Academic literature on the topic 'PROPELLER SHAFTS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'PROPELLER SHAFTS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "PROPELLER SHAFTS"
Matveev, Victor Ivanovich, Aleksandr Anatolievich Khlybov, and Vladimir Vasilievich Glebov. "Studuing and developing methods of propeller shaft technical diagnostics." Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies 2021, no. 4 (November 30, 2021): 52–61. http://dx.doi.org/10.24143/2073-1574-2021-4-52-61.
Full textXiong, Ling, Peng Shang, and You Lin Xu. "Exact Solution of Stress and Radial Displacement of Elastic Tapered Interference Fit." Applied Mechanics and Materials 423-426 (September 2013): 1438–43. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.1438.
Full textKashinath H. Munde, Et al. "“Fatigue Analysis Of Epoxy Composite Material Reinforcement On Propeller Shaft”." Mathematical Statistician and Engineering Applications 71, no. 1 (January 1, 2022): 617–34. http://dx.doi.org/10.17762/msea.v71i1.2703.
Full textNyongesa, Antony John, Van Chien Pham, Sung Hwan Yoon, Woo-Seok Kwon, Jun-Soo Kim, Duy Nam Ngo, Jae-Hyuk Choi, Young-Yun Sul, and Won-Ju Lee. "Investigation of the Effect of Rope Cutter on Water Flow behind Ship Propellers Based on CFD Analysis." Machines 10, no. 5 (April 23, 2022): 300. http://dx.doi.org/10.3390/machines10050300.
Full textТарасенко, Андрей Александрович, and Александр Иванович Тарасенко. "НЕСТАЦИОНАРНЫЕ КРУТИЛЬНЫЕ КОЛЕБАНИЯ ПРОПУЛЬСИВНОГО КОМПЛЕКСА С УЧЕТОМ ВОЛНОВЫХ ЯВЛЕНИЙ В ВАЛОПРОВОДЕ И РАБОТЫ РЕГУЛЯТОРА СКОРОСТИ ДИЗЕЛЯ." Aerospace technic and technology, no. 8 (August 31, 2019): 73–77. http://dx.doi.org/10.32620/aktt.2019.8.11.
Full textSitthipong, Siva, Prawit Towatana, Amnuay Sitticharoenchai, and Chaiyoot Meengam. "Life Extension of Propeller Shafts by Hardfacing Welding." Materials Science Forum 872 (September 2016): 62–66. http://dx.doi.org/10.4028/www.scientific.net/msf.872.62.
Full textSitthipong, Siva, Prawit Towatana, Amnuay Sitticharoenchai, and Chaiyoot Meengam. "Fatigue Life Evaluation of Weld Surfacing LB 52 Grade." Key Engineering Materials 744 (July 2017): 259–63. http://dx.doi.org/10.4028/www.scientific.net/kem.744.259.
Full textStan, Liviu-Constantin, and Daniela-Elena Juganaru. "COMPARATIVE STUDY ON THE DISPLACEMENTS, EQUIVALENT ELASTIC STRAIN AND EQUIVALENT STRESS OF THE PROPELLER SHAFT AT DIFFERENT OPERATING MODES." International Journal of Modern Manufacturing Technologies 14, no. 2 (December 20, 2022): 234–39. http://dx.doi.org/10.54684/ijmmt.2022.14.2.234.
Full textZhao, Xiao Qing, and Peng Shang. "Exact Solution of Stresses of Tapered Interference Fit." Applied Mechanics and Materials 556-562 (May 2014): 4284–87. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.4284.
Full textBrunelli, P. E. "THE CRITICAL SPEED OF PROPELLER SHAFTS." Journal of the American Society for Naval Engineers 33, no. 4 (March 18, 2009): 711–19. http://dx.doi.org/10.1111/j.1559-3584.1921.tb04935.x.
Full textDissertations / Theses on the topic "PROPELLER SHAFTS"
Durfy, Jennifer L. "Investigation of damping treatments for propeller shaft vibration." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0029/MQ65288.pdf.
Full textSuonperä, Nadja, and Annika Henrich. "Analysis of the propeller shaft program at Volvo Construction Equipment." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-14786.
Full textMoores, Corwyn E. W. "Shaft and blade load measurements on a highly skewed propeller model in ice." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ62405.pdf.
Full textФедосенко, М. М. "Технологічне підготовлення заготівельного виробництва вилок карданних валів." Thesis, Чернігів, 2021. http://ir.stu.cn.ua/123456789/25308.
Full textУ кваліфікаційній роботі магістра на основі сформульованих завдань здійснено технологічне підготовлення заготівельного виробництва вилок ковзання карданних валів. В конструкторському розділі запропоновано удосконалення конструкції попереднього штампа для створення сприятливих умов формування кованки. Запропоновано модернізацію ковочного пакету, що полягає в розміщенні поряд з ковочними штампами обрізного блоку. В технологічному розділі розроблено технологічний процес виготовлення нижньої вставки попереднього рівчака та технологічний процес виготовлення кованки вилки ковзання. В організаційному розділі проаналізовані організаційні аспекти технологічного підготовлення виробництва, здійснено організаційне проектування робочого місця коваля-штампувальника. В заключних розділах роботи наведено розрахунки техніко-економічної ефективності проектних розробок. Запропоновані інженерні рішення з питань охорони праці.
In the master's qualification work, on the basis of the formulated tasks, the technological preparation of procurement production of sliding forks of cardan shafts was carried out. In the design section, it is proposed to improve the design of the previous stamp to create favorable conditions for the formation of the forge. The modernization of the forging package is proposed, which consists in placing an edging block next to the forging stamps. In the technological section the technological process of manufacturing the lower insert of the previous stream and the technological process of manufacturing the fork of the sliding fork were developed. In the organizational section the organizational aspects of technological preparation of production are analyzed, the organizational design of the workplace of the blacksmith- puncher is carried out. The final sections of the work provide calculations of technical and economic efficiency of project development. Engineering solutions on safety were proposed.
Fredriksson, Robert, and Milovan Trkulja. "Fuel Efficiency in AWD-system." Thesis, Jönköping University, JTH, Mechanical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-1589.
Full textThis degree project has been made in cooperation with engineers working for GM Engineering/Saab Automobile AB in Trollhättan. The given name by Saab for the project is “Fuel efficiency improvements in All Wheel Drive(AWD)-system”. The main tasks of this thesis work were to investigate the size of the power losses in different parts on the propeller shaft, to design a computer program that calculates
coordinates and angles on a propeller shaft and to investigate the possibilities to put together a simplified formula that calculates the natural frequencies on a propeller shaft.
The main parts of this report are a compilation of the theory about AWD and mostly about the parts on the propeller shaft, and also a description of the developed computer program called Propeller Shaft Calculator. This report doesn’t concern power losses in the different joints because there were no such general equations to be found. The most common way to calculate the power losses inside a joint is to do tests were the power loss is measured at different angles, torque and speed and then use that data to put together an approximated equation.
Most of the work on this project has been on theory studies and on programming. The main result of the project is the program Propeller Shaft Calculator.
Propeller Shaft Calculator is a program that is designed in Microsoft Excel. All the menus are programmed in the visual basic editor in Excel. The program is supposed to be used as a help while designing new propeller shafts.
Propeller Shaft Calculator can calculate all the coordinates, lengths, angles and directions on a propeller shaft. It also calculates natural frequencies, plunge, estimated power loss on the second shaft and angles in the joints. In the program you can choose to do calculations on four different configurations of propeller shafts but can quite
easy upgrade the program with more choices.
Basically the program works like this:
First you choose the right propeller shaft in the main menu. Then you fill out the indata sheet with coordinates, lengths, material data and so on. As you type in the input data the output data will appear in the out-data sheet next to the in-data. Every propeller shaft has also a calculations sheet were more detailed calculations can be
found.
The program also has a built in help function and a warning function that lights a warning sign next to the values if they are outside the limits.
Natter, Bernard. "Etude de l'usure et de l'ecaillage de pieces d'un reacteur d'avion par la technique d'activation en couches superficielles." Université Louis Pasteur (Strasbourg) (1971-2008), 1987. http://www.theses.fr/1987STR13223.
Full textGUPTA, ABHIRAJ KUMAR. "OPTIMIZATION OF ROBO-MIG WELDING PARAMETERS FOR WELDING OF PROPELLER SHAFTS USING TAGUCHI DOE AND ANOVA." Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/20017.
Full textMeng-Che, Wu, and 吳孟哲. "The Dynamic Simulation and Analysis of the Propeller Shaft." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/15973965068195175986.
Full text華梵大學
機電工程研究所
96
This essay is talking about the effects of each component exercising while simulating the equal speed of Rezppa Type universal joint used on the propeller shaft. The simulating method is to tear apart of the equal speed of Rezppa Type propeller shaft and use the Solid Words 3D drawing software to build the appearance. Then use CAE analysis software ADAMS to set up the parameter of each component and condition while exercising. Set up three different speed *1000rpm*, *2000rpm*, *3000rpm* to run the simulating with actual practicing.Through the simulation, we can understand the effects between Rezppa Type propeller shaft and steel ball while exercising.We can realize better the character of propeller shaft after the ADAMS simulation.
Liu, Chang, and 劉潛. "The Performance of The High-Speed Propeller at Inclined Shaft Condition." Thesis, 1997. http://ndltd.ncl.edu.tw/handle/09817788887147949133.
Full text國立海洋大學
造船工程學系
85
This paper is aimed to study the performance of the propeller under different cavitation numbers at inclined shaft condition, and to compare the performance between the New-Section propeller and the Newton-Rader propeller. In order to calculate the effective thrust and the real efficiency for the craft, the horizontal and vertical forces which are both created by the propeller at inclined shaft are measured. When the inclined shaft angle is 8 degrees and the advance coefficient is near the propeller design point, the measrued vertical force is about 40% ~ 50% of the shaft thrust. And, the efficiency of the propeller at 8-degree shaft inclination is significantly less than that of the propeller with horizontal shaft. The experiment also shows that the efficiency of the New-Section propeller is greater than that of the Newton-Rader propeller at inclined shaft condition regardless cavitation numbers. In addition, the "Unsteady Propeller Lifting-Surface Theory" is applied to calculate the vertical force produced by the propeller at inclined shaft condition. Due to the simple mathmatical model about wake in propeller theory, the computational results are much lower than the measured values.
Wu, Jung-Fu, and 吳榮福. "Torsional-and-lateral-coupled vibration analysis of a shaft carrying an eccentric propeller." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/59467433705040127728.
Full text國立高雄海洋科技大學
輪機工程研究所
94
The object of this thesis is to study the vibration behaviour of the propulsive shafting system induced by a rotating marine propeller carrying single or multiple eccentric concentrated masses. To this end, the entire propulsive shafting system is firstly represented as a three-degree-of-freedom torsional-and-lateral-coupled vibration system. Then, the expressions for total kinetic energy and total potential energy of the entire propulsive shafting system are derived. Next, based on the theory of Lagrange’s equations, the equations of motion of the entire propulsive shafting system are derived and the mass matrix, damping matrix, stiffness matrix and external force vector of the entire vibrating system are determined. Finally, the forced vibration responses of the propulsion shafting system are obtained by solving the last equations of motion with Newmark direct integration method. Some factors closely relating to the current research topic, such as mass, total number and distribution of eccentric concentrated mass, etc, are investigated. From the numerical results, it is found that the influence of eccentric mass(es) of the propeller on the vibration characteristics of the propulsive shafting system is significant.
Books on the topic "PROPELLER SHAFTS"
Design and Analysis of Propeller Shaft by using Finite Element Analysis Method. Tiruchengode, India: ASDF International, 2017.
Find full textJohansen, Bruce, and Adebowale Akande, eds. Nationalism: Past as Prologue. Nova Science Publishers, Inc., 2021. http://dx.doi.org/10.52305/aief3847.
Full textBook chapters on the topic "PROPELLER SHAFTS"
Hilgers, Michael. "Propeller Shaft(s)." In Transmissions and Drivetrain Design, 43–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-65860-4_4.
Full textHilgers, Michael, and Wilfried Achenbach. "Propeller shaft(s)." In Transmissions and Drivetrain Design, 39–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-60850-0_4.
Full textAwari, G. K., V. S. Kumbhar, and R. B. Tirpude. "Propeller Shaft, Differential and Rear Axles." In Automotive Systems, 125–38. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003047636-7.
Full textTan, Quan, Congbiao Sui, Yu Ding, Hang Liu, and Chaonan Gao. "Effect of Shaft System Arrangements on Ship-Engine-Propeller Matching." In Lecture Notes in Civil Engineering, 668–87. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4291-6_47.
Full textSingh, Devendra, and J. Srinivas. "Dynamic Modeling and Analysis of Propeller Shaft Supported on Rolling Element Bearings." In Lecture Notes in Mechanical Engineering, 117–27. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5701-9_10.
Full textLiu, Yongjun, Chaonan Xu, Weilong Niu, Xiuming Zhang, and Jun Wei. "Prediction and Study on the Influence of Propeller Shaft to Vehicle Noise Based on BP Neural Network." In Lecture Notes in Electrical Engineering, 357–64. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3527-2_31.
Full textSully, F. K. "Universal joints: propeller and drive shafts." In Motor Vehicle Mechanic's Textbook, 241–46. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-434-91884-3.50022-6.
Full textPigazzini, Riccardo, Fabio De Luca, Flavio Balsamo, and Amedeo Migali. "Full-Scale Propulsion Measurements on a Planing Pleasure Yacht in Head Sea." In Progress in Marine Science and Technology. IOS Press, 2020. http://dx.doi.org/10.3233/pmst200025.
Full textGeethapriyan T. "Effect of Tool Electrodes on Electrochemical Micromachining Processes." In Advanced Manufacturing Techniques for Engineering and Engineered Materials, 103–12. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9574-9.ch006.
Full textGiallanza, Antonio, Ferdinando Morace, and Giuseppe Marannano. "Design of a Close Power Loop Test Bench for Contra-Rotating Propellers." In Progress in Marine Science and Technology. IOS Press, 2020. http://dx.doi.org/10.3233/pmst200042.
Full textConference papers on the topic "PROPELLER SHAFTS"
Greig, N. Andrew. "Of Smut, Magic Backing Bars, and Hybridization: Lessons Learned in Government- Industry Cooperation to Develop kel-Aluminum Bronze (NAB) Main Propulsion Shaft Repair Procedures." In SNAME 14th Propeller and Shafting Symposium. SNAME, 2015. http://dx.doi.org/10.5957/pss-2015-007.
Full textVicencio, Mario. "Proposed Concept of Service Life Extension of Marine Propulsion Shafts." In SNAME 9th Propeller and Shafting Symposium. SNAME, 2000. http://dx.doi.org/10.5957/pss-2000-10.
Full textHackel, Lloyd A., and Jon E. Rankin. "Lifetime Enhancement of Propulsion Shafts Against Corrosion-Fatigue by Laser Peening." In SNAME 15th Propeller and Shafting Symposium. SNAME, 2018. http://dx.doi.org/10.5957/pss-2018-01.
Full textSada, Hiroyuki, Tomohiro Tanaka, Fumitaka Kikkawa, Yoshimasa Kachu, and David W. Hawkins. "PTFE Partial Arc Bearing for Large Water-lubricated Tail-shafts." In SNAME 13th Propeller and Shafting Symposium. SNAME, 2012. http://dx.doi.org/10.5957/pss-2012-003.
Full textDahler, Geir, Jonny Roaldsoy, and Erik Sandberg. "Det Norske Vertias' Methodology for Propulsion Shaft Design - A cost-saving and reliable supplement to the ICAS simplified code." In SNAME 11th Propeller and Shafting Symposium. SNAME, 2006. http://dx.doi.org/10.5957/pss-2006-12.
Full textCarter, Craig D., and Ken Ogle. "Developments in Seawater Lubricated Propeller Shaft Bearings for Commercial Ships." In SNAME 14th Propeller and Shafting Symposium. SNAME, 2015. http://dx.doi.org/10.5957/pss-2015-003.
Full textCowper, Bruce, Alex Kolomojcev, K. S. Ng, and Greg Stewart. "Propulsion Shaftline Bearing and Gear Teeth Failure Investigation on the "C" Class British Columbia Ferries." In SNAME 10th Propeller and Shafting Symposium. SNAME, 2003. http://dx.doi.org/10.5957/pss-2003-16.
Full textBergande, Jochen. "Alignment of Direct-Coupled Large 2-Stroke Marine Propulsion Engines." In SNAME 11th Propeller and Shafting Symposium. SNAME, 2006. http://dx.doi.org/10.5957/pss-2006-13.
Full textLeeuwenburg, Arie D., and B. Hooghart. "Full Scale Dynamic Propulsion Shaft Alignment Investigation." In SNAME 13th Propeller and Shafting Symposium. SNAME, 2012. http://dx.doi.org/10.5957/pss-2012-001.
Full textKirschey, Gerhard. "Experience with carbon fiber tubes in ship propulsion." In SNAME 12th Propeller and Shafting Symposium. SNAME, 2009. http://dx.doi.org/10.5957/pss-2009-10.
Full textReports on the topic "PROPELLER SHAFTS"
Schroeder, Seth, and Charles Dai. Numerical Simulation of Propeller Performance with an Inclined Shaft Arrangement. Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada534653.
Full textGeisbert, Jessica J., and Seth D. Schroeder. A Stock Propeller Design for the High Speed Sealift Hybrid Contra-Rotating Shaft-Pod, Model 5653-3A. Fort Belvoir, VA: Defense Technical Information Center, March 2008. http://dx.doi.org/10.21236/ada482219.
Full text