Catalysis Letters 41, no. 2 (May 1990): 369–74. http://dx.doi.org/10.1007/bf02097896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, M., and S. Kaliaguine. "Propene aromatization over alkali-exchanged ZSM-5 zeolites." Journal of Molecular Catalysis 81, no. 1 (April 1993): 37–49. http://dx.doi.org/10.1016/0304-5102(93)80021-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Popova, Zdravka, Katia Aristirova, and Christo Dimitrov. "Aromatization of C2-C6 Aliphatic Hydrocarbons on Copper-Containing ZSM-5 Zeolites." Collection of Czechoslovak Chemical Communications 57, no. 12 (1992): 2553–60. http://dx.doi.org/10.1135/cccc19922553.

Full text
Abstract:
The aromatization of a wide range of model aliphatic and cycloaliphatic hydrocarbons (ethene, ethane, propene, n-hexane, 1-hexene, methylcyclopentane, cyclohexane, cyclohexene) on copper-containing NaZSM-5 and HZSM-5 zeolites has been investigated. It was established that the degree of aromatization is related to carbenium ion formation and depends on the acid strength and copper content of zeolite. Experiments with copper-containing samples reduced prior to use indicated the possibility to enhance the selectivity to aromatization. The change of the state of Cu2+ ions during catalytic experiments confirmed the assumption about participation of Cu0 simultaneously with the Bronsted acid centers in the dehydrogenation/hydrogenation steps.
APA, Harvard, Vancouver, ISO, and other styles
4

Seames, Wayne. "The Aromatization of Propene Via Nano-Size HZSM-5." American Journal of Applied Chemistry 6, no. 5 (2018): 175. http://dx.doi.org/10.11648/j.ajac.20180605.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tabor, Edyta, Milan Bernauer, Blanka Wichterlová, and Jiri Dedecek. "Enhancement of propene oligomerization and aromatization by proximate protons in zeolites; FTIR study of the reaction pathway in ZSM-5." Catalysis Science & Technology 9, no. 16 (2019): 4262–75. http://dx.doi.org/10.1039/c9cy00929a.

Full text
Abstract:
The enhanced effect of strongly acidic proximate protons (distance 5.0–5.5 Å) in ZSM-5 was presented on complex propene oligomerization up to the aromatization and development of individual carbenium ion intermediates in the zeolite pores.
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Qiang, Wei Xia, Atsushi Takahashi, and Tadahiro Fujitani. "Mechanistic Difference of Methanol-to-Olefins (MTO) and Ethanol-to-Olefins (ETO) Reactions over H-ZSM-5 Catalysts." Advanced Materials Research 538-541 (June 2012): 2417–20. http://dx.doi.org/10.4028/www.scientific.net/amr.538-541.2417.

Full text
Abstract:
The Methanol to olefins (MTO) and ethanol to olefins (ETO) reactions were compared under the similar operation conditions, and it was proved that both follow the different reaction mechanism over H-ZSM-5 catalysts. In MTO reaction, dimethyl ether (DME) acts as the initial intermediate, which then follows two different reaction pathways depending on the acidity of H-ZSM-5 catalysts, namely, the dehydration of DME into ethene over higher acidity of H-ZSM-5 catalysts and the merization of DME through hydrogen bonds into (DME)n (n = 2-4) complexes over lower acidity of H-ZSM-5 catalysts. Further, over higher acidity of H-ZSM-5 catalysts, ethene converts into propene and butene, and thereafter undergoes the oligomerization-craking-aromatization route to form other olefins, paraffins and aromatics. But over lower acidity of H-ZSM-5 catalysts, (DME)n complexes tend to transform into high even number of olefins that are easily cracked into small olefins. In the case of ETO reaction, ethene acts as the main reaction intermediate, which then transforms into propene and butene, and further proceeds through the oligomerization-craking-aromatization route to form other olefins, paraffins and aromatics products over H-ZSM-5 catalysts.
APA, Harvard, Vancouver, ISO, and other styles
7

Lukyanov, Dmitri B., N. Suor Gnep, and Michel R. Guisnet. "Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5." Industrial & Engineering Chemistry Research 33, no. 2 (February 1994): 223–34. http://dx.doi.org/10.1021/ie00026a008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Choudhary, Vasant R., Devadas Panjala, and Subhabrata Banerjee. "Aromatization of propene and n-butene over H-galloaluminosilicate (ZSM-5 type) zeolite." Applied Catalysis A: General 231, no. 1-2 (May 2002): 243–51. http://dx.doi.org/10.1016/s0926-860x(02)00061-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Jiaxu, Long Lin, Jilei Wang, Wei Zhou, Cuilan Miao, Chunyan Liu, Ning He, Qin Xin, and Hongchen Guo. "Transient Brønsted Acid Sites in Propene Aromatization over Zn-Modified HZSM-5 Detected by Operando Dual-Beam FTIR." Journal of Physical Chemistry C 123, no. 12 (March 5, 2019): 7283–89. http://dx.doi.org/10.1021/acs.jpcc.9b01415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bijani, P. Moghimpour, M. Sohrabi, and S. Sahebdelfar. "Thermodynamic Analysis of Propane Aromatization." Petroleum Science and Technology 32, no. 12 (April 8, 2014): 1480–89. http://dx.doi.org/10.1080/10916466.2012.678539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bayense, C. R., A. J. H. P. van der Pol, and J. H. C. van Hooff. "Aromatization of propane over MFI-gallosilicates." Applied Catalysis 72, no. 1 (May 1991): 81–98. http://dx.doi.org/10.1016/0166-9834(91)85030-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Roshanaei, Abbas, and Mehdi Alavi. "Kinetic study of propane aromatization over Zn/HZSM-5 zeolite under conditions of catalyst deactivation using genetic algorithm." Journal of the Serbian Chemical Society 83, no. 4 (2018): 473–88. http://dx.doi.org/10.2298/jsc170621007r.

Full text
Abstract:
The kinetic studies of propane aromatization reaction over Zn/ /HZSM-5 catalyst at temperature of 500?560?C and space velocity of 500?2500 cm3 gcat -1 h-1, in a plug flow reactor, under catalyst deactivating conditions were performed. A lumped kinetic model consisting of six lumped components and six reaction steps was proposed to describe the aromatization of propane. The kinetic model involves 18 kinetic parameters and one catalyst deactivation constant. The reaction steps orders were obtained by the power law model. Frequency factors and the apparent activation energies of the reaction steps were calculated based on the Arrhenius equation. An exponential function depending on the time-on-stream was applied for the catalyst deactivation model and the kinetic parameters were calculated via a genetic algorithm. The kinetic results indicated that the lumped kinetic model can well estimate the product yields of propane aromatization.
APA, Harvard, Vancouver, ISO, and other styles
13

Scire´, S., R. Maggiore, S. Galvagno, C. Crisafulli, and G. Toscano. "Propane aromatization over Pt-T1/ZSM-5." Applied Catalysis A: General 103, no. 1 (September 1993): 123–34. http://dx.doi.org/10.1016/0926-860x(93)85178-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Niu, Xiaoran, Xiaowa Nie, Chunhui Yang, and Jingguang G. Chen. "CO2-Assisted propane aromatization over phosphorus-modified Ga/ZSM-5 catalysts." Catalysis Science & Technology 10, no. 6 (2020): 1881–88. http://dx.doi.org/10.1039/c9cy02589h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Xiao, He, Junfeng Zhang, Peng Wang, Zhenzhou Zhang, Qingde Zhang, Hongjuan Xie, Guohui Yang, Yizhuo Han, and Yisheng Tan. "Mechanistic insight to acidity effects of Ga/HZSM-5 on its activity for propane aromatization." RSC Advances 5, no. 112 (2015): 92222–33. http://dx.doi.org/10.1039/c5ra15227e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mo-Jie, Cheng, Wang Jiang-Mai, Yang Ya-Shu, and Li Can. "The Study of Propane Aromatization over ZnHZSM-5:Activation of Propane." Acta Physico-Chimica Sinica 11, no. 08 (1995): 724–29. http://dx.doi.org/10.3866/pku.whxb19950811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Xiao, He, Junfeng Zhang, Xiaoxing Wang, Qingde Zhang, Hongjuan Xie, Yizhuo Han, and Yisheng Tan. "A highly efficient Ga/ZSM-5 catalyst prepared by formic acid impregnation and in situ treatment for propane aromatization." Catalysis Science & Technology 5, no. 8 (2015): 4081–90. http://dx.doi.org/10.1039/c5cy00665a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Rong, Cao, Hou Zhen-Shan, Zhao Hong, He Di-Jing, and Chen Wen-Hai. "Propane Aromatization over Pt-Ga/HZSM-5 Catalyst." Acta Physico-Chimica Sinica 12, no. 02 (1996): 114–18. http://dx.doi.org/10.3866/pku.whxb19960205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Choudhary, V. R., and P. Devadas. "Regenerability of coked H-GaMFI propane aromatization catalyst:." Applied Catalysis A: General 168, no. 1 (March 1998): 187–200. http://dx.doi.org/10.1016/s0926-860x(97)00355-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bragin, O. V., T. V. Vasina, S. A. Isaev, G. A. Kudryavtseva, V. P. Sitnik, and A. V. Preobrazhenskii. "Aromatization of ethane and propane on modified pentasils." Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 37, no. 1 (January 1988): 24–27. http://dx.doi.org/10.1007/bf00962650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

BHAN, A., S. HSU, G. BLAU, J. CARUTHERS, V. VENKATASUBRAMANIAN, and W. DELGASS. "Microkinetic modeling of propane aromatization over HZSM-5." Journal of Catalysis 235, no. 1 (October 1, 2005): 35–51. http://dx.doi.org/10.1016/j.jcat.2005.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Uemiya, Shigeyuki, Takeshi Matsuda, and Eiichi Kikuchi. "Aromatization of Propane Assisted by Palladium Membrane Reactor." Chemistry Letters 19, no. 8 (August 1990): 1335–38. http://dx.doi.org/10.1246/cl.1990.1335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Raad, M., S. Hamieh, J. Toufaily, T. Hamieh, and L. Pinard. "Propane aromatization on hierarchical Ga/HZSM-5 catalysts." Journal of Catalysis 366 (October 2018): 223–36. http://dx.doi.org/10.1016/j.jcat.2018.07.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

M�riaudeau, P., G. Sapaly, G. Wicker, and C. Naccache. "Revisiting Ga2O3/H-ZSM-5 propane aromatization catalysts." Catalysis Letters 27, no. 1-2 (1994): 143–48. http://dx.doi.org/10.1007/bf00806987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Scire, S., R. Maggiore, S. Galvagno, C. Crisafulli, and L. Solarino. "Propane aromatization over Pt−Sn/ZSM-5 catalysts." Reaction Kinetics and Catalysis Letters 40, no. 2 (September 1989): 349–56. http://dx.doi.org/10.1007/bf02073816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Leol’ko, A. S., A. E. Maksimov, E. L. Krasnykh, and S. V. Levanova. "Oxidative aromatization of propane, butane, and butane-butylene fraction." Petroleum Chemistry 47, no. 5 (September 2007): 337–39. http://dx.doi.org/10.1134/s0965544107050040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

LIU, Ru-ling, Hua-qing ZHU, Zhi-wei WU, Zhang-feng QIN, Wei-bin Fan, and Jian-guo WANG. "Aromatization of propane over Ga-modified ZSM-5 catalysts." Journal of Fuel Chemistry and Technology 43, no. 8 (August 2015): 961–69. http://dx.doi.org/10.1016/s1872-5813(15)30027-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Mériaudeau, P., and C. Naccache. "Gallium based MFI zeolites for the aromatization of propane." Catalysis Today 31, no. 3-4 (December 1996): 265–73. http://dx.doi.org/10.1016/s0920-5861(96)00017-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Karatun, O. N., and A. Z. Dorogochinskii. "Oligomerization and aromatization of propane—Propylene catalytic cracking cuts." Chemistry and Technology of Fuels and Oils 35, no. 6 (November 1999): 382–85. http://dx.doi.org/10.1007/bf02694103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Maggiore, R., S. Sciré, S. Galvagno, C. Crisafulli, and G. Toscano. "Hydrogenolysis reactions during propane aromatization over Pt/ZSM-5." Reaction Kinetics & Catalysis Letters 46, no. 2 (March 1992): 255–61. http://dx.doi.org/10.1007/bf02070943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kanazirev, Vladislav, Geoffrey L. Price, and Kerry M. Dooley. "Enhancement in propane aromatization with Ga2O3/HZSM-5 catalysts." Journal of the Chemical Society, Chemical Communications, no. 9 (1990): 712. http://dx.doi.org/10.1039/c39900000712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Aloise, Alfredo, Enrico Catizzone, Massimo Migliori, Jànos B.Nagy, and Girolamo Giordano. "Catalytic behavior in propane aromatization using GA-MFI catalyst." Chinese Journal of Chemical Engineering 25, no. 12 (December 2017): 1863–70. http://dx.doi.org/10.1016/j.cjche.2017.04.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

SCIRE, S., R. MAGGIORE, S. GALVAGNO, C. CRISAFULLI, and G. TOSCANO. "ChemInform Abstract: Propane Aromatization Over Pt-Tl/ZSM-5." ChemInform 24, no. 50 (August 20, 2010): no. http://dx.doi.org/10.1002/chin.199350153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bhan, Aditya, and W. Nicholas Delgass. "Propane Aromatization over HZSM‐5 and Ga/HZSM‐5 Catalysts." Catalysis Reviews 50, no. 1 (February 2008): 19–151. http://dx.doi.org/10.1080/01614940701804745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Choudhary, V. R., C. Sivadinarayana, P. Devadas, S. D. Sansare, P. Magnoux, and M. Guisnet. "Characterization of coke on H-gallosilicate (MFI) propane aromatization catalyst." Microporous and Mesoporous Materials 21, no. 1-3 (April 1998): 91–101. http://dx.doi.org/10.1016/s1387-1811(97)00054-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Nishi, Koji, Shin-ichi Komai, Kazumi Inagaki, Atsushi Satsuma, and Tadashi Hattori. "Structure and catalytic properties of Ga-MFI in propane aromatization." Applied Catalysis A: General 223, no. 1-2 (January 10, 2002): 187–93. http://dx.doi.org/10.1016/s0926-860x(01)00759-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Dauda, Ibrahim B., Mustapha Yusuf, Sharafadeen Gbadamasi, Mukhtar Bello, Abdulazeez Y. Atta, Benjamin O. Aderemi, and Baba Y. Jibril. "Highly Selective Hierarchical ZnO/ZSM-5 Catalysts for Propane Aromatization." ACS Omega 5, no. 6 (February 10, 2020): 2725–33. http://dx.doi.org/10.1021/acsomega.9b03343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bayense, C. R., and J. H. C. van Hooff. "Aromatization of propane over gallium-containing H-ZSM-5 zeolites." Applied Catalysis A: General 79, no. 1 (November 1991): 127–40. http://dx.doi.org/10.1016/0926-860x(91)85011-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Anunziata, Oscar A., Liliana B. Pierella, and Oscar A. Orio. "Aromatization of natural propane using modified molecular-shape selective zeolites." Reaction Kinetics & Catalysis Letters 43, no. 1 (February 1991): 67–73. http://dx.doi.org/10.1007/bf02075414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Maggiore, R., S. Scire, C. Crisafulli, G. Toscano, and S. Galvagno. "Influence of lead on propane aromatization over Pt/ZSM5 catalysts." Reaction Kinetics & Catalysis Letters 41, no. 1 (March 1990): 153–59. http://dx.doi.org/10.1007/bf02075497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

UEMIYA, S., T. MATSUDA, and E. KIKUCHI. "ChemInform Abstract: Aromatization of Propane Assisted by Palladium Membrane Reactor." ChemInform 22, no. 35 (August 22, 2010): no. http://dx.doi.org/10.1002/chin.199135119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Xu, Bing, Minghui Tan, Xuemei Wu, Hailun Geng, Shengying Zhao, Jie Yao, Qingxiang Ma, Guohui Yang, Noritatsu Tsubaki, and Yisheng Tan. "Propane Aromatization Tuned by Tailoring Cr Modified Ga/ZSM‐5 Catalysts." ChemCatChem 13, no. 16 (June 7, 2021): 3601–10. http://dx.doi.org/10.1002/cctc.202100491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Vosmerikova, L. N., A. N. Volynkina, and A. V. Vosmerikov. "Aromatization of Propane over Element-Alumosilicate Catalysts with ZSM-5 Structure." IOP Conference Series: Earth and Environmental Science 21 (August 28, 2014): 012032. http://dx.doi.org/10.1088/1755-1315/21/1/012032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Vosmerikova, L. N., V. I. Zaikovskii, A. N. Volynkina, and A. V. Vosmerikov. "Deactivation features of gallium-containing zeolites in the propane aromatization process." Petroleum Chemistry 57, no. 1 (January 2017): 85–92. http://dx.doi.org/10.1134/s0965544116090231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Guo, Jianjun, Hui Lou, Hong Zhao, Lihe Zheng, and Xiaoming Zheng. "Dehydrogenation and aromatization of propane over rhenium-modified HZSM-5 catalyst." Journal of Molecular Catalysis A: Chemical 239, no. 1-2 (September 2005): 222–27. http://dx.doi.org/10.1016/j.molcata.2005.06.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Dmitriev, R. V., O. V. Bragin, T. V. Vasina, A. A. Klyuchanskii, R. I. Sokolova, I. G. Rassamakhina, and Kh M. Minachev. "Effect of hydrogen on the aromatization of propane on H-pentasil." Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 39, no. 8 (August 1990): 1757–58. http://dx.doi.org/10.1007/bf00961524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chetina, O. V., T. V. Vasina, and V. V. Lunin. "The effect of intermetallic hydrogen acceptor on catalytic aromatization of propane." Catalysis Letters 14, no. 1 (1992): 101–6. http://dx.doi.org/10.1007/bf00764223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Vosmerikova, Ludmila N., Aleksandra N. Volynkina, Vladimir I. Zaikovskii, and Aleksandr V. Vosmerikov. "The Effect of the Method of Gallium Introduction into a Zeolite on its Physico-Chemical Properties and Reactivity in the Course of Propane Aromatization." Key Engineering Materials 670 (October 2015): 15–20. http://dx.doi.org/10.4028/www.scientific.net/kem.670.15.

Full text
Abstract:
Different methods are used to prepare gallium-containing zeolites of a ZSM-5 structure. Their acidic and structural characteristics are investigated and the effect of the method of gallium introduction into a zeolite on distribution and ratio of acid sites of different strengths, as well as on pore volume and diameter is determined. The relationship between the localization of gallium introduced into a zeolite by different methods and its electronic state and the catalytic activity and selectivity of the resulting contacts in the course of propane aromatization is established. The Ga-containing zeolite prepared by impregnation is found to be the most efficient catalyst for conversion of propane into aromatic hydrocarbons.
APA, Harvard, Vancouver, ISO, and other styles
49

Vosmerikov, A. A., L. N. Vosmerikova, Ya E. Barbashin, and A. V. Vosmerikov. "Aromatization of Propane over Zn-Containing Zeolites with a Micro-Mesoporous Structure." Kinetics and Catalysis 63, no. 4 (August 2022): 422–30. http://dx.doi.org/10.1134/s0023158422040127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Asachenko, E. V., O. V. Rodina, V. V. Ordomskii, Yu V. Gur’ev, and I. I. Ivanova. "Specifics of the deactivation of acid and zinc-containing propane aromatization catalysts." Petroleum Chemistry 48, no. 2 (March 2008): 100–104. http://dx.doi.org/10.1134/s0965544108020047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography