Academic literature on the topic 'Propene aromatization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Propene aromatization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Propene aromatization"

1

Popova, Z., K. Aristirova, and C. Dimitrov. "Aromatization of propene on ZSM-5 zeolites." Reaction Kinetics & Catalysis Letters 41, no. 2 (May 1990): 369–74. http://dx.doi.org/10.1007/bf02097896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, M., and S. Kaliaguine. "Propene aromatization over alkali-exchanged ZSM-5 zeolites." Journal of Molecular Catalysis 81, no. 1 (April 1993): 37–49. http://dx.doi.org/10.1016/0304-5102(93)80021-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Popova, Zdravka, Katia Aristirova, and Christo Dimitrov. "Aromatization of C2-C6 Aliphatic Hydrocarbons on Copper-Containing ZSM-5 Zeolites." Collection of Czechoslovak Chemical Communications 57, no. 12 (1992): 2553–60. http://dx.doi.org/10.1135/cccc19922553.

Full text
Abstract:
The aromatization of a wide range of model aliphatic and cycloaliphatic hydrocarbons (ethene, ethane, propene, n-hexane, 1-hexene, methylcyclopentane, cyclohexane, cyclohexene) on copper-containing NaZSM-5 and HZSM-5 zeolites has been investigated. It was established that the degree of aromatization is related to carbenium ion formation and depends on the acid strength and copper content of zeolite. Experiments with copper-containing samples reduced prior to use indicated the possibility to enhance the selectivity to aromatization. The change of the state of Cu2+ ions during catalytic experiments confirmed the assumption about participation of Cu0 simultaneously with the Bronsted acid centers in the dehydrogenation/hydrogenation steps.
APA, Harvard, Vancouver, ISO, and other styles
4

Seames, Wayne. "The Aromatization of Propene Via Nano-Size HZSM-5." American Journal of Applied Chemistry 6, no. 5 (2018): 175. http://dx.doi.org/10.11648/j.ajac.20180605.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tabor, Edyta, Milan Bernauer, Blanka Wichterlová, and Jiri Dedecek. "Enhancement of propene oligomerization and aromatization by proximate protons in zeolites; FTIR study of the reaction pathway in ZSM-5." Catalysis Science & Technology 9, no. 16 (2019): 4262–75. http://dx.doi.org/10.1039/c9cy00929a.

Full text
Abstract:
The enhanced effect of strongly acidic proximate protons (distance 5.0–5.5 Å) in ZSM-5 was presented on complex propene oligomerization up to the aromatization and development of individual carbenium ion intermediates in the zeolite pores.
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Qiang, Wei Xia, Atsushi Takahashi, and Tadahiro Fujitani. "Mechanistic Difference of Methanol-to-Olefins (MTO) and Ethanol-to-Olefins (ETO) Reactions over H-ZSM-5 Catalysts." Advanced Materials Research 538-541 (June 2012): 2417–20. http://dx.doi.org/10.4028/www.scientific.net/amr.538-541.2417.

Full text
Abstract:
The Methanol to olefins (MTO) and ethanol to olefins (ETO) reactions were compared under the similar operation conditions, and it was proved that both follow the different reaction mechanism over H-ZSM-5 catalysts. In MTO reaction, dimethyl ether (DME) acts as the initial intermediate, which then follows two different reaction pathways depending on the acidity of H-ZSM-5 catalysts, namely, the dehydration of DME into ethene over higher acidity of H-ZSM-5 catalysts and the merization of DME through hydrogen bonds into (DME)n (n = 2-4) complexes over lower acidity of H-ZSM-5 catalysts. Further, over higher acidity of H-ZSM-5 catalysts, ethene converts into propene and butene, and thereafter undergoes the oligomerization-craking-aromatization route to form other olefins, paraffins and aromatics. But over lower acidity of H-ZSM-5 catalysts, (DME)n complexes tend to transform into high even number of olefins that are easily cracked into small olefins. In the case of ETO reaction, ethene acts as the main reaction intermediate, which then transforms into propene and butene, and further proceeds through the oligomerization-craking-aromatization route to form other olefins, paraffins and aromatics products over H-ZSM-5 catalysts.
APA, Harvard, Vancouver, ISO, and other styles
7

Lukyanov, Dmitri B., N. Suor Gnep, and Michel R. Guisnet. "Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5." Industrial & Engineering Chemistry Research 33, no. 2 (February 1994): 223–34. http://dx.doi.org/10.1021/ie00026a008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Choudhary, Vasant R., Devadas Panjala, and Subhabrata Banerjee. "Aromatization of propene and n-butene over H-galloaluminosilicate (ZSM-5 type) zeolite." Applied Catalysis A: General 231, no. 1-2 (May 2002): 243–51. http://dx.doi.org/10.1016/s0926-860x(02)00061-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Jiaxu, Long Lin, Jilei Wang, Wei Zhou, Cuilan Miao, Chunyan Liu, Ning He, Qin Xin, and Hongchen Guo. "Transient Brønsted Acid Sites in Propene Aromatization over Zn-Modified HZSM-5 Detected by Operando Dual-Beam FTIR." Journal of Physical Chemistry C 123, no. 12 (March 5, 2019): 7283–89. http://dx.doi.org/10.1021/acs.jpcc.9b01415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bijani, P. Moghimpour, M. Sohrabi, and S. Sahebdelfar. "Thermodynamic Analysis of Propane Aromatization." Petroleum Science and Technology 32, no. 12 (April 8, 2014): 1480–89. http://dx.doi.org/10.1080/10916466.2012.678539.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Propene aromatization"

1

Raad, Mira. "Aromatisation du propane sur des catalyseurs bifonctionnels de type Ga-MFI : impact de la hiérarchisation de la zéolithe ZSM-5." Thesis, Poitiers, 2017. http://www.theses.fr/2017POIT2298/document.

Full text
Abstract:
Mélanger un oxyde de gallium avec une zéolithe H-ZSM-5 donne les mêmes résultats catalytiques en craquage du n-hexane, déshydrogénation du cyclohexane et en aromatisation du propane qu'un catalyseur préparer par échange cationique avec un sel de gallium. En fait, le véritable catalyseur est synthétisé lors du prétraitement sous hydrogène pendant lequel le suboxyde de gallium (Ga2O) issu de la réduction de Ga2O3 réagit avec les sites de Brønsted de la zéolithe pour donner des hydrures de gallium. La réaction de déshydrogénation des alcanes fait intervenir un site catalytique bifonctionnel composé d'un site de Lewis du Ga et d'un site basique généré par l'oxygène de la charpente zéolithique. L'activation du propane se produit sur un hydrure de gallium via un mécanisme de type alkyle. Les aluminosilicates dopés avec Ga sont plus performants que les gallosilicates, ce qui signifie que les espèces de gallium sont plus actives en extra-réseau que dans le réseau de la zéolithe.Le coke généré lors de l'aromatisation du propane est très polyaromatique avec plus de quinze noyaux benzéniques, localisé dans les micropores il s'avère très toxique. La création de mésopores intracristallins sans modifier les propriétés acides de la zéolithe (nombre et force des sites acides) est possible par un traitement alcalin. Leur présence permet de limiter les réactions de transfert d'hydrogène mais est peu efficace pour contrôler la croissance du coke, les mésopores sont mêmes négatifs pour la réaction de déshydrogénation rendant les catalyseurs bifonctionnels hiérarchisés inefficaces en aromatisation du propane ; l'étape cinétiquement limitante pour cette réaction étant la déshydrogénation
The mixing Ga2O3 with the H-ZSM-5 zeolite yields to the same catalytic performance in n-hexane cracking, cyclohexane dehydrogenation and propane aromatization than a bifunctional catalyst prepared by cationic exchange. The real catalyst appears upon hydrogen pretreatment in which gallium (Ga2O) suboxide that results from Ga2O3 reduction, reacts with the zeolite Brønsted sites to yield to gallium hydrides.The dehydrogenation reaction of alkanes involves a bifunctional catalytic site constituted of a Lewis site (Ga species) and basic site (an oxygen of the zeolite framework). The aluminosilicate catalysts loaded with Ga are more efficient than the gallosilicate catalysts, therefore extraframework gallium species is more active than the framework gallium species.The coke formed during the propane aromatization is very polyaromatic with more than fifteen benzenic rings, is very toxic. The creation of intracrystalline mesopores by alkaline treatment.preserves the acidic properties of the zeolite (number and strength of acidic sites). The mesopores allow limiting the hydrogen transfer reactions but is not very effective for impeding the growth of the coke, the presence of mesopores are even negative for the dehydrogenation reaction making inefficient the hierarchical bifunctional catalysts in propane aromatization; the kinetically limiting step for this reaction being dehydrogenation
APA, Harvard, Vancouver, ISO, and other styles
2

林建作. "The study of propane aromatization over GaZSM-5f." Thesis, 1992. http://ndltd.ncl.edu.tw/handle/01853592061713852316.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Propene aromatization"

1

Gnep, N. S., J. Y. Doyemet, and M. Guisnet. "Conversion of Light Alkanes Into Aromatic Hydrocarbons. 3. Aromatization of Propane and Propene on Mixtures of HZSM5 and of Ga2O3." In Zeolites as Catalysts, Sorbents and Detergent Builders - Applications and Innovations, Proceedings of an International Symposium, 153–62. Elsevier, 1989. http://dx.doi.org/10.1016/s0167-2991(08)60975-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guisnet, M., N. S. Gnep, H. Vasques, and F. R. Ribeiro. "Zn-Doped Hzsm5 Catalysts for Propane Aromatization." In Studies in Surface Science and Catalysis, 321–29. Elsevier, 1991. http://dx.doi.org/10.1016/s0167-2991(08)61584-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Weishen, Ping Yang, Xiaocun Xu, and Liwu Lin. "Propane aromatization in a silicalite-1 membrane reactor." In Studies in Surface Science and Catalysis, 2699–704. Elsevier, 2000. http://dx.doi.org/10.1016/s0167-2991(00)80878-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Petit, L., J. P. Bournonville, and F. Raatz. "Stability of GaMFI Catalysts in the Aromatization of Propane." In Studies in Surface Science and Catalysis, 1163–71. Elsevier, 1989. http://dx.doi.org/10.1016/s0167-2991(08)62002-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Meriaudeau, P., and C. Naccache. "Activation and Deactivation of Ga/Hzsm-5 Catalysts in Propane Aromatization at 773 K." In Studies in Surface Science and Catalysis, 767–72. Elsevier, 1991. http://dx.doi.org/10.1016/s0167-2991(08)62711-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Satsuma, A., A. Gon-no, K. Nishi, S. Komai, and T. Hattor. "Contributions of three types of Ga sites in propane aromatization over Ga203/Ga-M0R catalysts." In New Developments and Application in Chemical Reaction Engineering, 257–60. Elsevier, 2006. http://dx.doi.org/10.1016/s0167-2991(06)81582-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yashu, Yang, Guo Xiexian, Deng Maicun, Wang Limin, and Fu Zaihui. "The Characterization of Modified ZSM-5 Catalysts Prepared Via a Solid State Reaction for Propane Aromatization." In Zeolites as Catalysts, Sorbents and Detergent Builders - Applications and Innovations, Proceedings of an International Symposium, 849–58. Elsevier, 1989. http://dx.doi.org/10.1016/s0167-2991(08)61037-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fejes, P., J. Halász, I. Kiricsi, Z. Kele, Gy Tasi, I. Hannus, C. Fernandez, J. B. Nagy, A. Rockenbauer, and Gy Schöbel. "Catalytic Activity of Modified ZSM-5 Zeolites in the Dehydrogenation and Aromatization Reactions of Propane and n-Butane." In Studies in Surface Science and Catalysis, 421–33. Elsevier, 1993. http://dx.doi.org/10.1016/s0167-2991(08)64028-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Devadas, P., A. K. Kinage, and V. R. Choudhary. "Effect of silica binder on acidity, catalytic activity and deactivation due to coking in propane aromatization over H-gallosilicate (MFI)." In Recent Advances In Basic and Applied Aspects of Industrial Catalysis, Proceedings of 13th National Symposium and Silver Jubilee Symposium of Catalysis of India, 425–32. Elsevier, 1998. http://dx.doi.org/10.1016/s0167-2991(98)80316-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Montes, A., and G. Giannetto. "Considerations about the bifunctionality and the gallium species role in the propane aromatization reaction over [Ga]- and [Ga,Al]-ZSM-5 catalysts." In Studies in Surface Science and Catalysis, 3017–22. Elsevier, 2000. http://dx.doi.org/10.1016/s0167-2991(00)80931-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Propene aromatization"

1

Vosmerikova, L. N., A. A. Vosmerikov, V. I. Zaikovskii, and A. V. Vosmerikov. "Aromatization of propane and butane over galloaluminosilicate catalyst modified by platinum." In PROCEEDINGS OF THE ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. Author(s), 2018. http://dx.doi.org/10.1063/1.5083569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kholliev, Sh Kh, G. L. Pulatova, and Sh Rakhmatov. "Approval of chromatographic analysis of propane-butane fraction catalytic aromatization reaction products." In 2021 ASIA-PACIFIC CONFERENCE ON APPLIED MATHEMATICS AND STATISTICS. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0090922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holliev, Sh, and А. Buronov. "THE CHARACTERISTICS OF CATALYSTS IN THE CATALYTIC AROMATIZATION REACTION OF PROPANE- BUTANE FRACTIONS." In KORSZERŰ MŰSZEREK ÉS ALGORITMUSA TAPASZTALATI ÉS ELMÉLETI TUDOMÁNYOS KUTATÁSI. European Scientific Platform, 2020. http://dx.doi.org/10.36074/18.09.2020.v2.04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bobomurodova, Sanobar. "PHYSICOCHEMICAL, TEXTURAL CHARACTERISTICS PREPARED FOR CATALYTIC AROMATIZATION OF PROPANE-BUTANE FRACTION (MoO3)x∙(ZnO)y∙(ZrO2)z/ HSZ CATALYST CONTENTS." In KORSZERŰ MŰSZEREK ÉS ALGORITMUSA TAPASZTALATI ÉS ELMÉLETI TUDOMÁNYOS KUTATÁSI. European Scientific Platform, 2020. http://dx.doi.org/10.36074/18.09.2020.v2.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography