Academic literature on the topic 'PROMOTING BACTERIA (PGPB)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'PROMOTING BACTERIA (PGPB).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "PROMOTING BACTERIA (PGPB)"
Ngalimat, Mohamad Syazwan, Erneeza Mohd Hata, Dzarifah Zulperi, Siti Izera Ismail, Mohd Razi Ismail, Nur Ain Izzati Mohd Zainudin, Noor Baity Saidi, and Mohd Termizi Yusof. "Plant Growth-Promoting Bacteria as an Emerging Tool to Manage Bacterial Rice Pathogens." Microorganisms 9, no. 4 (March 26, 2021): 682. http://dx.doi.org/10.3390/microorganisms9040682.
Full textMokrani, Slimane, El-hafid Nabti, and Cristina Cruz. "Current Advances in Plant Growth Promoting Bacteria Alleviating Salt Stress for Sustainable Agriculture." Applied Sciences 10, no. 20 (October 10, 2020): 7025. http://dx.doi.org/10.3390/app10207025.
Full textAjijah, Nur, Angelika Fiodor, Alok Kumar Pandey, Anuj Rana, and Kumar Pranaw. "Plant Growth-Promoting Bacteria (PGPB) with Biofilm-Forming Ability: A Multifaceted Agent for Sustainable Agriculture." Diversity 15, no. 1 (January 13, 2023): 112. http://dx.doi.org/10.3390/d15010112.
Full textXu, Jinzhi, Lijun Qin, Xinyi Xu, Hong Shen, and Xingyong Yang. "Bacillus paralicheniformis RP01 Enhances the Expression of Growth-Related Genes in Cotton and Promotes Plant Growth by Altering Microbiota inside and outside the Root." International Journal of Molecular Sciences 24, no. 8 (April 13, 2023): 7227. http://dx.doi.org/10.3390/ijms24087227.
Full textSaberi Riseh, Roohallah, Marzieh Ebrahimi-Zarandi, Mozhgan Gholizadeh Vazvani, and Yury A. Skorik. "Reducing Drought Stress in Plants by Encapsulating Plant Growth-Promoting Bacteria with Polysaccharides." International Journal of Molecular Sciences 22, no. 23 (November 30, 2021): 12979. http://dx.doi.org/10.3390/ijms222312979.
Full textBergna, Alessandro, Tomislav Cernava, Manuela Rändler, Rita Grosch, Christin Zachow, and Gabriele Berg. "Tomato Seeds Preferably Transmit Plant Beneficial Endophytes." Phytobiomes Journal 2, no. 4 (January 2018): 183–93. http://dx.doi.org/10.1094/pbiomes-06-18-0029-r.
Full textdo Amaral, Fernanda Plucani, Thalita Regina Tuleski, Vania Carla Silva Pankievicz, Ryan A. Melnyk, Adam P. Arkin, Joel Griffitts, Michelle Zibetti Tadra-Sfeir, et al. "Diverse Bacterial Genes Modulate Plant Root Association by Beneficial Bacteria." mBio 11, no. 6 (December 15, 2020): e03078-20. http://dx.doi.org/10.1128/mbio.03078-20.
Full textAmbrosini, Adriana, and Luciane M. P. Passaglia. "Plant Growth–Promoting Bacteria (PGPB): Isolation and Screening of PGP Activities." Current Protocols in Plant Biology 2, no. 3 (September 2017): 190–209. http://dx.doi.org/10.1002/pb.20054.
Full textShilev, Stefan. "Plant-Growth-Promoting Bacteria Mitigating Soil Salinity Stress in Plants." Applied Sciences 10, no. 20 (October 19, 2020): 7326. http://dx.doi.org/10.3390/app10207326.
Full textIkeda, Angela Cristina, Daiani Cristina Savi, Mariangela Hungria, Vanessa Kava, Chirlei Glienke, and Lygia Vitória Galli-Terasawa. "Bioprospecting of elite plant growth-promoting bacteria for the maize crop." Acta Scientiarum. Agronomy 42 (May 27, 2020): e44364. http://dx.doi.org/10.4025/actasciagron.v42i1.44364.
Full textDissertations / Theses on the topic "PROMOTING BACTERIA (PGPB)"
SINGH, SHATRUPA. "AUGMENTATIVE ROLE OF PLANT GROWTH PROMOTING BACTERIA (PGPB) IN MODULATING RESPONSES AGAINST MITIGATION OF SALT STRESS IN TRIGONELLA FOENUM-GRAECUM." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18463.
Full textRibeiro, Manuella Nóbrega Dourado. "Burkholderia sp. cadmium tolerance mechanism and its influence in phytoremediation." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/11/11151/tde-17122013-144639/.
Full textO cádmio (Cd) tem contaminado solos pelo uso de fertilizantes, calcário, agrotóxicos e resíduos industriais e/ou domésticos. Podendo ser lixiviado ao lençol freático ou absorvido pelas plantas,resultando na redução do crescimento e da produtividade. Esse metal afeta todos os organismos vivos e causa diferentes danos às células. A tolerância a esse metal se deve principalmente ao balanço do estado redox da célula para manter a integridade celular e metabolismo.Assim, foram isoladas bactérias de solo contaminado e não contaminado com Cd, selecionando isolados tolerantes a altas concentrações de diferentes metais (Cd, Ni e Zn), em seguida, foi observado a resposta do sistema antioxidante da bactéria na presença do Cd, a fim de auxiliar no desenvolvimento de metodologias para biorremediar solos contaminados. Foi quantificado MDA e peróxido de hidrogênio e a atividade de diferentes enzimas do sistema antioxidante (SOD, CAT, GR e GST) de duas estirpes do gênero Burkholderia tolerantes a todos os metais testados, uma isolada do solo contaminado com altas concentrações de Cd (estirpe SCMS54) e a outra do solo sem Cd (estirpe SNMS32) em dois tempos de exposição (5 e 12 h). Na estirpe SCMS54, as medidas de estresse (peroxidação lipídica e peróxido de hidrogênio) e a atividade das enzimas antioxidantes (SOD, CAT, GR e GST) da maioria dos tratamento com cádmio aumentaram, esta estirpe também expressa mais isoformas de SOD, CAT e GR, além de acumular 50% mais Cd. Esses resultados mostram que a estirpe SCMS54 (isolada do solo contaminado com Cd) apresenta uma maior diversidade metabólica e plasticidade. Foram analisadas também a resposta dessas duas estirpes ao Ni, observando uma resposta semelhante ao Cd, exceto na expressão da enzima GST, que no estirpe SCMS54 foi induzida na presença do Ni, indicando que essa enzima pode ser essencial na tolerância ao Ni. Portanto, a estirpe isoladado solo contaminado com Cd (SCMS54) foi selecionada para prosseguir os estudos e avaliar os benefícios da interação entre microrganismos tolerantes-plantas de tomate na fitorremediação. Essa técnica é usada remover para metais pesados do solo com um menor impacto e baixos custos. Os microrganismos do solo podem solubilizar e mobilizar metais do solo, atuando como biorremediador. Além da alta tolerância ao Cd, a estirpe SCMS54 produz ácido indol acético (AIA), solubiliza fosfato inorgânico e produz sideroforo, mostrando seu potencial na interação benéfica planta-microorganismo. Quando interagindo com as plantas de tomate expostas ao Cd, essa bactéria diminui a concentração de peróxido da planta e a clorose ocasionado pelo Cd,e reduz a absorção de Cd pela raiz resultando em um aumento da tolerância da planta ao metal pesado altamente tóxico. Assim, a inoculação de plantas de tomate com Burkholderia sp. SCMS54 promove crescimento da planta na presença de Cd, desencadeando um mecanismo que diminui a concentração de Cd nas raízes devido a essa interação benéfica bactéria-raiz da planta.
South, Kaylee. "Improving abiotic and biotic stress tolerance in floriculture crops." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595499762154056.
Full textKuntz, Veronica L. "The relationship between Sarracenia oreophila and an endophytic Burkholderia." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41094.
Full textMaher, Mary. "Effects of Plant Growth-Promoting Bacteria and Fungi on Strawberry Plant Health, Fruit Yield, and Disease Susceptibility." DigitalCommons@CalPoly, 2021. https://digitalcommons.calpoly.edu/theses/2335.
Full textThompson, Biosha. "Isolation and characterization of bacterial endophytes for growth promotion of Phaseolus vulgaris under salinity stress." University of the Western Cape, 2020. http://hdl.handle.net/11394/8078.
Full textAs the global human population grows, so does the demand for faster food production rates. Owing to this, agricultural practices have had to expand and move into semi-arid and arid regions, too, where frequent irrigation is essential. However, irrigated ground water contains many salt ions (mainly Na+ and Cl-) which contribute to soil salinization on croplands. Soil salinity negatively impacts crop growth and yield and thus, strategies for the alleviation of salt stress on crop plants have had to be developed. This study assessed the use of plant growth promoting bacteria (PGPB). The aim of this study was to isolate, identify and characterize bacterial endophytes isolated from the halophyte, Arctotheca calendula. Endophytes were identified using 16S rDNA and were screened for plant growth promoting properties including nitrogen fixation, phosphate and zinc solubilization, siderophore, ammonia and indole-3-acetic acid (IAA) when exposed to 0 mM, 300 mM and 600 mM NaCl. The endophytes had been identified as Erwinia persicina NBRC 102418T, Bacillus marisflavi JCM 11544T, Ochrobactrum rhizosphaerae PR17T, Microbacterium gubbeenense DSM 15944T and Bacillus zhangzhouensis DW5-4T and all of which had demonstrated some plant growth promoting characteristics. Thereafter, we aimed to demonstrate plant growth promotion of P. vulgaris cv. Star 2000 inoculated with PGPB under salinity stress. P. vulgaris cv. Star 2000 seeds were inoculated with the PGPB and exposed to 0 mM and 100 mM NaCl. Post-harvest, plants were assessed for their dry mass, cell death, superoxide concentration and nutrient content. It was discovered that salinity negatively impacted P. vulgaris cv. Star 2000’s dry mass, NaCl-induced cell death, and differentially influenced superoxide concentration, nutrient uptake and content of the leaf and root material in the inoculated and control treatments. However, the isolated PGPB had been able to mitigate the negative effects of soil salinity on P. vulgaris cv. Star 2000.
Tchuisseu, Tchakounte Gylaine Vanissa. "Assessing the role of native plant growth-promoting rhizobacteria (PGPR) isolated from Cameroon soil as bio-inoculant in improving plant growth." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22323.
Full textNutrient deficiencies in soil, mainly in phosphorus (P) and nitrogen (N), coupled to salinity and the impoverishment of agricultural soils, are a severe problem for agricultural production worldwide. Therefore, there is an urgent need for research and development of more suitable agricultural practices in order to reduce unfavorable conditions, and if possible, to restore the fertility of cultivated lands. The use of rhizobacteria, which promote plant growth (PGPR), can prove useful in developing strategies to facilitate plant growth under normal as well as under abiotic stress conditions. These bacteria offer benefits to plant hosts by promoting the uptake of soil minerals and protecting plants from environmental stresses. The thesis evaluates the role of native PGPR associated with maize as potential bio-inoculants for plants growth in Cameroon. We hypothesized that native bacterial communities from Cameroon include a high potential of bacteria helping the plant cope with unfavorable conditions. Here, we provide for the first time a comprehensive phylogenetic affiliation of cultivable bacterial communities associated with maize rhizosphere grown in Cameroon in relationship to their potential plant growth-promoting abilities.
Budiharjo, Anto. "Plant-bacteria interactions." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16333.
Full textBacillus amyloliqufaciens FZB42 has been known as PGPR which has an impressive effect to improve plant growth. It produces not only vast array of secondary metabolites with antibacterial and antifungal activities, but also produces the plant hormone IAA. Although many mechanisms have been elucidated, our knowledge about basic molecular mechanisms responsible for its beneficial action is far from complete. In this study, transposon mutagenesis based on mariner tranposon was applied to generate tranposon library which then was screened to identify the genes involved in plant growth-promoting activity. Three mutants that were impaired in their ability to colonize plant surface due to defects in biofilm formation and swarming motility were found. One mutant (degU mutant) showed defect in biofilm formation and swarming motility, as well, two mutants (yusV mutant and pabB mutant) impaired in biofilm formation were confirmed by complementation and retransformation. Screening by the Lemna biosystem and further assays with A. thaliana revealed three genes responsible for reduction in plant growth promoting activity of B. amyloliqufaciens FZB42. Colonization studies of these mutants in A. thaliana roots revealed patterns different to the wild type. A further issue pursued in this study was to discover new antibiotics using a mutant which has been blocked in its nonribosomally pathway. Screening of tranposon librabries from this mutant led to the finding of two novel ribosomally synthesized antibiotics. Further characterization revealed that these new antibiotics belonged to a novel bacteriocin (Amylocyclicin A) and a novel thiazole/oxazole-modified microcin (Plantazolicin). Last work in this study was looking for genes responsible for nematocidal production. Four mutants which showed reduction in nematocidal activity due to transposon insertion were found.
Bresson, Justine. "Interaction plante-microorganismes : Implication de la rhizobactérie Phyllobacterium brassicacearum dans les réponses d’Arabidopsis thaliana au stress hydrique." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20084/document.
Full textPlant growth promoting rhizobacteria (PGPR) can enhance plant performance and plant tolerance to environmental stresses. Arabidopsis thaliana is a useful organism to study the mechanisms involved in plant-PGPR interactions. We analyzed multiple plant traits related to growth dynamics, development and physiology in order to assess the effects of Phyllobacterium brassicacearum STM196 strain, isolated from the rhizosphere of oilseed rape, on Arabidopsis responses to well-defined soil water availability. Using powerful tools for phenotyping, we developed a new high-throughput analysis to examine the implication of STM196 on plant strategies to cope with water stress. Our results show for the first time that PGPR can interfere in escape strategies of plants through modifications in plant growth and flowering time. Moreover, STM196 induced a better resistance to moderate water deficit and a better tolerance to dehydration under a severe stress. Inoculation by STM196 can represent an added value to plant resistance strategies, as illustrated by its remarkable ability to promote plant survival and biomass production under contrasted environments. Our results highlight the importance of plant-bacteria interactions in plant responses to drought and provide a new avenue of investigations to improve drought resistance in crops
Soares, Bruno Miguel Ribeiro. "Effect of halophilic bacteria from Aveiro salt pans in the attenuation of saline stress in plants." Master's thesis, 2018. http://hdl.handle.net/10773/25368.
Full textA salinização dos solos é um problema crescente a nível global e têm sido várias as abordagens propostas para atenuar os seus efeitos na produtividade de plantas de interesse económico. O uso de bactérias halófilas ou halotolerantes como promotoras do crescimento de plantas, é uma das estratégias preconizadas para a mitigação do stresse salino. No entanto, são normalmente usadas como inóculo bactérias halotolerantes isoladas da rizosfera de plantas halófitas. O objetivo deste trabalho foi avaliar o potencial de bactérias halófilas, isoladas de uma marinha de sal, na atenuação do stresse salino em Lactuca sativa, usada como modelo de glicófita de interesse agrícola. Uma coleção de estirpes isoladas da marinha de Santiago da Fonte (Aveiro) representando os géneros Bacillus, Halobacillus, Idiomarina e Marinobacter, foi analisada quanto a algumas caraterísticas consideradas como vantajosas na colonização e promoção do crescimento de plantas. Testou-se a produção de enzimas extracelulares em salinidades 0, 20 e 100 de NaCl bem como a capacidade para solubilizar fosfato e produzir ácido 1-aminociclopropano-1-carboxilato desaminase. H. locisalis e I. seosinesis, considerados como mais interessantes face às características promotoras do crescimento, foram testados separadamente e em conjunto, como inóculo em sementes de alface. Foi aplicado um desenho experimental fatorial para testar o efeito da inoculação e da salinidade da água de irrigação sobre a eficiência de germinação das sementes e crescimento das plantas. A eficiência de germinação foi fortemente afetada pela salinidade não tendo sido observados efeitos significativos de nenhum dos inóculos testados. Na condição de salinidade 10, a eficiência de germinação foi mais baixa do que com salinidade 0 e o peso das plantas foi significativamente menor nas plantas inoculadas com o consórcio de isolados do que nas plantas não inoculadas. As plantas inoculadas com o consórcio e cultivadas na salinidade 10 apresentaram menor teor de água. As plantas inoculadas separadamente com H. locisalis ou com I. seosinesis cultivadas em salinidade 0, revelaram um aumento do tamanho das folhas relativamente ao controle não inoculado. Embora não tenham sido encontradas evidências de atenuação do stresse salino, o inóculo H. locisalis apresentou um efeito positivo no crescimento das plantas em condições não-salinas, o que demonstra um potencial como bactéria promotora do crescimento de plantas de interesse agrícola.
Projeto nº 029736 - Programa Operacional Regional do Centro (02/SAICT/2017).
Mestrado em Ecologia Aplicada
Books on the topic "PROMOTING BACTERIA (PGPB)"
Germida, J. J. Growth and nutrition of wheat as affected by interactions between VA mycorrhizae and plant growth-promoting rhizobacteria (PGPR): Final report. [Regina, Sask.]: Saskatchewan Agriculture and Food, 1995.
Find full textVarma, Ajit, Dilfuza Egamberdieva, and Smriti Shrivastava. Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Springer, 2015.
Find full textPlant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants (Soil Biology Book 42). Springer, 2015.
Find full textBook chapters on the topic "PROMOTING BACTERIA (PGPB)"
Khalil, Ali Talha, and Zabta Khan Shinwari. "Utilization of Plant Growth-Promoting Bacteria (PGPB) Against Phytopathogens." In Fungal Biology, 53–63. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04805-0_3.
Full textKaymak, Haluk Caglar. "Potential of PGPR in Agricultural Innovations." In Plant Growth and Health Promoting Bacteria, 45–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13612-2_3.
Full textGovindasamy, Venkadasamy, Murugesan Senthilkumar, Vellaichamy Magheshwaran, Upendra Kumar, Pranita Bose, Vikas Sharma, and Kannepalli Annapurna. "Bacillus and Paenibacillus spp.: Potential PGPR for Sustainable Agriculture." In Plant Growth and Health Promoting Bacteria, 333–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13612-2_15.
Full textSaraf, Meenu, Chaitanya Kumar Jha, and Dhara Patel. "The Role of ACC Deaminase Producing PGPR in Sustainable Agriculture." In Plant Growth and Health Promoting Bacteria, 365–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13612-2_16.
Full textde Garcia Salamone, Ines E., Russell K. Hynes, and Louise M. Nelson. "Role of Cytokinins in Plant Growth Promotion by Rhizosphere Bacteria." In PGPR: Biocontrol and Biofertilization, 173–95. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-4152-7_6.
Full textMalik, Garima, Samira Chugh, Sunila Hooda, and Ritu Chaturvedi. "Plant Growth Promoting Rhizobacteria (PGPR)-Assisted Phytoremediation of Contaminated Soils." In Bacterial Endophytes for Sustainable Agriculture and Environmental Management, 71–93. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4497-9_4.
Full textWalitang, Denver, Sandipan Samaddar, Aritra Roy Choudhury, Poulami Chatterjee, Shamim Ahmed, and Tongmin Sa. "Diversity and Plant Growth-Promoting Potential of Bacterial Endophytes in Rice." In Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture, 3–17. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6790-8_1.
Full textSonawane, Rohit, Ashok S. Jadhav, and Kailash Dakhore. "Yield Maximization in Pigeon Pea (Cajanus cajan L. Millsp.) Through the Application of Plant Growth-Promoting Bacteria." In Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture, 169–74. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6790-8_14.
Full textPuwanto, Febrina Angelina Samosir, Yuyun Yuwariah, Sumadi, and Tualar Simarmata. "Viability of Pseudomonas plecoglossicida and Rhizobium sp. LM-5 as Liquid Bacterial Fertilizers in Various Formulated Carriers." In Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture, 185–93. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6790-8_16.
Full textNaz, Rabia, Sehar Khushhal, Tayyaba Asif, Sara Mubeen, P. Saranraj, and R. Z. Sayyed. "Inhibition of Bacterial and Fungal Phytopathogens Through Volatile Organic Compounds Produced by Pseudomonas sp." In Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion, 95–118. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07559-9_6.
Full textConference papers on the topic "PROMOTING BACTERIA (PGPB)"
Dinata, Gallyndra Fatkhu, Luqman Qurata Aini, and Abdul Latief Abadi. "Pengaruh Pemberian Plant Growth-Promoting Bacteria Indigenous terhadap Pertumbuhan Tanaman Bawang Merah (Allium ascalonicum)." In Seminar Nasional Semanis Tani Polije 2021. Politeknik Negeri Jember, 2021. http://dx.doi.org/10.25047/agropross.2021.231.
Full textKozlovskaya, V. F. "Prospects for the rhizosphere microorganisms integration into agricultural practice as biofertilizers." In CURRENT STATE, PROBLEMS AND PROSPECTS OF THE DEVELOPMENT OF AGRARIAN SCIENCE. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-2020-5-9-10-141.
Full textYanti, Yulmira, Hasmiandy Hamid, Nurbailis Nurbailis, and Ni Luh Suriani. "Plant growth-promoting bacteria (PGPB) consortium to control Moeller’s disease and increase shallots plant growth." In 3RD INTERNATIONAL CONFERENCE OF BIO-BASED ECONOMY FOR APPLICATION AND UTILITY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0129042.
Full text"Biochemical Analysis And Antioxidant Activities Of Spinach By Plant Growth Promoting Bacteria (PGPB) Under Arsenic Stress." In International Conference on Biological Research and Applied Science. Jinnah University for Women, Karachi,Pakistan, 2022. http://dx.doi.org/10.37962/ibras/2022/255-258.
Full textIungin, Olga, Ievgeniia Prekrasna, Ihor Bortyanuy, Valeriia Maslak, and Saulius Mickevičius. "Plant Growth-Promoting Characteristics of Antarctic Endophytic Bacteria." In The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.ii.11.
Full textVoropaeva, O. V., Tripti Tripti, A. Kumar, K. A. Panikovskaya, M. G. Maleva, and G. G. Borisova. "Screening of metal tolerant plant growth-promoting endophytic (PGPE) bacteria for the preparation of bioformulation." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.277.
Full textReports on the topic "PROMOTING BACTERIA (PGPB)"
Romero Perdomo, Felipe Andrés, Jonathan Alberto Mendoza Labrador, and Germán Andrés Estrada Bonilla. Growth stimulation of perennial ryegrass by plant growth promoting bacteria under limited nutritional conditions. Corporación colombiana de investigación agropecuaria - AGROSAVIA, 2019. http://dx.doi.org/10.21930/agrosavia.poster.2019.10.
Full textCrowley, David E., Dror Minz, and Yitzhak Hadar. Shaping Plant Beneficial Rhizosphere Communities. United States Department of Agriculture, July 2013. http://dx.doi.org/10.32747/2013.7594387.bard.
Full textThomashow, Linda, Leonid Chernin, Ilan Chet, David M. Weller, and Dmitri Mavrodi. Genetically Engineered Microbial Agents for Biocontrol of Plant Fungal Diseases. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696521.bard.
Full text