Journal articles on the topic 'Prone proteins'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Prone proteins.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
De Baets, Greet, Joost Schymkowitz, and Frederic Rousseau. "Predicting aggregation-prone sequences in proteins." Essays in Biochemistry 56 (August 18, 2014): 41–52. http://dx.doi.org/10.1042/bse0560041.
Full textLebendiker, Mario, and Tsafi Danieli. "Production of prone-to-aggregate proteins." FEBS Letters 588, no. 2 (November 6, 2013): 236–46. http://dx.doi.org/10.1016/j.febslet.2013.10.044.
Full textGalves, Margarita, Ritu Rathi, Gali Prag, and Avraham Ashkenazi. "Ubiquitin Signaling and Degradation of Aggregate-Prone Proteins." Trends in Biochemical Sciences 44, no. 10 (October 2019): 872–84. http://dx.doi.org/10.1016/j.tibs.2019.04.007.
Full textTartaglia, Gian Gaetano, Amol P. Pawar, Silvia Campioni, Christopher M. Dobson, Fabrizio Chiti, and Michele Vendruscolo. "Prediction of Aggregation-Prone Regions in Structured Proteins." Journal of Molecular Biology 380, no. 2 (July 2008): 425–36. http://dx.doi.org/10.1016/j.jmb.2008.05.013.
Full textBerger, Zdenek, Brinda Ravikumar, Fiona M. Menzies, Lourdes Garcia Oroz, Benjamin R. Underwood, Menelas N. Pangalos, Ina Schmitt, et al. "Rapamycin alleviates toxicity of different aggregate-prone proteins." Human Molecular Genetics 15, no. 3 (December 20, 2005): 433–42. http://dx.doi.org/10.1093/hmg/ddi458.
Full textChennamsetty, Naresh, Vladimir Voynov, Veysel Kayser, Bernhard Helk, and Bernhardt L. Trout. "Prediction of Aggregation Prone Regions of Therapeutic Proteins." Journal of Physical Chemistry B 114, no. 19 (May 20, 2010): 6614–24. http://dx.doi.org/10.1021/jp911706q.
Full textSalomons, Florian A., Victoria Menéndez-Benito, Claudia Böttcher, Brett A. McCray, J. Paul Taylor, and Nico P. Dantuma. "Selective Accumulation of Aggregation-Prone Proteasome Substrates in Response to Proteotoxic Stress." Molecular and Cellular Biology 29, no. 7 (January 21, 2009): 1774–85. http://dx.doi.org/10.1128/mcb.01485-08.
Full textRavikumar, Brinda, Abraham Acevedo-Arozena, Sara Imarisio, Zdenek Berger, Coralie Vacher, Cahir J. O'Kane, Steve D. M. Brown, and David C. Rubinsztein. "Dynein mutations impair autophagic clearance of aggregate-prone proteins." Nature Genetics 37, no. 7 (June 26, 2005): 771–76. http://dx.doi.org/10.1038/ng1591.
Full textKnaevelsrud, Helene, and Anne Simonsen. "Fighting disease by selective autophagy of aggregate-prone proteins." FEBS Letters 584, no. 12 (April 20, 2010): 2635–45. http://dx.doi.org/10.1016/j.febslet.2010.04.041.
Full textKällquist, Linda, Markus Hansson, Ann-Maj Persson, Hans Janssen, Jero Calafat, Hans Tapper, and Inge Olsson. "The tetraspanin CD63 is involved in granule targeting of neutrophil elastase." Blood 112, no. 8 (October 15, 2008): 3444–54. http://dx.doi.org/10.1182/blood-2007-10-116285.
Full textBitran, Amir, William M. Jacobs, Xiadi Zhai, and Eugene Shakhnovich. "Cotranslational folding allows misfolding-prone proteins to circumvent deep kinetic traps." Proceedings of the National Academy of Sciences 117, no. 3 (January 7, 2020): 1485–95. http://dx.doi.org/10.1073/pnas.1913207117.
Full textRoyster, Austin, Sheema Mir, and Mohammad Ayoub Mir. "A novel approach for the purification of aggregation prone proteins." PLOS ONE 16, no. 11 (November 22, 2021): e0260143. http://dx.doi.org/10.1371/journal.pone.0260143.
Full textGrosch, Hans-Wilhelm, and Andrej Hasilik. "Protection of Proteolysis-Prone Recombinant Proteins in Baculovirus Expression Systems." BioTechniques 24, no. 6 (June 1998): 930–34. http://dx.doi.org/10.2144/98246bm05.
Full textMenzies, Fiona M., Raphael Hourez, Sara Imarisio, Marcel Raspe, Oana Sadiq, Dhia Chandraratna, Cahir O'Kane, et al. "Puromycin-sensitive aminopeptidase protects against aggregation-prone proteins via autophagy." Human Molecular Genetics 19, no. 23 (September 9, 2010): 4573–86. http://dx.doi.org/10.1093/hmg/ddq385.
Full textRavikumar, Brinda, and David C. Rubinsztein. "Can autophagy protect against neurodegeneration caused by aggregate-prone proteins?" NeuroReport 15, no. 16 (November 2004): 2443–45. http://dx.doi.org/10.1097/00001756-200411150-00001.
Full textSanders, Charles R. "The Scarlet Letter: Cellular Recognition of Misfolding-Prone Membrane Proteins." Biophysical Journal 112, no. 3 (February 2017): 329a. http://dx.doi.org/10.1016/j.bpj.2016.11.1780.
Full textLee, Yaelim, Tong Zhou, Gian Gaetano Tartaglia, Michele Vendruscolo, and Claus O. Wilke. "Translationally optimal codons associate with aggregation-prone sites in proteins." PROTEOMICS 10, no. 23 (November 2, 2010): 4163–71. http://dx.doi.org/10.1002/pmic.201000229.
Full textSironi, Luigi, Elena Tremoli, Ingrid Miller, Uliano Guerrini, Anna Maria Calvio, Ivano Eberini, Manfred Gemeiner, Maria Asdente, Rodolfo Paoletti, and Elisabetta Gianazza. "Acute-Phase Proteins Before Cerebral Ischemia in Stroke-Prone Rats." Stroke 32, no. 3 (March 2001): 753–60. http://dx.doi.org/10.1161/01.str.32.3.753.
Full textBernstein, Joel M., Paul M. Bronson, and Mark E. Wilson. "Immunoglobulin G Subclass Response to Major outer Membrane Proteins of Nontypable Haemophilus Influenzae in Children with Acute Otitis Media." Otolaryngology–Head and Neck Surgery 116, no. 3 (March 1997): 363–71. http://dx.doi.org/10.1016/s0194-59989770275-4.
Full textZhou, Ren-Bin, Xiao-Li Lu, Chen Dong, Fiaz Ahmad, Chen-Yan Zhang, and Da-Chuan Yin. "Application of protein crystallization methodologies to enhance the solubility, stability and monodispersity of proteins." CrystEngComm 20, no. 14 (2018): 1923–27. http://dx.doi.org/10.1039/c7ce02189e.
Full textPoboinev, V. V., V. V. Khrustalev, T. A. Khrustaleva, and A. N. Stojarov. "Structural transitions in mixed classes of proteins." Proceedings of the National Academy of Sciences of Belarus, Biological Series 64, no. 3 (August 17, 2019): 326–37. http://dx.doi.org/10.29235/1029-8940-2019-64-3-326-337.
Full textBock, Josephine, Nathalie Kühnle, Julia D. Knopf, Nina Landscheidt, Jin-Gu Lee, Yihong Ye, and Marius K. Lemberg. "Rhomboid protease RHBDL4 promotes retrotranslocation of aggregation-prone proteins for degradation." Cell Reports 40, no. 6 (August 2022): 111175. http://dx.doi.org/10.1016/j.celrep.2022.111175.
Full textBranco dos Santos, J., G. Staniforth, C. Breda, F. Herrera, T. Outeiro, M. Tuite, and F. Giorgini. "B07 Aggregation-prone Proteins Exacerbate Huntingtin Toxicity In Yeast And Drosophila." Journal of Neurology, Neurosurgery & Psychiatry 85, Suppl 1 (September 1, 2014): A11. http://dx.doi.org/10.1136/jnnp-2014-309032.35.
Full textMittag, Tanja, and Melissa R. Marzahn. "Short Aggregation-Prone Peptide Detectives: Finding Proteins and Truths about Aggregation." Journal of Molecular Biology 427, no. 2 (January 2015): 221–24. http://dx.doi.org/10.1016/j.jmb.2014.10.017.
Full textLee, Minjung, and Jaekyoon Shin. "Triage of oxidation-prone proteins by Sqstm1/p62 within the mitochondria." Biochemical and Biophysical Research Communications 413, no. 1 (September 2011): 122–27. http://dx.doi.org/10.1016/j.bbrc.2011.08.067.
Full textFang, Yaping, and Jianwen Fang. "Discrimination of soluble and aggregation-prone proteins based on sequence information." Molecular BioSystems 9, no. 4 (2013): 806. http://dx.doi.org/10.1039/c3mb70033j.
Full textKarabiyik, Cansu, Min Jae Lee, and David C. Rubinsztein. "Autophagy impairment in Parkinson’s disease." Essays in Biochemistry 61, no. 6 (December 12, 2017): 711–20. http://dx.doi.org/10.1042/ebc20170023.
Full textHan, K. Y., J. A. Song, K. Y. Ahn, J. S. Park, H. S. Seo, and J. Lee. "Solubilization of aggregation-prone heterologous proteins by covalent fusion of stress-responsive Escherichia coli protein, SlyD." Protein Engineering Design and Selection 20, no. 11 (October 30, 2007): 543–49. http://dx.doi.org/10.1093/protein/gzm055.
Full textAuth, Mariann, Tünde Nyikó, Andor Auber, and Dániel Silhavy. "The role of RST1 and RIPR proteins in plant RNA quality control systems." Plant Molecular Biology 106, no. 3 (April 17, 2021): 271–84. http://dx.doi.org/10.1007/s11103-021-01145-9.
Full textCiryam, Prajwal, Isabella A. Lambert-Smith, Daniel M. Bean, Rosie Freer, Fernando Cid, Gian Gaetano Tartaglia, Darren N. Saunders, et al. "Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS." Proceedings of the National Academy of Sciences 114, no. 20 (April 10, 2017): E3935—E3943. http://dx.doi.org/10.1073/pnas.1613854114.
Full textDas Roy, Rishi, Manju Bhardwaj, Vasudha Bhatnagar, Kausik Chakraborty, and Debasis Dash. "How do eubacterial organisms manage aggregation-prone proteome?" F1000Research 3 (June 27, 2014): 137. http://dx.doi.org/10.12688/f1000research.4307.1.
Full textNichols, Michael R. "Disentangling aggregation‐prone proteins: a new method for isolating α‐synuclein species." Journal of Neurochemistry 153, no. 1 (February 10, 2020): 7–9. http://dx.doi.org/10.1111/jnc.14973.
Full textCarvalho, Sofia B., Hugo M. Botelho, Sónia S. Leal, Isabel Cardoso, Günter Fritz, and Cláudio M. Gomes. "Intrinsically Disordered and Aggregation Prone Regions Underlie β-Aggregation in S100 Proteins." PLoS ONE 8, no. 10 (October 1, 2013): e76629. http://dx.doi.org/10.1371/journal.pone.0076629.
Full textUchio, Naohiro, Yoko Oma, Kazuya Toriumi, Noboru Sasagawa, Isei Tanida, Eriko Fujita, Yoriko Kouroku, Reiko Kuroda, Takashi Momoi, and Shoichi Ishiura. "Endoplasmic reticulum stress caused by aggregate-prone proteins containing homopolymeric amino acids." FEBS Journal 274, no. 21 (October 8, 2007): 5619–27. http://dx.doi.org/10.1111/j.1742-4658.2007.06085.x.
Full textLok, Chun-Nam, Lai-King Sy, Fuli Liu, and Chi-Ming Che. "Activation of Autophagy of Aggregation-prone Ubiquitinated Proteins by Timosaponin A-III." Journal of Biological Chemistry 286, no. 36 (July 8, 2011): 31684–96. http://dx.doi.org/10.1074/jbc.m110.202531.
Full textKang, S. H., D. M. Kim, H. J. Kim, S. Y. Jun, K. Y. Lee, and H. J. Kim. "Cell-Free Production of Aggregation-Prone Proteins in Soluble and Active Forms." Biotechnology Progress 21, no. 5 (October 7, 2005): 1412–19. http://dx.doi.org/10.1021/bp050087y.
Full textMelnik, Andre, Valentina Cappelletti, Federico Vaggi, Ilaria Piazza, Marco Tognetti, Carmen Schwarz, Gea Cereghetti, et al. "Comparative analysis of the intracellular responses to disease-related aggregation-prone proteins." Journal of Proteomics 225 (August 2020): 103862. http://dx.doi.org/10.1016/j.jprot.2020.103862.
Full textRavikumar, B. "Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy." Human Molecular Genetics 11, no. 9 (May 1, 2002): 1107–17. http://dx.doi.org/10.1093/hmg/11.9.1107.
Full textMurakumo, Yoshiki, Yukiko Ogura, Hideshi Ishii, Shin-ichiro Numata, Masatoshi Ichihara, Carlo M. Croce, Richard Fishel, and Masahide Takahashi. "Interactions in the Error-prone Postreplication Repair Proteins hREV1, hREV3, and hREV7." Journal of Biological Chemistry 276, no. 38 (August 2, 2001): 35644–51. http://dx.doi.org/10.1074/jbc.m102051200.
Full textYacoubian, Talene A., and David G. Standaert. "Reaping what you sow: Cross-seeding between aggregation-prone proteins in neurodegeneration." Movement Disorders 29, no. 3 (January 2, 2014): 306. http://dx.doi.org/10.1002/mds.25766.
Full textHiguchi, Kae, Takashi Yabuki, Masahiro Ito, and Takanori Kigawa. "Cold shock proteins improve E. coli cell‐free synthesis in terms of soluble yields of aggregation‐prone proteins." Biotechnology and Bioengineering 117, no. 6 (March 26, 2020): 1628–39. http://dx.doi.org/10.1002/bit.27326.
Full textKleppe, April Snofrid, and Erich Bornberg-Bauer. "Robustness by intrinsically disordered C-termini and translational readthrough." Nucleic Acids Research 46, no. 19 (September 22, 2018): 10184–94. http://dx.doi.org/10.1093/nar/gky778.
Full textOnwezen, Marleen C., Muriel C. D. Verain, and Hans Dagevos. "Social Norms Support the Protein Transition: The Relevance of Social Norms to Explain Increased Acceptance of Alternative Protein Burgers over 5 Years." Foods 11, no. 21 (October 28, 2022): 3413. http://dx.doi.org/10.3390/foods11213413.
Full textDavis, John N., and Anthony N. van den Pol. "Viral Mutagenesis as a Means for Generating Novel Proteins." Journal of Virology 84, no. 3 (November 11, 2009): 1625–30. http://dx.doi.org/10.1128/jvi.01747-09.
Full textSánchez-Pérez, Ana María, Berta Claramonte-Clausell, Juan Vicente Sánchez-Andrés, and María Trinidad Herrero. "Parkinson’s Disease and Autophagy." Parkinson's Disease 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/429524.
Full textKaur, Ravinder, Janet R. Casey, and Michael E. Pichichero. "Serum Antibody Response to Five Streptococcus pneumoniae Proteins During Acute Otitis Media in Otitis-prone and Non–otitis-prone Children." Pediatric Infectious Disease Journal 30, no. 8 (August 2011): 645–50. http://dx.doi.org/10.1097/inf.0b013e31821c2d8b.
Full textMetskas, Lauren Ann, and Elizabeth Rhoades. "Single-Molecule FRET of Intrinsically Disordered Proteins." Annual Review of Physical Chemistry 71, no. 1 (April 20, 2020): 391–414. http://dx.doi.org/10.1146/annurev-physchem-012420-104917.
Full textSun, Xiaolin, William T. Jones, and Erik H. A. Rikkerink. "GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signalling." Biochemical Journal 442, no. 1 (January 27, 2012): 1–12. http://dx.doi.org/10.1042/bj20111766.
Full textMonti, Paola, Vaclav Brazda, Natália Bohálová, Otília Porubiaková, Paola Menichini, Andrea Speciale, Renata Bocciardi, Alberto Inga, and Gilberto Fronza. "Evaluating the Influence of a G-Quadruplex Prone Sequence on the Transactivation Potential by Wild-Type and/or Mutant P53 Family Proteins through a Yeast-Based Functional Assay." Genes 12, no. 2 (February 15, 2021): 277. http://dx.doi.org/10.3390/genes12020277.
Full textDumas, Louis, Francesca Zito, Pascaline Auroy, Xenie Johnson, Gilles Peltier, and Jean Alric. "Structure-Function Analysis of Chloroplast Proteins via Random Mutagenesis Using Error-Prone PCR." Plant Physiology 177, no. 2 (April 27, 2018): 465–75. http://dx.doi.org/10.1104/pp.17.01618.
Full text