Academic literature on the topic 'Prompt Fission Neutrons'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Prompt Fission Neutrons.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Prompt Fission Neutrons"
Lovell, A. E., P. Talou, I. Stetcu, and K. J. Kelly. "Anisotropy in fission fragment and prompt neutron angular distributions." EPJ Web of Conferences 256 (2021): 00009. http://dx.doi.org/10.1051/epjconf/202125600009.
Full textStanescu, Razvan, Hadrick Green, Toby Morris, Gencho Rusev, and Marian Jandel. "Prompt Fission Gamma-Ray Measurements at UML Research Reactor." EPJ Web of Conferences 242 (2020): 01009. http://dx.doi.org/10.1051/epjconf/202024201009.
Full textKelly, Keegan J., Matthew Devlin, Jaime A. Gomez, John M. O’Donnell, Terry N. Taddeucci, Robert C. Haight, Hye Young Lee, et al. "Measurements of the Prompt Fission Neutron Spectrum at LANSCE: The Chi-Nu Experiment." EPJ Web of Conferences 193 (2018): 03003. http://dx.doi.org/10.1051/epjconf/201819303003.
Full textLovell, A. E., T. Kawano, S. Okumura, M. R. Mumpower, I. Stetcu, and P. Talou. "The Extension of the Hauser-Feshbach Fission Fragment Decay Model to Multi-chance Fission and its Application to 239Pu." EPJ Web of Conferences 284 (2023): 04015. http://dx.doi.org/10.1051/epjconf/202328404015.
Full textDevlin, Matthew, Jaime A. Gomez, Keegan J. Kelly, John M. O'Donnell, Robert C. Haight, Terry N. Taddeucci, Denise Neudecker, et al. "Prompt Fission Neutron Spectra for Neutron-Induced Fission of 239Pu and 235U." EPJ Web of Conferences 239 (2020): 01003. http://dx.doi.org/10.1051/epjconf/202023901003.
Full textOprea, Cristiana, Alexandru Mihul, and Alexandru Oprea. "Advanced Modelling of 238U(n,f) in a Fast Reactor Application." EPJ Web of Conferences 211 (2019): 04008. http://dx.doi.org/10.1051/epjconf/201921104008.
Full textFujio, Kazuki, Ali Al-Adili, Fredrik Nordström, Jean-François Lemaître, Shin Okumura, Satoshi Chiba, and Arjan Koning. "Prompt-fission observable and fission yield calculations for actinides by TALYS." EPJ Web of Conferences 292 (2024): 08004. http://dx.doi.org/10.1051/epjconf/202429208004.
Full textVorobyev, Alexander, Oleg Shcherbakov, Alexei Gagarski, Gennadi’ski Val, and Tatiana’mina Kuz. "Experimental estimation of the “scission” neutron yield in the thermal neutron induced fission of 233U and 235U." EPJ Web of Conferences 239 (2020): 05008. http://dx.doi.org/10.1051/epjconf/202023905008.
Full textGatera, Angélique, Alf Göök, Franz-Josef Hambsch, André Moens, Andreas Oberstedt, Stephan Oberstedt, Goedele Sibbens, David Vanleeuw, and Marzio Vidali. "Prompt fissionγ-ray characteristics from neutron-induced fission on 239Pu and the time-dependence of prompt-γray emission." EPJ Web of Conferences 169 (2018): 00003. http://dx.doi.org/10.1051/epjconf/201816900003.
Full textQi, L., J. N. Wilson, M. Lebois, A. Al-Adili, A. Chatillon, D. Choudhury, A. Gatera, et al. "Prompt fission gamma-ray emission spectral data for 239Pu(n,f) using fast directional neutrons from the LICORNE neutron source." EPJ Web of Conferences 169 (2018): 00018. http://dx.doi.org/10.1051/epjconf/201816900018.
Full textDissertations / Theses on the topic "Prompt Fission Neutrons"
Qi, Liqiang. "Measurements of Prompt Gamma Rays Emitted in Fission of ²³⁸U and ²³⁹ Pu Induced by Fast Neutrons from the LICORNE Neutron Source." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS320/document.
Full textPrompt fission γ-ray spectra are important nuclear data for reactor physics, as an input for gamma heating calculations, since the gamma heating effect can be under-estimated by up to ~28% with present nuclear data. Furthermore the new prompt fission γ-ray information will be useful from a fundamental physics point of view, where results can be compared with many competing theoretical predictions to refine models of fission process. Prompt fission γ-ray spectra have been measured for the fast-neutron-induced fission of ²³⁸U and ²³⁹PuPu, using fast neutrons generated from the LICORNE source. The experimental setup consisted of an ionization chamber and different types of scintillation detectors, including LaBr₃ and PARIS phoswich detectors. An analysis procedure, including unfolding and recovering the γ-ray response in the scintillation detectors, is developed to extract the prompt fission γ-ray spectrum and corresponding spectral characteristics. The experimental results are compared to the fission modeling codes GEF and FREYA. This comparison reveals that the spectral characteristics are related to the energetic conditions, isotopic yields and angular momentum of the fission fragments. The energy dependence of the spectral characteristics shows that the prompt γ-rays emission is quite insensitive to the incident neutron energy. However, a strong dependence on the particular fissioning system is observed
Tovar, Jesus Felipe. "Studies of prompt gamma and neutron yield due to 2.5 MeV neutrons using GEANT4." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textBerge, Léonie. "Contribution à la modélisation des spectres de neutrons prompts de fission .Propagation d'incertitudes sur un calul de fluence cuve." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI039/document.
Full textThe prompt fission neutron spectrum (PFNS) is very important for various nuclear physics applications. Yet, except for the 252Cf spontaneous fission spectrum which is an international standard and is used for metrology purposes, the PFNS is still poorly known for most of the fissionning nuclides. In particular, few measurements exist for the fast fission spectrum (induced by a neutron whose energy exceeds about 100 keV), and the international evaluations show strong discrepancies. There are also very few data about covariances associated to the various PFNS evaluations. In this work we present three aspects of the PFNS evaluation. The first aspect is about the spectrum modeling with the FIFRELIN code, developed at CEA Cadarache, which simulates the fission fragment de-excitation by successive emissions of prompt neutrons and gammas, via the Monte-Carlo method. This code aims at calculating all fission observables in a single consistent calculation, starting from fission fragment distributions (mass, kinetic energy and spin). FIFRELIN is therefore more predictive than the analytical models used to describe the spectrum. A study of model parameters which impact the spectrum, like the fragment level density parameter, is presented in order to better reproduce the spectrum. The second aspect of this work is about the evaluation of the PFNS and its covariance matrix. We present a methodology to produce this evaluation in a rigorous way, with the CONRAD code, developed at CEA Cadarache. This implies modeling the spectrum through simple models, like the Madland-Nix model which is the most commonly used in the evaluations, by adjusting the model parameters to reproduce experimental data. The covariance matrix arises from the rigorous propagation of the sources of uncertainty involved in the calculation. In particular, the systematic uncertainties arising from the experimental set-up are propagated via a marginalization technique. The marginalization allows propagating these uncertainties on the calculated spectrum, and obtaining realistic uncertainties without having to artificially raise them, as it is sometimes necessary in Bayesian adjustments. The experimental uncertainty propagation also impacts the spectrum correlation matrix. We present the result for thermal neutron-induced fission of 235U and 239Pu. For the Madland-Nix model with constant inverse cross-section, the prompt neutron mean energy is 1.979 MeV for 235U and 2.087 MeV for 239Pu. The last aspect of this work is the calculation of the impact of the PFNS and its covariance matrix on a reactor vessel flux. This calculation is of major importance, since the vessel fluence estimation determines the vessel integrity, and therefore determines the reactor lifetime. We observe the importance of the PFNS correlation terms, to compute in particular the vessel flux uncertainty above 1 MeV, which is of the order of 6% (uncertainty only due to PFNS)
Sardet, Alix. "Spectres en énergie des neutrons prompts de fission : optimisation du dispositif expérimental et application à l'²³⁸U." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS002/document.
Full textThe nuclear fission is a complex phenomenon whose mechanisms are not fully understood. Within the framework of an international cooperation, the CEA/DAM/DIF is taking part in the study of prompt fission neutron energy spectra from fast neutron induced fission, focusing on the low energy domain of these spectra (<1 MeV). This PhD was dedicated to the optimization of the experimental setup. New fission detectors were developed. We report on their conception and their performances in terms of alpha-fission discrimination, timing resolution and distortion on the measured spectrum. In a second step, several neutron detectors were studied (neutron-gamma discrimination, detection efficiency), so as to optimize the detection of low energy neutrons (<1 MeV). In the present document, we report on the results of this comparative study. Finally, the optimized experimental setup was used to measure prompt fission neutron energy spectra for the fast-neutron induced fission of ²³⁸U. After detailing the data analysis method, the results are interpreted in terms of models and evaluations
Varapai, Natallia. "Développement d'un dispositif expérimental basé sur la digitalisation des signaux et dédié à la caractérisation des fragments de fission et des neutrons prompt[s] émis." Bordeaux 1, 2006. http://www.theses.fr/2006BOR13274.
Full textFondement, Valentin. "Conception d'une sonde diagraphique neutronique dans le cadre de l'exploration et de l'exploitation minière de l'uranium." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALY076.
Full textThis PhD in the frame of CEA - ORANO Mining collaboration, aims to develop a new logging tool, based on neutron active interrogation, in the scope of uranium exploration and exploitation. A large amount of its production comes from In situ recovery mines, by leaching chemically the ore in the ground over hundreds of meters. It is mandatory to determine the amount of uranium available, but also the permeability of the sand, to evaluate the profitability. This geological quantity can be assessed from the measurement of the porosity hydrogen that is the volume fraction of water in the rock formation. It is possible to measure this one by using neutron probes. Uranium, and especially its 235 isotope, can also be measured with that kind of logging tools, if they rely on a pulsed neutron generator. This research leads to a new probe design that allows performing the both measurements with a unique cadmium-shielded-helium 3-proportional counter. The generator emits a 50 µs neutron burst every 5 ms (at 200 Hz). In the 800 µs after the salvo we can measure the not-fully-thermalised neutrons, thanks to the cadmium shield acting like a filter. The obtained count is inversely proportional to the hydrogen, and water, environment content. Over the following milliseconds, thermal neutrons of the rock formation will lead to 235U nuclei fissions, which emit in average 2.5 prompt fission neutrons. A chunk of these neutrons is emitted toward our counter, as the neutrons from the generator, fully thermalized after 800 µs, cannot cross the cadmium. Thanks to that double energy-time discrimination, it is possible to measure the prompt fission neutron signal contribution, which is proportional to the uranium concentration. As thermal neutrons are absorbed by the hydrogen content in the environment, we can use the porosity hydrogen measurement to correct the prompt fission neutrons signal from its effect. Furthermore, a parametric study has been conducting, using the Monte-Carlo simulation code MCNP 6.1, to compare the quantities that affect the measurements performances (e.g. diameter, standoff, casing thickness, casing, mudcake thickness, lithology). Finally, the new measurement methods feasibility has been validated through two experimental campaigns: in one hand, the capability of the electronics to handle input count rates in the 106 s-1 yield, during and right after a pulse of the neutron D-T generator. In the other hand, a laboratory model of the neutron probe has been built and tested in a dedicated calibration drum, filled with 1.6 t Fontainebleau sand. An agreement between experiment and computer simulations has been found, which validates the uranium concentration measurement and allows the understanding of the main components of the active background. This study highlighted the contribution of the oxygen 17 activation delayed neutrons, in the water saturated sandstone environments. The signal and noise analysis method were qualified, leading to the first estimations of in situ performances, like the detection limit of the uranium concentration measurement, from 10 to 200 ppm for 3 min of acquisition, for hydrogen porosities ranging respectively from 0 to 40%
Martin, Julie-Fiona. "Coulex fission of ²³⁴U, ²³⁵U, ²³⁷Np and ²³⁸Np studied within the SOFIA experimental program." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112315/document.
Full textSOFIA (Studies On FIssion with Aladin) is an experimental project which aims at systematically measuring the fission fragments' isotopic yields as well as their total kinetic energy, for a wide variety of fissioning nuclei. The PhD work presented in this dissertation takes part in the SOFIA project, and covers the fission of nuclei in the region of the actinides : ²³⁴U, ²³⁵U, ²³⁷Np and ²³⁸Np.The experiment is led at the heavy-ion accelerator GSI in Darmstadt, Germany. This facility provides intense relativistic primary beam of 238U. A fragmentation reaction of the primary beam permits to create a secondary beam of radioactive ions, some of which the fission is studied. The ions of the secondary beam are sorted and identified through the FR-S (FRagment Separator), a high resolution recoil spectrometer which is tuned to select the ions of interest.The selected - fissile - ions then fly further to Cave-C, an experimental area where the fission experiment itself takes place. At the entrance of the cave, the secondary beam is excited by Coulomb interaction when flying through an target; the de-excitation process involves low-energy fission. Both fission fragments fly forward in the laboratory frame, due to the relativistic boost inferred from the fissioning nucleus.A complete recoil spectrometer has been designed and built by the SOFIA collaboration in the path of the fission fragments, around the existing ALADIN magnet. The identification of the fragments is performed by means of energy loss, time of flight and deviation in the magnet measurements. Both fission fragments are fully (in mass and charge) and simultaneously identified.This document reports on the analysis performed for (1) the identification of the fissioning system, (2) the identification of both fission fragments, on an event-by-event basis, and (3) the extraction of fission observables: yields, TKE, total prompt neutron multiplicity. These results, concerning the actinides, are discussed, and the set of data extracted is provided
Abdelrahman, Y. S. "Prompt gamma-rays from fission fragments." Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234192.
Full textMcGinnis, Jason M. "PROMPT FISSION NEUTRON ENERGY SPECTRUM OF n+235U." UKnowledge, 2019. https://uknowledge.uky.edu/physastron_etds/63.
Full textMiller, Zachariah W. "A MEASUREMENT OF THE PROMPT FISSION NEUTRON ENERGY SPECTRUM FOR 235U(n,f) AND THE NEUTRON-INDUCED FISSION CROSS SECTION FOR 238U(n,f)." UKnowledge, 2015. http://uknowledge.uky.edu/physastron_etds/29.
Full textBook chapters on the topic "Prompt Fission Neutrons"
Shen, Qing-Biao, and Ye Tian. "Fission Prompt Neutrons, Prompt γ Rays, and Fission Fragment Independent Yield." In Equilibrium Compound Nucleus Post-Fission Theory, 97–110. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43316-0_7.
Full textKhokhlov, Yu A., I. A. Ivanin, Yu I. Vinogradov, V. I. In’kov, L. D. Danilin, V. I. Panin, and V. N. Polynov. "Measurements of Energy Dependence of Average Number of Prompt Neutrons from Neutron-Induced Fission of 235U, 241Am and 243Am From 0.5 to 12 MeV." In Nuclear Data for Science and Technology, 51–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-58113-7_12.
Full textCapote, Roberto, and Andrej Trkov. "Predicting Spectrum Averaged Cross Sections in Prompt Fission Neutron Fields." In Reactor Dosimetry: 16th International Symposium, 117–23. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2018. http://dx.doi.org/10.1520/stp160820170114.
Full textShen, Wei, and Benjamin Rouben. "Approach to Criticality." In Fundamentals of CANDU Reactor Physics, 93–100. ASME, 2021. http://dx.doi.org/10.1115/1.884836_ch9.
Full textMontoya, Modesto. "Influence of Prompt Neutron Emission on the Final Distribution of Mass, Kinetic Energy, and Charge of Fragments from Actinide Fission." In Nuclear Fission - From Fundamentals to Applications [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.110048.
Full textShen, Wei, and Benjamin Rouben. "Reactor Shutdown and Reactor Restart." In Fundamentals of CANDU Reactor Physics, 101–12. ASME, 2021. http://dx.doi.org/10.1115/1.884836_ch10.
Full textConference papers on the topic "Prompt Fission Neutrons"
Talou, P., Audrey Chatillon, Herbert Faust, Gabriele Fioni, Dominique Goutte, and Héloise Goutte. "Advanced modeling of prompt fission neutrons." In 4TH INTERNATIONAL WORKSHOP ON NUCLEAR FISSION AND FISSION-PRODUCT SPECTROSCOPY. AIP, 2009. http://dx.doi.org/10.1063/1.3258234.
Full textRuddy, Frank H., John G. Seidel, and Robert W. Flammang. "Prompt Pulsed Neutron Activation Analysis for Detection of Fission Neutrons." In 2006 IEEE Nuclear Science Symposium Conference Record. IEEE, 2006. http://dx.doi.org/10.1109/nssmic.2006.356112.
Full textSailaubekov, Bekzat, Andrey V. Isaev, Alexander I. Svirikhin, Roman S. Mukhin, Maxim L. Chelnokov, Victor I. Chepigin, Haleshappa M. Devaraja, et al. "Prompt neutrons accompanying the spontaneous fission of 250No." In THE IV INTERNATIONAL SCIENTIFIC FORUM “NUCLEAR SCIENCE AND TECHNOLOGIES”. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0193489.
Full textCHATILLON, A., T. GRANIER, J. TAIEB, G. BELIER, B. LAURENT, S. NODA, R. C. HAIGHT, M. DEVLIN, R. O. NELSON, and J. M. O'DONNELL. "ENERGY MEASUREMENT OF PROMPT FISSION NEUTRONS IN 239PU(N,F) FOR INCIDENT NEUTRON ENERGIES FROM 1 TO 200 MEV." In Seminar on Fission. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322744_0018.
Full textTALOU, P. "AT AND BEYOND THE SCISSION POINT: WHAT CAN WE LEARN FROM SCISSION AND PROMPT NEUTRONS?" In Seminar on Fission VI. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812791061_0013.
Full textTalou, P., T. Kawano, L. Bonneau, Jutta Escher, Frank S. Dietrich, Toshihiko Kawano, and Ian J. Thompson. "Prompt Fission Neutrons as Probes to Nuclear Configurations at Scission." In COMPOUND-NUCLEAR REACTIONS AND RELATED TOPICS: Proceedings of the 2007 International Workshop on Compound-Nuclear Reactions and Related Topics - CNR∗ 2007. AIP, 2008. http://dx.doi.org/10.1063/1.2920730.
Full textCherubini, N., A. Dodaro, G. Gandolfo, L. Lepore, G. A. Marzo, E. Piccinelli, and R. Remetti. "The Neutron Active Interrogation System for In-Field Detection of Transuranic-Based Radioactive Dispersal Devices for Security Applications." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81422.
Full textKhokhlov, Yurii A., Igor A. Ivanin, Valerii I. In’kov, and Lev D. Danilin. "Measurements of energy dependence of average number of prompt neutrons from neutron-induced fission of [sup 242]Pu from 0.5 to 10 Mev." In The second international workshop on nuclear fission and fission-product spectroscopy. AIP, 1998. http://dx.doi.org/10.1063/1.56695.
Full textMaslov, V. M. "Multiplicities and Spectra of Prompt-Fission Neutrons up to 200 MeV." In INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY. AIP, 2005. http://dx.doi.org/10.1063/1.1945006.
Full textTALOU, P., T. KAWANO, and I. STETCU. "MONTE CARLO HAUSER-FESHBACH CALCULATIONS OF PROMPT FISSION NEUTRONS AND GAMMA RAYS." In Proceedings of the Fifth International Conference on ICFN5. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814525435_0070.
Full textReports on the topic "Prompt Fission Neutrons"
Haight, Robert C. Scission Neutrons in Spontaneous and Neutron-Induced Fission: Effect on Prompt Fission Neutron Spectra. IAEA Nuclear Data Section, February 2020. http://dx.doi.org/10.61092/iaea.6fxg-n58v.
Full textVorobyev, A. S., and O. A. Shcherbakov. Scission Neutrons from Thermal Neutron induced Fission of 239-Pu and Spontaneous Fission of 252-Cf. IAEA Nuclear Data Section, February 2020. http://dx.doi.org/10.61092/iaea.8t4w-essq.
Full textVorobyev, A. S., and O. A. Shcherbakov. Experimental Investigation of the Properties of Scission Neutrons In Thermal-Neutron Induced Fission of 233U and 235U. IAEA Nuclear Data Section, February 2020. http://dx.doi.org/10.61092/iaea.7zgq-zwwx.
Full textTalou, Patrick, Bjorn Becker, Yaron Danon, Toshihiko Kawano, and Ionel Stetcu. Uncertainty Quantification with Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons and Gamma Rays. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1052776.
Full textTalou, Patrick, Toshihiko Kawano, and Ionel Stetcu. Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons and Gamma Rays: Application to Thermal Neutron-Induced Fission Reactions on U-235 and Pu-239. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1052775.
Full textNeudecker, Denise. Evaluated Mean Values and Covariances for the Prompt Fission Neutron Spectrum of 239Pu induced by neutrons of 500 keV. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1136938.
Full textNoguere, Gilles, Oscar Cabellos, Denise Neudecker, Andrej Trkov, and Roberto Capote Noy. Summary Report of the IAEA Consultants’ Meeting of the International Nuclear Data Evaluation Network (INDEN) on Actinide Evaluation in the Resonance Region (4). IAEA Nuclear Data Section, September 2022. http://dx.doi.org/10.61092/iaea.kw6h-tcge.
Full textSimakov, S. Evaluation of the Prompt Gamma-ray Spectrum from Spontaneous Fission of 252Cf. IAEA Nuclear Data Section, February 2024. http://dx.doi.org/10.61092/iaea.bz1p-e3yc.
Full textKelly, Keegan, Matthew Devlin, John O'Donnell, and Eames Bennett. Prompt Fission Neutron Detection and Neutron Scattering Measurements at WNR FP15L. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1827549.
Full textNeudecker, Denise. Introducing Nuclear Data Evaluations of Prompt Fission Neutron Spectra. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1186041.
Full text