Dissertations / Theses on the topic 'Propagative waves'

To see the other types of publications on this topic, follow the link: Propagative waves.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Propagative waves.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Lalloz, Samy. "De la diffusion à la propagation d'ondes en magnétohydrodynamique bas-Rm : études théorique et expérimentale." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALI020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L'objectif de cette thèse est de clarifier les conditions d'émergence en métaux liquides des ondes d'Alfvén dans un domaine géométriquement contraint. La première partie de ce travail de recherche est consacrée à une étude linéaire des ondes d'Alfvén dans l'approximation bas-Rm et en régime non inertiel. La seconde partie porte sur l'étude expérimentale d'un écoulement oscillant forcé électriquement, soumis à un champ magnétique axial, statique et uniforme, et confiné entre deux parois horizontales rigides, sans glissement et électriquement isolantes.Dans l'étude théorique menée, une première partie vise à discuter la relation de dispersion pour la dynamique des ondes d'Alfvén. Elle présente les conséquences liées à des gradients (mécaniques et magnétiques) perpendiculaires au champ magnétique imposé, plus particulièrement la manière dont la propagation de l'onde est ainsi modifiée. Dans la deuxième partie, un vortex axisymétrique confiné entre deux parois horizontales isolées électriquement et sans glissement est magnétiquement forcé à une fréquence donnée. Ce forçage prend en compte le rayon du vortex afin d'étudier l'impact des gradients transversaux sur la dynamique de l'écoulement. Une étude semi-analytique de la dynamique de l'écoulement est à nouveau réalisée dans un cadre bas-Rm et non inertiel. Cette étude, réalisée en faisant varier la fréquence de forçage et l'intensité du champ magnétique, met en évidence deux régimes très distincts, à savoir un premier régime oscillant-diffusif, régi par la compétition entre l'effet pseudo-diffusif de la force de Lorentz et le terme instationnaire de la quantité de mouvement, et un second régime, propagatif, régi par les ondes d'Alfvén et obtenu pour des fréquences de forçage plus élevées. L'étude met également en évidence l'impact des gradients transversaux sur ce régime propagatif. En plus de sur-amortir les ondes, les gradients transversaux modifient les fréquences naturelles des pics de résonance d'ondes, lesquels résultent de la superposition d'ondes incidentes et réfléchies entre les parois du domaine d'étude.Parallèlement à ce travail théorique, un dispositif a été conçu afin d'étudier expérimentalement la dynamique d'écoulements oscillants sous un champ magnétique (jusqu'à 10T). Un écoulement est forcé dans un récipient cubique de 15 cm x 15 cm x 10 cm au moyen d'un courant alternatif injecté à l'aide de quatre électrodes situées sur la plaque inférieure. En utilisant une instrumentation basée sur les différences locales de potentiel électrique aux niveau des plaques (d'Hartmann) supérieure et inférieure, nous validons les prédictions du modèle. Plus précisément, nous retrouvons un régime propagative modifié par les gradients transversaux ainsi que le régime oscillant-diffusif, obtenu pour des fréquences de forçage plus faibles.En plus des résultats obtenus à la fréquence de forçage, un premier aperçu des signaux obtenus à d'autres fréquences est présenté. Certains des pics de fréquence obtenus ne pouvant pas être expliqués par une approche linéaire, nous suggérons qu'ils sont générés par des interactions non linéaires d'ondes d'Alfvén. En outre, une étude préliminaire sur le pic à la première harmonique de la fréquence de forçage montre qu'il est très probablement associé à des ondes d'Alfvén
The thesis aims to clarify the conditions for Alfvén waves to propagate in a closed liquid metal domain. A first part of the research work presented is dedicated to a linear study of Alfvén waves in the low-Rm approximation and under the inertia-less limit. The second part is the experimental investigation of an electrically-induced oscillating flow subjected to an axial, static and uniform magnetic field and confined between two electrically insulating and no-slip horizontal walls.The theoretical study is itself split into two sub-parts. The first one aims to discuss the dispersion relation which contains the Alfvén wave dynamics. It presents the consequences of (mechanical and magnetic) gradients perpendicular to the imposed magnetic field. As such transverse gradients tend to impede the wave propagation. In the second sub-part an axisymmetric vortex confined between to electrically insulated and no-slip horizontal walls is magnetically forced at a given frequency. This forcing is radially dependent so as to study the impact of transverse gradients on the flow dynamics. A semi-analytical investigation of the flow dynamics is again carried out in the low-Rm approximation and under the inertia-less limit. This investigation is performed by varying the forcing frequency and the magnetic field intensity. This brings to emphasize two very distinct regimes for the oscillating vortex:- an oscillating-diffusive regime governed by the competition between pseudo-diffusive effects of the Lorentz force and the unsteady term of the momentum- a truly propagative regime, obtained for higher forcing frequencies, found definitelygoverned by Alfvén waves.The study also highlights how the propagative regime can be affected by transverse gradients. In addition to over-damping the waves, transverse gradients are found to modify the natural frequencies for which wave resonance peaks result from the superimposition of incident and reflected waves in the container.Beside this theoretical work, a setup has been designed in order to experimentally investigate the dynamics of oscillating flows under a strong magnetic field (up to 10T). A flow was forced in a cuboid vessel 15 cm x 15 cm x 10 cm by means of AC currents injected through a cartesian grid of four electrodes located at the bottom plate. Using instrumentation based on the measurement of local electric potential differences at the top and bottom horizontal (Hartmann) plates, we validate model's prediction. More precisely, a propagative dynamics in the presence of transverse gradients is recovered. The oscillating-diffusive regime is also recovered from experiments performed at small enough forcing frequency.In addition to results obtained at the forcing frequency, a first insight of signals obtained at other frequencies is shown. Frequency peaks obtained, eg the harmonics of the forcing frequency, are demonstrated not to be explained by a linear approach. We suggest that Alfvén wave non-linear interactions are a good candidate to explain these peaks. A preliminary study further shows that peaks at the first harmonic are likely to be Alfvén waves
2

Schlottmann, Robert Brian. "A path integral formulation of elastic wave propagation /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kil, Hyun-Gwon. "Propagation of elastic waves on thin-walled circular cylinders." Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/15967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fu, Y. "Propagation of weak shock waves in nonlinear solids." Thesis, University of East Anglia, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gandhi, Navneet. "Determination of dispersion curves for acoustoelastic lamb wave propagation." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The effect of stress on Lamb wave propagation is relevant to both nondestructive evaluation and structural health monitoring because of changes in received signals due to both the associated strain and the acoustoelastic effect. A homogeneous plate that is initially isotropic becomes anisotropic under biaxial stress, and dispersion of propagating waves becomes directionally dependent. The problem is similar to Lamb wave propagation in an anisotropic plate, except the fourth order tensor in the resulting wave equation does not have the same symmetry as that for the unstressed anisotropic plate, and the constitutive equation relating incremental stress to incremental strain is more complicated. Here we review the theory of acoustoelastic and develop theory for acoustoelastic Lamb wave propagation and show how dispersion curves shift anisotropically for an aluminum plate under biaxial tension. We also develop an approximate method using the effective elastic constants (EECs) and show that existing commercial tools to generate dispersion curves can be used under restricted conditions to describe wave propagation in biaxially stressed plates. Predictions of changes in phase velocity as a function of propagation direction using theory and the EEC method are compared to experimental results for a single wave mode.
6

Pack, Jeong-Ki. "A wave-kinetic numerical method for the propagation of optical waves." Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/104527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zandi, Bahram. "Propagation of optical waves in tapered fibers and metallic wave guides." PDXScholar, 1986. https://pdxscholar.library.pdx.edu/open_access_etds/2693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The equations tor the propagation of Electromagnetic and Optical waves in tapered fibers and metallic waveguides are derived. Solutions are derived for the displacement of the beam from the waveguide axis as a function of distance along the axis, and also tor the beam width as a function of distance. These equations are solved numerically for a variety of tapered guides. Experiments are conducted which verify the theoretical results.
8

Reese, Owein. "Homogenization of acoustic wave propagation in a magnetorheological fluid." Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0430104-101629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lane, Ryan Jeffrey. "Study of Wave Propagation in Damaged Composite Material Laminates." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/86366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The characteristics of carbon fiber composites have enabled these materials to be accepted as replacements for metal parts in industry. However, due to their unsymmetrical material properties, carbon fiber composites are susceptible to damage, such as a delamination, which can cause premature failure in the structure. This has resulted in the need for nondestructive testing methods that can provide quick, reliable results so that these parts can be tested while in service. In this study, an approach was examined that involved a pencil lead break to excite multiple wave modes in a composite plate in an effort to identify key characteristics based on the wavespeed and frequency. These characteristics were then compared to models based on boundary conditions to generate dispersion curves using the transfer matrix method for whole composite plates that were either undamaged or damaged. To first test this approach, experiments were performed on multilayer isotropic plates and then on a composite plate. The results for all cases showed that modes could be excited by the pencil lead break in the undamaged region of the plates that were not theoretical possible in a delaminated region. Also modes that were specific to the delaminated region were excited and this allowed for a clear comparison between the two regions. This approach could be placed into practice to provide routine testing to detect delamination for in-service, carbon fiber composite parts.
Master of Science
The physical properties of high strength and low weight and the economic benefits of carbon fiber composites has resulted in these materials replacing metals in several industries. It is important, however, to be aware that the change in materials used impacts the different types of damage composites experience compared to conventional metals. One type of damage that could cause a composite part to fail is a delamination or a separation of layers. In order to identify if this damage has occurred, it is beneficial to have an inspection technique that will not damage the part. In this study, a technique was tested that involved breaking a piece of pencil lead on a plate in order to generate multiple wave modes that would propagate in the plate. Based on boundary conditions caused by the damage in the plate, the speed of the wave and frequency content could be compared to an undamaged plate to identify a delamination. A model was created to compare experimental results and demonstrated that using wavespeed and frequency could identify a delamination. The experimental results compared well with the model dispersion curves for a plate with and without a delamination suggesting this approach could be placed into practice to provide routine testing to detect delamination for in-service, carbon fiber composite parts.
10

Iskandarani, Saad S. "Electromagnetic wave propagation in anisotropic uniaxial slab waveguide." Ohio : Ohio University, 1989. http://www.ohiolink.edu/etd/view.cgi?ohiou1182437230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Podo, Smardie D. "Comparison of layering effects in the propagation of transient planar stress waves." Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/18378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Servin, Martin. "Nonlinear interaction and propagation of gravitational and electromagnetic waves in plasmas." Doctoral thesis, Umeå University, Physics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:

Gravitational waves and electromagnetic waves are important as carriers of energy and information. This thesis is devoted to the study of the propagation and interaction of these waves in plasmas, with emphasis on nonlinear effects and applications within astrophysics.

The physical systems are described by the Einstein-Maxwell-fluid equations or Einstein-Maxwell-Vlasov equations, when a kinetic treatment is required. The small amplitude and high-frequency approximation is employed for the gravitational waves, such that perturbative techniques can be applied and space-time can be considered locally flat, with a gravitational radiation field superimposed on it. The gravitational waves give rise to coupling terms that have the structure of effective currents in the Maxwell equations and an effective gravitational force in the equation of motion for the plasma. The Einstein field equations describe the evolution of the gravitational waves, with the perturbed energy-momentum density of the plasma and the electromagnetic field as a source.

The processes that are investigated are gravitational waves exciting electromagnetic waves in plasmas, altering the optical properties of plasmas and accelerating charged particles. The thesis also deals with the propagation propertities of gravitational and electromagnetic waves, e.g. effects due to resonant wave-particle interactions, plasma inhomogeneties and nonlinear self-interactions. It is also shown that plasmas that are not in thermodynamical equilibrium may release their free energy by emitting gravitational waves.

13

Razo, López Luis Alberto. "Localisation des ondes électromagnétiques au-delà d'Anderson : rôle des corrélations, des symétries et de la topologie." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Au sens large, le terme de localisation ondulatoire fait référence à un phénomène où les ondes sont spatialement confinées dans de petites régions de l'espace sans la contrainte de barrières matérielles. Dans cette thèse, nous étudions (analytiquement, numériquement et expérimentalement) différents mécanismes physiques collectifs pour localiser spatialement, et donc pour contrôler les ondes électromagnétiques. En particulier, nous nous concentrons sur le rôle des potentiels non corrélés et corrélés, ainsi que sur des effets topologiques pour réaliser le confinement des ondes. Les études analytiques et numériques sont réalisées dans le cadre d'une approche récente de la modélisation de la localisation d'Anderson appelée théorie du paysage de localisation. D'autre part, des expériences sont réalisées à l'aide d'une plate-forme micro-ondes composée de petits cylindres diélectriques placés à l'intérieur d'une cavité constituée de deux plaques métalliques. La cavité met en œuvre un système d'ondes propagatives, où nous pouvons contrôler efficacement la permittivité locale au moyen des cylindres agissant comme des diffuseurs, ou comme un système de de liaison forte analogique, où, dans ce cas, les cylindres diélectriques jouent le rôle de résonateurs. Dans un premier temps, nous étendons le champ d'application de l'approche du paysage de localisation à une large classe de systèmes de liaison forte unidimensionnels et bidimensionnels en présence d'un désordre non corrélé, où des fonctions propres localisées apparaissent en bord de bande. Nous démontrons comment la théorie du paysage de localisation est capable de prédire avec précision non seulement les emplacements, mais aussi les énergies des fonctions propres localisées dans les régimes de basse et de haute énergie. Ensuite, en utilisant notre cavité expérimentale comme système de propagation, nous réalisons des expériences de transport de micro-ondes dans des réseaux planaires bidimensionnels. Les expériences sont réalisées sur un réseau désordonné et sur une spirale de Vogel apériodique à partir de laquelle nous caractérisons les structures modales électromagnétiques dans l'espace réel. Nos résultats révèlent que les systèmes apériodiques possèdent une grande variété de modes à longue durée de vie - avec des décroissances spatiales gaussiennes, exponentielles et en loi de puissance - qui sont capables de survivre même dans un environnement tridimensionnel. Ceci est confirmé par différentes quantités de transport telles que la densité d'états, le temps de décroissance caractéristique et la conductance de Thouless qui sont également accessibles expérimentalement. À l'inverse, nous montrons que les états propres dans les milieux désordonnés traditionnels sont toujours limités à des décroissances radiales exponentielles avec d'importantes fuites dès que les systèmes ne sont plus bidimensionnels. Enfin, nous utilisons la configuration expérimentale de liaison forte pour étudier la propagation des états hélicoïdaux topologiques. En particulier, nous analysons expérimentalement un ensemble de structures en nid d'abeille construites à l'aide d'un réseau triangulaire avec une cellule unitaire hexagonale, qui sont caractérisées par l'invariant topologique Z_2. En accédant à la structure modale dans l'espace réel et à la densité d'états, nos résultats révèlent la possibilité d'ouvrir une bande interdite topologique, peuplée d'états de bord localisés en bordure de la structure. Nous démontrons la nature unidirectionelle de la propagation de ces états de bord hélicoïdaux contre-propagatifs. Dans l'ensemble, nos résultats démontrent qu'il est possible de modéliser, de contrôler et de localiser les ondes électromagnétiques non seulement du point de vue d'Anderson, mais aussi au-delà. Grâce aux différents jalons que nous avons posés, nous ouvrons une voie vers l'hypothétique localisation d'Anderson des ondes électromagnétiques tridimensionnelles
In a broad sense, the term wave localization refers to a phenomenon where waves are spatially confined in small regions of the space without any bounding material barriers.In this Thesis, we investigate (analytically, numerically and experimentally) different physical collective mechanisms to spatially localize, and therefore, to control electromagnetic waves. Specifically, we focus on the role of uncorrelated and correlated potentials, as well as of topological effects to achieve wave confinement. Analytical and numerical studies are accomplished in the framework of a recent approach in the modeling of Anderson localization called localization landscape theory. On the other hand, experiments are performed using a microwave platform composed by small dielectric cylinders placed inside a cavity made of two metallic plates. The cavity implements a propagative wave system, where we can efficiently control the local permittivity by means of the cylinders acting as scatterers, or as an analogic tight-binding system, where, in this case, the dielectric cylinders play the role of resonators.First, we extend the scope of the localization landscape approach to a wide class of one and two dimensional tight-binding systems in the presence of uncorrelated disorder, where localized eigenfunctions appear in both band-edges. We demonstrate how the landscape theory is able to predict accurately not only the locations, but also the energies of localized eigenfunctions in the low- and high-energy regimes. Later, by using our experimental cavity as a propagative system, we perform microwave transport experiments in two dimensional planar arrays. Experiments are carried out on a disordered lattice and on an aperiodic Vogel spiral from where we characterize the electromagnetic modal structures in real space. Our results reveals that aperiodic systems can carry a rich variety of long-lived modes—with Gaussian, exponential, and power law spatial decays—which are able to survive even in a three-dimensional environment. This is supported by different transport quantities such as the density of states, the characteristic decay time, and the Thouless conductance that are also experimentally accessible. On the contrary, we show that the eigenstates in traditional disordered media are always limited to exponential radial decays with leaking features beyond two-dimensions.Finally, we use the experimental tight-binding configuration to investigate the propagation of topological helical states. Particularly, we experimentally analyze a set of honeycomb-like structures built using a triangular lattice with an hexagonal unit cell, which are characterized by the Z_2 topological invariant. By recovering the modal structure in real space and the density of states, our results reveal the possibility to open a topological gap, dwelt by edge states that lives in the border of the structure.We demonstrate the unidirectional counterpropagative features of such helical edge states.Taken together, our results demonstrate that it is possible to model, control and localize electromagnetic waves not only within, but beyond Anderson's conception. Thanks to the crossroads we have taken, we have mapped out an itinerary that brings us closer to the main avenue leading perhaps to Anderson localization of three dimensional electromagnetic waves
14

Wang, Bingnan. "Wave propagation in photonic crystals and metamaterials surface waves, nonlinearity and chirality /." [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3389159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Taouk, Habib. "Wave propagation in general anisotropic media." Ohio : Ohio University, 1986. http://www.ohiolink.edu/etd/view.cgi?ohiou1183380228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Casadei, Filippo. "Multiscale analysis of wave propagation in heterogeneous structures." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The analysis of wave propagation in solids with complex microstructures, and local heterogeneities finds extensive applications in areas such as material characterization, structural health monitoring (SHM), and metamaterial design. Within continuum mechanics, sources of heterogeneities are typically associated to localized defects in structural components, or to periodic microstructures in phononic crystals and acoustic metamaterials. Numerical analysis often requires computational meshes which are refined enough to resolve the wavelengths of deformation and to properly capture the fine geometrical features of the heterogeneities. It is common for the size of the microstructure to be small compared to the dimensions of the structural component under investigation, which suggests multiscale analysis as an effective approach to minimize computational costs while retaining predictive accuracy. This research proposes a multiscale framework for the efficient analysis of the dynamic behavior of heterogeneous solids. The developed methodology, called Geometric Multiscale Finite Element Method (GMsFEM), is based on the formulation of multi-node elements with numerically computed shape functions. Such shape functions are capable to explicitly model the geometry of heterogeneities at sub-elemental length scales, and are computed to automatically satisfy compatibility of the solution across the boundaries of adjacent elements. Numerical examples illustrate the approach and validate it through comparison with available analytical and numerical solutions. The developed methodology is then applied to the analysis of periodic media, structural lattices, and phononic crystal structures. Finally, GMsFEM is exploited to study the interaction of guided elastic waves and defects in plate structures.
17

Xie, Zhongqiang. "Fourth-order finite difference methods for the time-domain Maxwell equations with applications to scattering by rough surfaces and interfaces." Thesis, Coventry University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Clavica, Francesco. "Computational and experimental time domain, one dimensional models of air wave propagation in human airways." Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/9622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The scientific literature on airflow in the respiratory system is usually associated with rigid ducts. Many studies have been conducted in the frequency domain to assess respiratory system mechanics. Time-domain analyses appear more independent from the hypotheses of periodicity, required by frequency analysis, providing data that are simpler to interpret since features can be easily associated to time. However, the complexity of the bronchial tree makes 3-D simulations too expensive computationally, limiting the analysis to few generations. 1-D modelling in space-time variables has been extensively applied to simulate blood pressure and flow waveforms in arteries, providing a good compromise between accuracy and computational cost. This work represents the first attempt to apply this formulation to study pulse waveforms in the human bronchial tree. Experiments have been carried out, in this work, to validate the model capabilities in modelling pressure and velocity waveforms when air pulses propagate in flexible tubes with different mechanical and geometrical properties. The experiments have shown that the arrival of reflected air waves occurs in correspondence of the theoretical timing once the wave speed is known. Reflected backward compression waves have generated an increase of pressure (P) and decrease of velocity (U) while expansion backward waves have produced a decrease of P and increase of U according to the linear analysis of wave reflections. The experiments have demonstrated also the capabilities of Wave intensity analysis (WIA), an analytical technique used to study wave propagation in cardiovascular system, in separating forward and backward components of pressure and velocity also for the air case. After validating the 1-D modelling in space and time variables, several models for human airways have been considered starting from simplified versions (bifurcation trachea- main bronchi, series of tubes) to more complex systems up to seven generations of bifurcations according to both symmetrical and asymmetrical models. Calculated pressures waveforms in trachea are shown to change accordingly to both peripheral resistance and compliance variations, suggesting a possible non-invasive assessment of peripheral conditions. A favourable comparison with typical pressure and flow waveforms from impulse oscillometry system, which has recently been introduced as a clinical diagnostic technique, is also shown. The results suggested that a deeper investigation of the mechanisms underlying air wave propagation in lungs could be a useful tool to better understand the differences between normal and pathologic conditions and how pathologies may affect the pattern of pressure and velocity waveforms.
19

Guddati, Murthy Narasimha. "Efficient methods for modeling transient wave propagation in unbounded domains /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Drazin, William. "Blast propagation and damage in urban topographies." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
For many years, terrorism has threatened life, property and business. Targets are largely in urban areas where there is a greater density of life and economic value. Governments, insurers and engineers have sought to mitigate these threats through understanding the effects of urban bombings, increasing the resilience of buildings and improving estimates of financial loss for insurance purposes. This has led to a desire for an improved approach to the prediction of blast propagation in urban cityscapes. Urban geometry has a significant impact on blast wave propagation. Presently, only computational fluid dynamics (CFD) methods adequately simulate these effects. However, for large-scale urban domains, these methods are both challenging to use and are computationally expensive. Adaptive mesh refinement (AMR) methods alleviate the problem, but are difficult to use for the non-expert and require significant tuning. We aim to make CFD urban blast simulation a primary choice for governments, insurers and engineers through improvements to AMR and by studying the performance of CFD in relation to other methods used by the industry. We present a new AMR flagging approach based on a second derivative error norm for compressive shocks (ENCS). This is compared with existing methods and is shown to lead to a reduction in overall refinement without affecting solution quality. Significant improvements to feature tracking over long distances are demonstrated, making the method easier to tune and less obtuse to non-experts. In the chapter that follows, we consider blast damage in urban areas. We begin with a validation and a numerical study, investigating the effects of simple street geometry on blast resultants. We then investigate the sensitivity of their distribution to the location of the charge. We find that moving the charge by a small distance can lead to a significant change in peak overpressures and creates a highly localised damage field due to interactions between the blast wave and the geometry. We then extend the investigation to the prediction of insured losses following a large-scale bombing in London. A CFD loss model is presented and compared with simpler approaches that do not account for urban geometry. We find that the simpler models lead to significant over-predictions of loss, equivalent to several hundred million pounds for the scenario considered. We use these findings to argue for increased uptake of CFD methods by the insurance industry. In the final chapter, we investigate the influence of urban geometry on the propagation of blast waves. An earlier study on the confinement effects of narrow streets is repeated at a converged resolution and we corroborate the findings. We repeat the study, this time introducing a variable porosity into the building facade. We observe that the effect of this porosity is as significant as the confinement effect, and we recommend to engineers that they consider porosity effects in certain cases. We conclude the study by investigating how alterations to building window layout can improve the protective effects of a facade. Maintaining the window surface area constant, we consider a range of layouts and observe how some result in significant reductions to blast strength inside the building.
21

Hurlebaus, Stefan. "Laser generation and detection techniques for developing transfer functions to characterize the effect of geometry on elastic wave propagation." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/20742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Geldenhuis, Andre. "The Atmospheric Gravity Wave Transfer Function above Scott Base." Thesis, University of Canterbury. Physics and Astronomy, 2008. http://hdl.handle.net/10092/3698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Gravity waves have a significant dynamic effect in the mesosphere. In particular, they drive the mesospheric circulation and are the reason that the summer polar mesosphere is cooler than the winter polar mesosphere. This thesis examines whether the effects of gravity waves are largely determined by filtering effects which allow only gravity waves with certain properties to propagate into the atmosphere. The filtering of gravity waves above Scott Base, Antarctica is examined using a radiosonde derived gravity wave source function, an MF-radar derived mesospheric gravity wave climatology, and a model derived filtering function. Least squares fitting of the source function and filtering function to the observed mesospheric gravity wave climatology allows us to determine which gravity wave phase velocities and propagation direction are likely to be present in the mesosphere and the relative importance of filtering and sources in this region. It is concluded the blocking of eastward gravity waves is important in winter and westward waves in summer.
23

Srikasem, Suthum. "Wave reflection in uniaxially anisotropic media." Ohio : Ohio University, 1987. http://www.ohiolink.edu/etd/view.cgi?ohiou1183062033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Orszaghova, Jana. "Solitary waves and wave groups at the shore." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:5b168bdc-4956-4152-a303-b23a6067bf42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A significant proportion of the world's population and physical assets are located in low lying coastal zones. Accurate prediction of wave induced run-up and overtopping of sea defences are important in defining the extent and severity of wave action, and in assessing risk to people and property from severe storms and tsunamis. This thesis describes a one-dimensional numerical model based on the Boussinesq equations of Madsen and Sorensen (1992) and the non-linear shallow water equations. The model is suitable for simulating propagation of weakly non-linear and weakly dispersive waves from intermediate to zero depth, such that any inundation and/or overtopping caused by the incoming waves is also calculated as part of the simulation. Wave breaking is approximated by locally switching to the non-linear shallow water equations, which can model broken waves as bores. A piston paddle wavemaker is incorporated into the model for complete reproduction of laboratory experiments. A domain mapping technique is used in the vicinity of the paddle to transform a time-varying domain into a fixed domain, so that the governing equations can be more readily solved. First, various aspects of the numerical model are verified against known analytical and newly derived semi-analytical solutions. The complete model is then validated with laboratory measurements of run-up and overtopping involving solitary waves. NewWave focused wave groups, which give the expected shape of extreme wave events in a linear random sea, are used for further validation. Simulations of experiments of wave group run-up on a plane beach yield very good agreement with the measured run-up distances and free surface time series. Wave-by-wave overtopping induced by focused wave groups is also successfully simulated with the model, with satisfactory agreement between the experimental and the predicted overtopping volumes. Repeated simulations, now driven by second order paddle displacement signals, give insight into second order error waves spuriously generated by using paddle signals derived from linear theory. Separation of harmonics reveals that the long error wave is significantly affecting the wave group shape and leading to enhanced runu-up distances and overtopping volumes. An extensive parameter study is carried out using the numerical model investigating the influence on wave group run-up of linear wave amplitude at focus, linear focus location, and wave group phase at focus. For a given amplitude, both the phase and the focus location significantly affect the wave group run-up. It is also found that the peak optimised run-up increases with the wave amplitude, but wave breaking becomes an inhibiting factor for larger waves. This methodology is proposed for extreme storm wave induced run-up analysis.
25

Ayers, James Thomas. "Structural damage diagnostics via wave propagation-based filtering techniques." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Structural health monitoring (SHM) of aerospace components is a rapidly emerging field due in part to commercial and military transport vehicles remaining in operation beyond their designed life cycles. Damage detection strategies are sought that provide real-time information of the structure's integrity. One approach that has shown promise to accurately identify and quantify structural defects is based on guided ultrasonic wave (GUW) inspections, where low amplitude attenuation properties allow for long range and large specimen evaluation. One drawback to GUWs is that they exhibit a complex multi-modal response, such that each frequency corresponds to at least two excited modes, and thus intelligent signal processing is required for even the simplest of structures. In addition, GUWs are dispersive, whereby the wave velocity is a function of frequency, and the shape of the wave packet changes over the spatial domain, requiring sophisticated detection algorithms. Moreover, existing damage quantification measures are typically formulated as a comparison of the damaged to undamaged response, which has proven to be highly sensitive to changes in environment, and therefore often unreliable. As a response to these challenges inherent to GUW inspections, this research develops techniques to locate and estimate the severity of the damage. Specifically, a phase gradient based localization algorithm is introduced to identify the defect position independent of excitation frequency and damage size. Mode separation through the filtering technique is central in isolating and extracting single mode components, such as reflected, converted, and transmitted modes that may arise from the incident wave impacting a damage. Spatially-integrated single and multiple component mode coefficients are also formulated with the intent to better characterize wave reflections and conversions and to increase the signal to noise ratios. The techniques are applied to damaged isotropic finite element plate models and experimental data obtained from Scanning Laser Doppler Vibrometry tests. Numerical and experimental parametric studies are conducted, and the current strengths and weaknesses of the proposed approaches are discussed. In particular, limitations to the damage profiling characterization are shown for low ultrasonic frequency regimes, whereas the multiple component mode conversion coefficients provide excellent noise mitigation. Multiple component estimation relies on an experimental technique developed for the estimation of Lamb wave polarization using a 1D Laser Vibrometer. Lastly, suggestions are made to apply the techniques to more structurally complex geometries.
26

Kreuzinger, Tobias. "Digital Signal Processing Methods for Source Function Extraction of Piezoelectric Elements." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Guided wave techniques have great potential for the structural health monitoring of plate-like components. Previous research has demonstrated the effectiveness of combining laser-ultrasonic techniques with time-frequency representations to experimentally develop the dispersion relationship of a plate; the high fidelity, broad bandwidth and point-like nature of laser ultrasonics are critical for the success of these results. Unfortunately, laser ultrasonic techniques are time and cost intensive, and are impractical for many in-service applications. Therefore this research develops a complementary digital signal processing methodology that uses mounted piezoelectric elements instead of optical devices. This study first characterizes the spatial and temporal effects of oil coupled and glued piezoelectric sources, and then develops a procedure to interpret and model the distortion caused by their limited bandwidth and finite size. Furthermore, it outlines any inherent difficulties for time and frequency domain considerations. The deconvolution theory for source function extraction in the time - and frequency domain under the presence of noise is provided and applied to measured data. These considerations give the background for further studies to develop a dispersion relationship of a plate with the fidelity and bandwidth similar to results possible with laser ultrasonics, but made using mounted piezoelectric sources.
27

LOPES, DANIEL T. "Caracterização de estruturas de ondas lentas helicoidais para utilização em, TWT de potência." reponame:Repositório Institucional do IPEN, 2007. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Made available in DSpace on 2014-10-09T12:53:40Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T13:58:44Z (GMT). No. of bitstreams: 0
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Dissertação (Mestrado)
IPEN/D
Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
FAPESP:05/03612-0
28

Johnson, Mark Alden Misra Anil. "The effect of normal and shear stresses on wave propagation through a fracture." Diss., UMK access, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (Ph. D.)--School of Computing and Engineering and Dept. of Physics. University of Missouri--Kansas City, 2007.
"A dissertation in engineering and physics." Advisor: Anil Misra. Typescript. Vita. Title from "catalog record" of the print edition Description based on contents viewed July 30, 2008. Includes bibliographical references (leaf 93 ). Online version of the print edition.
29

Ray, Timothy Allen. "Wave propagation over complex bathymetry." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Jun%5FRay.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (M.S. in Physical Oceanography)--Naval Postgraduate School, June 2003.
Thesis advisor(s): Thomas H.C. Herbers, Edward B. Thornton. Includes bibliographical references (p. 37). Also available online.
30

Muirhead, Matthew. "Interior wave propagation." Thesis, University of Nottingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Cowan, Michael L. "Strong scattering of ultrasonic waves in fluidized suspensions, wave propagation, spectroscopy techniques and particle dynamics." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq62630.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Compton, Christopher S. "Propagation of Alfvén waves in the WVU HELIX device." Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (M.S.)--West Virginia University, 2006.
Title from document title page. Document formatted into pages; contains iv, 22 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 22).
33

Tshisaphungo, Mpho. "Validation of high frequency propagation prediction models over Africa." Thesis, Rhodes University, 2010. http://hdl.handle.net/10962/d1015239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The ionosphere is an important factor in high frequency (HF) radio propagation providing an opportunity to study ionospheric variability as well as the space weather conditions under which HF communication can take place. This thesis presents the validation of HF propagation conditions for the Ionospheric Communication Enhanced Profile Analysis and Circuit (ICEPAC) and Advanced Stand Alone Prediction System (ASAPS) models over Africa by comparing predictions with the measured data obtained from the International Beacon Project (IBP). Since these models were not developed using information on the African region, a more accurate HF propagation prediction tool is required. Two IBP transmitter stations are considered, Ruaraka, Kenya (1.24°S, 36.88°E) and Pretoria, South Africa (25.45°S, 28.10°E) with one beacon receiver station located in Hermanus, South Africa (34.27°S, 19.l2°E). The potential of these models in terms of HF propagation conditions is illustrated. An attempt to draw conclusions for future improvement of the models is also presented. Results show a low prediction accuracy for both ICEPAC and ASAPS models, although ICEPAC provided more accurate predictions for daily HF propagation conditions. This thesis suggests that the development of a new HF propagation prediction tool for the African region or the modification of one of the existing models to accommodate the African region, taking into account the importance of the African ionospheric region, should be considered as an option to ensure more accurate HF Propagation predictions over this region.
34

Lehmann, Lutz. "Wave propagation in infinite domains : with applications to structure interaction /." Berlin [u.a.] : Springer, 2007. http://www.gbv.de/dms/bs/toc/523903820.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chauvette, Sylvain. "SLOW-WAVE SLEEP : GENERATION AND PROPAGATION OF SLOW WAVES, ROLE IN LONG-TERM PLASTICITY AND GATING." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29523/29523.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Le sommeil est connu pour réguler plusieurs fonctions importantes pour le cerveau et parmi celles-ci, il y a le blocage de l’information sensorielle par le thalamus et l’amélioration de la consolidation de la mémoire. Le sommeil à ondes lentes, en particulier, est considéré être critique pour ces deux processus. Cependant, leurs mécanismes physiologiques sont inconnus. Aussi, la marque électrophysiologique distinctive du sommeil à ondes lentes est la présence d’ondes lentes de grande amplitude dans le potentiel de champ cortical et l’alternance entre des périodes d’activités synaptiques intenses pendant lesquelles les neurones corticaux sont dépolarisés et déchargent plusieurs potentiels d’action et des périodes silencieuses pendant lesquelles aucune décharge ne survient, les neurones corticaux sont hyperpolarisés et très peu d’activités synaptiques sont observées. Tout d'abord, afin de mieux comprendre les études présentées dans ce manuscrit, une introduction générale couvrant l'architecture du système thalamocortical et ses fonctions est présentée. Celle-ci comprend une description des états de vigilance, suivie d'une description des rythmes présents dans le système thalamocortical au cours du sommeil à ondes lentes, puis par une description des différents mécanismes de plasticité synaptique, et enfin, deux hypothèses sur la façon dont le sommeil peut affecter la consolidation de la mémoire sont présentées. Puis, trois études sont présentées et ont été conçues pour caractériser les propriétés de l'oscillation lente du sommeil à ondes lentes. Dans la première étude (chapitre II), nous avons montré que les périodes d'activité (et de silence) se produisent de façon presque synchrone dans des neurones qui ont jusqu'à 12 mm de distance. Nous avons montré que l'activité était initiée en un point focal et se propageait rapidement à des sites corticaux voisins. Étonnamment, le déclenchement des états silencieux était encore plus synchronisé que le déclenchement des états actifs. L'hypothèse de travail pour la deuxième étude (chapitre III) était que les états actifs sont générés par une sommation de relâches spontanées de médiateurs. Utilisant différents enregistrements à la fois chez des animaux anesthésiés et chez d’autres non-anesthésiés, nous avons montré qu’aucune décharge neuronale ne se produit dans le néocortex pendant les états silencieux du sommeil à ondes lentes, mais certaines activités synaptiques peuvent ii être observées avant le début des états actifs, ce qui était en accord avec notre hypothèse. Nous avons également montré que les neurones de la couche V étaient les premiers à entrer dans l’état actif pour la majorité des cycles, mais ce serait ainsi uniquement pour des raisons probabilistes; ces cellules étant équipées du plus grand nombre de contacts synaptiques parmi les neurones corticaux. Nous avons également montré que le sommeil à ondes lentes et l’anesthésie à la kétamine-xylazine présentent de nombreuses similitudes. Ayant utilisé une combinaison d'enregistrements chez des animaux anesthésiés à la kétamine-xylazine et chez des animaux non-anesthésiés, et parce que l'anesthésie à la kétamine-xylazine est largement utilisée comme un modèle de sommeil à ondes lentes, nous avons effectué des mesures quantitatives des différences entre les deux groupes d'enregistrements (chapitre IV). Nous avons trouvé que l'oscillation lente était beaucoup plus rythmique sous anesthésie et elle était aussi plus cohérente entre des sites d’enregistrements distants en comparaison aux enregistrements de sommeil naturel. Sous anesthésie, les ondes lentes avaient également une amplitude plus grande et une durée plus longue par rapport au sommeil à ondes lentes. Toutefois, les ondes fuseaux (spindles) et gamma étaient également affectées par l'anesthésie. Dans l'étude suivante (Chapitre V), nous avons investigué le rôle du sommeil à ondes lentes dans la formation de la plasticité à long terme dans le système thalamocortical. À l’aide de stimulations pré-thalamiques de la voie somatosensorielle ascendante (fibres du lemnisque médial) chez des animaux non-anesthésiés, nous avons montré que le potentiel évoqué enregistré dans le cortex somatosensoriel était augmenté dans une période d’éveil suivant un épisode de sommeil à ondes lentes par rapport à l’épisode d’éveil précédent et cette augmentation était de longue durée. Nous avons également montré que le sommeil paradoxal ne jouait pas un rôle important dans cette augmentation d'amplitude des réponses évoquées. À l’aide d'enregistrements in vitro en mode cellule-entière, nous avons caractérisé le mécanisme derrière cette augmentation et ce mécanisme est compatible avec la forme classique de potentiation à long terme, car il nécessitait une activation à la fois les récepteurs NMDA et des récepteurs AMPA, ainsi que la présence de calcium dans le neurone post-synaptique. iii La dernière étude incluse dans cette thèse (chapitre VI) a été conçue pour caractériser un possible mécanisme physiologique de blocage sensoriel thalamique survenant pendant le sommeil. Les ondes fuseaux sont caractérisées par la présence de potentiels d’action calcique à seuil bas et le calcium joue un rôle essentiel dans la transmission synaptique. En utilisant plusieurs techniques expérimentales, nous avons vérifié l'hypothèse que ces potentiels d’action calciques pourraient causer un appauvrissement local de calcium dans l'espace extracellulaire ce qui affecterait la transmission synaptique. Nous avons montré que les canaux calciques responsables des potentiels d’action calciques étaient localisés aux synapses et que, de fait, une diminution locale de la concentration extracellulaire de calcium se produit au cours d’un potentiel d’action calcique à seuil bas spontané ou provoqué, ce qui était suffisant pour nuire à la transmission synaptique. Nous concluons que l'oscillation lente est initiée en un point focal et se propage ensuite aux aires corticales voisines de façon presque synchrone, même pour des cellules séparées par jusqu'à 12 mm de distance. Les états actifs de cette oscillation proviennent d’une sommation de relâches spontanées de neuromédiateurs (indépendantes des potentiels d’action) et cette sommation peut survenir dans tous neurones corticaux. Cependant, l’état actif est généré plus souvent dans les neurones pyramidaux de couche V simplement pour des raisons probabilistes. Les deux types d’expériences (kétamine-xylazine et sommeil à ondes lentes) ont montré plusieurs propriétés similaires, mais aussi quelques différences quantitatives. Nous concluons également que l'oscillation lente joue un rôle essentiel dans l'induction de plasticité à long terme qui contribue très probablement à la consolidation de la mémoire. Les ondes fuseaux, un autre type d’ondes présentes pendant le sommeil à ondes lentes, contribuent au blocage thalamique de l'information sensorielle.
Sleep is known to mediate several major functions in the brain and among them are the gating of sensory information during sleep and the sleep-related improvement in memory consolidation. Slow-wave sleep in particular is thought to be critical for both of these processes. However, their physiological mechanisms are unknown. Also, the electrophysiological hallmark of slow-wave sleep is the presence of large amplitude slow waves in the cortical local field potential and the alternation of periods of intense synaptic activity in which cortical neurons are depolarized and fire action potentials and periods of silence in which no firing occurs, cortical neurons are hyperpolarized, and very little synaptic activities are observed. First, in order to better understand the studies presented in this manuscript, a general introduction covering the thalamocortical system architecture and function is presented, which includes a description of the states of vigilance, followed by a description of the rhythms present in the thalamocortical system during slow-wave sleep, then by a description of the mechanisms of synaptic plasticity, and finally two hypotheses about how sleep might affect the consolidation of memory are presented. Then, three studies are presented and were designed to characterize the properties of the sleep slow oscillation. In the first study (Chapter II), we showed that periods of activity (and silence) occur almost synchronously in neurons that are separated by up to 12 mm. The activity was initiated in a focal point and rapidly propagated to neighboring sites. Surprisingly, the onsets of silent states were even more synchronous than onsets of active states. The working hypothesis for the second study (Chapter III) was that active states are generated by a summation of spontaneous mediator releases. Using different recordings in both anesthetized and non-anesthetized animals, we showed that no neuronal firing occurs in the neocortex during silent states of slow-wave sleep but some synaptic activities might be observed prior to the onset of active states, which was in agreement with our hypothesis. We also showed that layer V neurons were leading the onset of active states in most of the cycles but this would be due to probabilistic reasons; these cells being equipped with the most numerous synaptic contacts among cortical neurons. We also showed that slow-wave sleep and ketamine-xylazine shares many similarities. v Having used a combination of recordings in ketamine-xylazine anesthetized and non-anesthetized animals, and because ketamine-xylazine anesthesia is extensively used as a model of slow-wave sleep, we made quantitative measurements of the differences between the two groups of recordings (Chapter IV). We found that the slow oscillation was much more rhythmic under anesthesia and it was also more coherent between distant sites as compared to recordings during slow-wave sleep. Under anesthesia, slow waves were also of larger amplitude and had a longer duration as compared to slow-wave sleep. However, spindles and gamma were also affected by the anesthesia. In the following study (Chapter V), we investigated the role of slow-wave sleep in the formation of long-term plasticity in the thalamocortical system. Using pre-thalamic stimulations of the ascending somatosensory pathway (medial lemniscus fibers) in non-anesthetized animals, we showed that evoked potential recorded in the somatosensory cortex were enhanced in a wake period following a slow-wave sleep episode as compared to the previous wake episode and this enhancement was long-lasting. We also showed that rapid eye movement sleep did not play a significant role in this enhancement of response amplitude. Using whole-cell recordings in vitro, we characterized the mechanism behind this enhancement and it was compatible with the classical form of long-term potentiation, because it required an activation of both NMDA and AMPA receptors as well as the presence of calcium in the postsynaptic neuron. The last study included in this thesis (Chapter VI) was designed to characterise a possible physiological mechanism of thalamic sensory gating occurring during sleep. Spindles are characterized by the presence of low-threshold calcium spikes and calcium plays a critical role in the synaptic transmission. Using several experimental techniques, we verified the hypothesis that these calcium spikes would cause a local depletion of calcium in the extracellular space which would impair synaptic transmission. We showed that calcium channels responsible for calcium spikes were co-localized with synapses and that indeed, local extracellular calcium depletion occurred during spontaneous or induced low-threshold calcium spike, which was sufficient to impair synaptic transmission. We conclude that slow oscillation originate at a focal point and then propagate to neighboring cortical areas being almost synchronous even in cells located up to 12 mm vi apart. Active states of this oscillation originate from a summation of spike-independent mediator releases that might occur in any cortical neurons, but happens more often in layer V pyramidal neurons simply due to probabilistic reasons. Both experiments in ketamine-xylazine anesthesia and non-anesthetized animals showed several similar properties, but also some quantitative differences. We also conclude that slow oscillation plays a critical role in the induction of long-term plasticity, which very likely contributes to memory consolidation. Spindles, another oscillation present in slow-wave sleep, contribute to the thalamic gating of information.
Tableau d'honneur de la FÉSP
36

Uzoegbo, Herbert Chidozie. "Propagation of acoustic waves in concrete." Thesis, King's College London (University of London), 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Keane, Adam J. "Propagating waves and variable neural dynamics." Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/16861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In cortical circuits, neural responses are highly variable during both spontaneous and evoked activity. Nonetheless, coherent structures, such as propagating waves, can form at the population level. In this thesis, we provide a unified account of these seemingly contrasting dynamics by investigating spiking neural circuits that incorporate two essential features of cortical circuits: distance-dependent connectivity and the balance of excitation and inhibition. We show that propagating waves with complex dynamics only emerge when the neural circuits are balanced. These waves sweep past neurons, to which they provide highly synchronized synaptic inputs. We thus reconcile two major views of irregular neurodynamics, namely, the balanced state view and the synchronized input view. The propagating waves also provide a mechanism for double stochasticity of firing activity, and non-Gaussian dynamics of membrane potential. By applying a localized input to our balanced networks, we show that, as observed in experimental studies, a weak stimulus evokes a wave pattern propagating along lateral connections, whereas a strong stimulus triggers a localized pattern. We further identify the mechanisms underlying such response patterns, and show that their collective dynamics account for a range of recent experimental observations regarding cortical response properties. Such observations include the stimulus-evoked shift of cortical states from synchrony to asynchrony, and a decline in neural variability at stimulus onset. Furthermore, we extend previous theoretical studies of temporal chaos in balanced networks by showing that spatiotemporal chaos occurs in our network. This spatiotemporal chaos is characterized by the Lyapunov spectrum, and indicates that there are great fluctuations across space and time. By calculating finite-time Lyapunov vectors, we show that the spiking fronts of propagating wave patterns provide a mechanism for such spatiotemporal chaos.
38

Ratan, Naren. "Complex phase space representation of plasma waves : theory and applications." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:af5654e3-3137-4d9a-b41d-574cd72103b2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This thesis presents results on the description of plasma waves in terms of wavepackets. The wave field is decomposed into a distribution of wavepackets in a space of position, wavevector, time, and frequency. A complex structure joining each pair of Fourier conjugate variables into a single complex coordinate allows the efficient derivation of equations of motion for the phase space distribution by exploiting its analytic properties. The Wick symbol calculus, a mathematical tool generalizing many convenient properties of the Fourier transform to a local setting, is used to derive new exact phase space equations which maintain full information on the phase of the waves and include effects nonlocal in phase space such as harmonic generation. A general purpose asymptotic expansion of the Wick symbol product formula is used to treat dispersion, refraction, photon acceleration, and ponderomotive forces. Examples studied include the nonlinear Schrödinger equation, mode conversion, and the Vlasov equation. The structure of partially coherent wave fields is understood in terms of zeros in the phase space distribution caused by dislocations in its complex phase which are shown to be correlated with the field entropy. Simulations of plasma heating by crossing electron beams are understood by representing the resulting plasma waves in phase space. The local coherence properties of the beam driven Langmuir waves are studied numerically.
39

Löfås, Henrik. "Ionospheric modification by powerful HF-waves : Underdense F-region heating by X-Mode." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Observations of modifications of the electron temperature in the F-region produced by powerful high-frequency waves transmitted in X-mode are presented. The experiments were performed during quiet nighttime conditions with low ionospheric densities so no reflections occurred. Nevertheless temperature enhancements of the order of 300-400K were obtained. The modifications found can be well described by the theory of Ohmic heating by the pump wave and both temporal and spatial changes are reproduced.  A brief overview of several different experimental campaigns at EISCAT facilities in the period from October 2006 to February 2008 are also given pointing out some interesting features from the different experiments. The main focus is then on the campaign during October 2006 and modifications of the electron temperature in the F-region.
40

Kim, Hyun Sil. "Instability of finite amplitude wave propagation in harmonically heterogeneous elastic solids." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/16437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Taouk, Habib B. "Optical wave propagation in active media." Ohio : Ohio University, 1991. http://www.ohiolink.edu/etd/view.cgi?ohiou1173729381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kocaoglu, Argun H. "A new method for modeling surface wave propagation in heterogeneous media." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/25716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Aldurayhim, Abdullah Mohammed. "Propagating waves in reaction cross-diffusion systems." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/31129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This research focuses on the reaction diffusion systems where the matrix of diffusion co- efficients is not diagonal. We call these systems reaction cross-diffusion systems. These systems possess interesting solutions that do not appear in the reaction self-diffusion systems that have a diagonal diffusion matrix. Compared to research conducted on re- action self-diffusion systems, the reaction cross-diffusion systems have received little attentions. The aim of this research is to extend existing literature on these systems. In this thesis we considered two-components reaction cross-diffusion systems. We find an ana- lytical solution of reaction diffusion system with replacing FitzHugh-Nagumo kinetics by quartic polynomial. Finding the analytical solution is extends analytical results pre- sented in [9]. This analytical solution is presented in a wave front profile. We study the possibility of imitating Fisher-KPP and ZFK-Nagumo front waves by our analytical solution which we have introduced. The existence of a quartic polynomial yields four different cases with respect to the positions of the roots of the quartic polynomial and the resting states of the wave front. We solve the problem numerically and compare the numerical solution to the analytical solution for those four cases. Finally, we extend the analysis of the different wave regimes in reaction cross- diffusion system with FitzHugh-Nagumo kinetics by varying parameters in the system using numerical continuation. We compute the speed of propagating waves in this sys- tem and show the corresponding eigenvalues of equilibrium which gives an indication about the profile of the propagating waves. We find a stable propagating wave that is not obtained by direct numerical simulation in [55]. We investigate the stability of prop- agating waves by using direct numerical simulation.
44

Ananda, Agus A. "Propagation of Rayleigh waves in thin films." W&M ScholarWorks, 1997. https://scholarworks.wm.edu/etd/1539623914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
With the advent of thin film technology and more recently its applications in microelectronics and control of surface properties, the interest in mechanical properties of thin films has grown tremendously. Mechanical defects such as creep, fracture and adhesion loss, play a very important role in physical instabilities of thin film materials. An acoustic microscope has been built to study mechanical properties of thin-films. The microscope operates at a nominal frequency of 50 MHz. Rayleigh surface waves velocities on the surface of film-substrate systems were measured from V(z) curves generated by the acoustic microscope. V(z) curves are produced from interference between the Rayleigh surface wave and the specularly reflected waves. Technologically important materials, non-stoichiometric titanium nitride (TiN{dollar}\sb{lcub}\rm x{rcub}{dollar}) films and diamond films, were fabricated by using magnetron plasma deposition and hot filament chemical vapor deposition (HFCVD) on Si (100) and Si (111) substrates. Spectra from XPS (X-ray Photoelectron Spectroscopy) were used to determine the chemical composition of the films and SEM (Scanning Electron Microscope) micrographs were taken to study the morphology of the films. Rayleigh surface wave velocity measurements on TiN{dollar}\sb{lcub}\rm x{rcub}{dollar} films show a sharp increase in velocity at x = 0.7. A comparison with the phase diagram of TiN {dollar}\sb{lcub}\rm x{rcub}{dollar} suggests that the sharp increase in velocity might be due to a crystal structural transition from tetragonal {dollar}\varepsilon{dollar}-Ti{dollar}\sb2{dollar}N to fcc {dollar}\delta{dollar}-TiN.
45

Parisi, Giuseppe M. S. P. "Propagation of electromagnetic waves in "Fishnet" metamaterials." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3425440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Recently, the fabrication and optimization of nano-hole arrays in noble metal layers have attracted much attention both because of the interesting new physics associated with them and for their potential applications in nano-optics and biosensing. In particular nano-hole arrays in metal-dielectric-metal stacks, also known as "fish-net" type structures, are nowadays the best candidates to accomplish some suggestive physical phenomena like negative refractive index. The doctoral thesis summarizes the study of the propagation of electromagnetic waves in periodic structures, namely in Fishnet metamaterials. The EM propagation enables an uncommon property: the negative refraction index. The general aim of the thesis is to study the origin of the negative refraction index and its dependence on the geometric parameters, initially dealing with the basic three-layers fishnet until studying more evolved structures such as a multilayered fishnet structure. Some methods and effective models for the extraction of the complex parameters will be initially considered in the preliminary study. However for a more rigorous investigation, a recent modal method for the analysis of bulk strongly coupled structures (i.e. multilayered fishnet) ,in which also the evanescent modes linked to the metal losses can play a crucial role , will be presented. The FEM method is based on the Elmholts's equation in weak form and it represents a powerful method for the investigation of complex modes, responsible for the negative refraction index, from a more fundamental point of view.
Recentemente la fabbricazione e l'ottimizzazione di nano aperture periodiche attraverso strati di metalli nobili ha riscosso molta attenzione sia per l'interesse verso fenomeni fisici non comuni sia per le potenziali applicazioni alla nano-ottica e alla biosensoristica. In particolare i metamateriali composti da strati metallo-dielettrici sovrapposti e perforati da aperture periodiche, conosciuti come strutture a forma di spina di pesce, sono oggi tra i migliori candidati per studiare alcuni fenomeni fisici non comuni, come la rifrazione ad angolo negativo. La tesi di dottorato riassume lo studio della propagazione delle onde elettromagnetiche in strutture periodiche, in particolare nelle "Fishnet". La propagazione di onde elettromangetiche nelle Fishent genera una proprietà non comune: l"indice di rifrazione negativo. L'obbiettivo principale della tesi è quello di studiare l'origine dell'indice di rifrazione negativo e la sua dipendenza dai parametri geometrici a partire da strutture di base come la Fishnet a tre strati fino a strutture più evolute come la Fishnet a multi strato. Dei metodi e modelli effettivi per l'estrazione dei parametri complessi saranno inizialmente considerati per lo studio preliminale. Tuttavia per un'indagine più rigorosa verrà presentato un recente metodo modale adatto all'analisi di strutture omogenee fortemente accoppiate come le Fishnet a multistrato in cui anche i modi evanescenti, legati alla dissipazione del metallo, possono giocare un ruolo cruciale. Il metodo FEM di analisi modale è basato sull'equazioni di Elmholtz in forma debole e rappresenta un potente metodo di indagine per studiare l'evoluzione dei modi complessi, alla base dell'indice effettivo di rifrazione negativo (parte reale e complessa), da un punto di vista più fondamentale.
46

Monsalve, Gutiérrez Eduardo. "Études expérimentales des ondes à la surface de l'eau : effets non linéaires et absorption." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066027/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette thèse porte sur l'étude expérimentale des ondes non-linéaires à la surface de l'eau. Premièrement, l'étude présente les mesures spatio-temporelles des ondes non-linéaires lors du passage sur une marche immergée. Celles-ci ont permis de séparer et d'analyser les diffèrent composants jusqu'au deuxième ordre. En particulier, la contribution de la tension de surface, a été mise en évidence en mesurant la longueur du battement de la deuxième harmonique. Les résultats obtenus ont été comparés à un modèle théorique multi-modal des coefficients de transmission et de réflexion. Dans la même configuration, la construction d'un bassin fermé en ajoutant un mur réfléchissant à la fin, a permis d'observer l'excitation de modes à basse fréquence, avec une dynamique quasi-périodique intéressante. En parallèle, deux aspects expérimentaux impliqués dans les manipulations à petite échelle ont été étudiés. Premièrement, l'atténuation produite par la friction sur le fond a été mesurée et analysée pour des ondes distribuées de façon aléatoire, en montrant l'importance relative de cet effet. Deuxièmement, la dynamique de la ligne de contact joue un rôle important lorsque les ondes ont des amplitudes suffisamment petites et que les bords se trouvent suffisamment proches. Dans ce cas, nous avons constaté des différences considérables en réflexion et en courbure du front d'onde. La dernière partie porte sur les mesures expérimentales de l'absorption parfaite avec un résonateur couplé dans un guide d'onde étroit. Les modes piégés générés par un cylindre décalé dans le guide, ont été excités pour produire l'absorption
This thesis presents an experimental investigation on the propagation of nonlinear water waves. The first part focuses on the space-time measurements of nonlinear water waves, when it passes over a submerged step. The space-time resolved measurement allows us to separate the different components at the second order, which are compared with a theoretical nonlinear multi-modal model. The important contribution of the surface tension at higher orders is verified by measuring the beating length of the second harmonic. In the same conditions, the addition of a reflecting wall at the end of the channel sets a rectangular tank with submerged step, where the excitation of low-frequency modes yields a quasi-periodic dynamics. Concurrently, a research about aspects that have to be considered in small scale experiments of surface waves has been carried out. In shallow water, the damping of water waves is highly influenced by the bottom friction. This dependence was measured for randomly distributed waves, revealing the relative contribution of this effect. Moreover, the dynamic of the contact line plays a significant role when the wave-amplitude is small and the boundaries are near, both in relation to the capillary length. We observed experimentally how the wetting of the boundaries changes the reflection and the wave-front curvature. The final part covers the measurement of perfect wave absorption by a coupled resonator in a narrow waveguide. The trapped modes generated by a cylinder shifted from the channel axis were excited to generate the absorption
47

Forslund, Ola. "Scattering and propagation of electromagnetic waves in planar and curved periodic structures - applications to plane wave filters, plane wave absorbers and impedance surfaces." Doctoral thesis, KTH, Alfvén Laboratory, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:

The subject of this thesis is scattering of electromagneticwaves from planar and curved periodic structures. The problemspresented are solved in the frequency domain.

Scattering from planar structures with two-dimensionalperiodic dependence of constitutive parameters is treated. Theconstitutive parameters are assumed to vary continuously orstepwise in a cross section of a periodically repeating cell.The variation along a longitudinal coordinate z is arbitrary. Ageneral skew lattice is assumed. In the numerical examples, lowloss and high loss dielectric materials are considered. Theproblem is solved by expanding the .elds and constitutiveparameters in quasi-periodic and periodic functionsrespectively, which are inserted into Maxwell’s equations.Through various inner products de.ned with respect to the cell,and elimination of the longitudinal vector components, a linearsystem of ordinary di.erential equations for the transversecomponents of the .elds is obtained. After introducing apropagator, which maps the .elds from one transverse plane toanother, the system is solved by backward integration.Conventional thin metallic FSS screens of patch or aperturetype are included by obtaining generalised transmission andre.ection matrices for these surfaces. The transmission andre.ection matrices are obtained by solving spectral domainintegral equations. Comparisons of the obtained results aremade with experimental results (in one particular case), andwith results obtained using a computer code based on afundamentally di.erent time domain approach.

Scattering from thin singly curved structures consisting ofdielectric materials periodic in one dimension is alsoconsidered. Both the thickness and the period are assumed to besmall. The .elds are expanded in an asymptotic power series inthe thickness of the structure, and a scaled wave equation issolved. A propagator mapping the tangential .elds from one sideto the other of the structure is derived. An impedance boundarycondition for the structure coated on a perfect electricconductor is obtained.

Keywords:electromagnetic scattering, periodicstructure, frequency selective structure, frequency selectivesurface, grating, coupled wave analysis, electromagneticbandgap, photonic bandgap, asymptotic boundary condition,impedance boundary condition, spectral domain method,homogenisation

48

Su, Dan. "Microcrack damage and its effect on stress wave propagation." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 114 p, 2009. http://proquest.umi.com/pqdweb?did=1654487641&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Davis, Bradley A. "Propagation and Scattering of Waves by Terrain Features." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/28137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The intent of this dissertation is to obtain estimates of the effects of natural terrain features on the propagation and scattering of waves. It begins with the rough knife obstruction case, moves into rough surfaces and finally concludes with several approaches to a foliage covered rough surface. Each of these problems is encountered in radar, remote sensing and communication systems. The first topic in this dissertation is the study of the effect of random edge roughness on the diffraction of a wave. This has been accomplished by approximating the field beyond the diffracting half-plane through the use of spectral techniques and the Kirchhoff approximation. The relationships developed for the mean or average diffracted field and the incoherent diffracted power are studied for a range of electrophysical parameters that are representative of the situation encountered in a point-to-point communications link with blockage by a rough edged half plane. The interpretation of the results is facilitated by the observation that the total diffracted field is a superposition of the incident field and the edge-diffracted field. When the roughness on the edge increases, the edge diffracted-field becomes more incoherent and the phase interference consequently diminishes, leading to an attenuation of the oscillations in the coherent or mean total field. The model also addresses the effects of the knife edge in directions off the line-of-sight path as well as its effects on pulse propagation. Next, rough surface scattering effects are addressed. Extending the idea of the knife edge diffraction, this dissertation builds on the topic of a wedge on a plane by adapting the Method of Multiple Ordered Interactions (MOMI) to the dielectric surface. In this development, the coupled integral equations governing the scattering by a dielectric surface are combined into a single equation wherein the lossy dielectric enters the solution as a perturbation of the result for a perfectly conducting surface. Hence, the solution is not only exact, but as the loss increases, the convergence is rapid. Next, the Kirchhoff approximation is expanded to a two-frequency form for use with the later chapters which deal with pulse scattering by rough surfaces. Example waveform calculations are given. Propagation and scattering by a volume of scatterers over a surface is then examined. Starting from the radiative transfer equations, a model is developed herein for scattering from vegetated rough terrain. It assumes completely incoherent scattering and includes contributions from both the vegetation and the surface scattering along with a relatively simple accounting for their interaction. The model is developed into a form that easily separates the three primary components of the scattering problem - the radar system, the geometry, and the environment, and then recombines them through a multiple convolution. Extending the basic model to volumes for which multiple scattering is important is accomplished through the use of effective parameters. These effective parameters are obtained by comparing the model with pulsed radar data at normal incidence, i.e., looking directly down through the foliage and onto the ground. Hence, our overall model is a hybrid approach wherein the basic physics are retained in the simple solution. It is then extended to a more complicated environment through the use of these effective parameters. Example waveform calculations are given. The simple model assumes that multiple interactions are insignificant and that only narrow-band signals and narrow-beamwidth antenna patterns are used. Consequently, a more general radiative transfer approach is applied to the propagation of a beam through the random medium. This effort is a test of the narrow beamwidth and forward-backward scattering approximations implicit in the convolutional model. Next, the same convolutional model is developed using wave theory in order to clarify the assumptions and lend some physical meaning to the free parameters of the convolutional model. First the single scatter theory, with strictly forward and backward scattering is shown to be equivalent to the convolutional approach derived with radiative transfer theory. Next, multiple scattering in a discrete random medium is investigated in the "extended" Twersky approximation [Tsolakis, 1985]. This development leads to the mean Green's function for the medium, a form of the Distorted Wave Born Approximation and to a two-frequency radiative transfer equation. This transfer equation is then shown to simplify under the forward-backward assumption, eventually leading to a form which is compatible with the convolutional result. Finally, the effects of multiple scattering between the volume and its boundary, the rough surface, have been investigated. Using a numerical implementation (MOMI) of a scatterer over a rough surface, the orders of significant multiple interactions between the rough surface and the volume scattering components have been simulated. It is demonstrated that foliage components well above the rough surface may be treated as non-interacting; this includes components other than the trunks, which were not simulated. However, it is evident that multiple scattering effects may be significant for large objects near the rough surface. This work has been supported by grants from the Bradley Department of Electrical and Computer Engineering, National Science Foundation, and the Virginia Space Grant Consortium. Additional support has been provided by the U.S. Air Force at Hansom Airforce Base under grant F19628-96-C-0071, and U.S. Army Research Office under grant DAAG55-97-1-0164.
Ph. D.
50

Banerjee, Sourav. "Elastic Wave Propagation in Corrugated Wave Guides." Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1182%5F1%5Fm.pdf&type=application/pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography