Academic literature on the topic 'Proline rich inositol polyphosphate 5-phosphatase (PIPP)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Proline rich inositol polyphosphate 5-phosphatase (PIPP).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Proline rich inositol polyphosphate 5-phosphatase (PIPP)"

1

Eramo, Matthew J., and Christina A. Mitchell. "Regulation of PtdIns(3,4,5)P3/Akt signalling by inositol polyphosphate 5-phosphatases." Biochemical Society Transactions 44, no. 1 (February 9, 2016): 240–52. http://dx.doi.org/10.1042/bst20150214.

Full text
Abstract:
The phosphoinositide 3-kinase (PI3K) generated lipid signals, PtdIns(3,4,5)P3 and PtdIns(3,4)P2, are both required for the maximal activation of the serine/threonine kinase proto-oncogene Akt. The inositol polyphosphate 5-phosphatases (5-phosphatases) hydrolyse the 5-position phosphate from the inositol head group of PtdIns(3,4,5)P3 to yield PtdIns(3,4)P2. Extensive work has revealed several 5-phosphatases inhibit PI3K-driven Akt signalling, by decreasing PtdIns(3,4,5)P3 despite increasing cellular levels of PtdIns(3,4)P2. The roles that 5-phosphatases play in suppressing cell proliferation and transformation are slow to emerge; however, the 5-phosphatase PIPP [proline-rich inositol polyphosphate 5-phosphatase; inositol polyphosphate 5-phosphatase (INPP5J)] has recently been identified as a putative tumour suppressor in melanoma and breast cancer and SHIP1 [SH2 (Src homology 2)-containing inositol phosphatase 1] inhibits haematopoietic cell proliferation. INPP5E regulates cilia stability and INPP5E mutations have been implicated ciliopathy syndromes. This review will examine 5-phosphatase regulation of PI3K/Akt signalling, focussing on the role PtdIns(3,4,5)P3 5-phosphatases play in developmental diseases and cancer.
APA, Harvard, Vancouver, ISO, and other styles
2

Astle, Megan V., Lisa M. Ooms, Adam R. Cole, Lauren C. Binge, Jennifer M. Dyson, Meredith J. Layton, Steven Petratos, Calum Sutherland, and Christina A. Mitchell. "Identification of a Proline-rich Inositol Polyphosphate 5-Phosphatase (PIPP)·Collapsin Response Mediator Protein 2 (CRMP2) Complex That Regulates Neurite Elongation." Journal of Biological Chemistry 286, no. 26 (May 6, 2011): 23407–18. http://dx.doi.org/10.1074/jbc.m110.214247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yu, Hang, Wei Yong, Teng Gao, Man Na, Ye Zhang, Isaac Harlison Kuguminkiriza, Anyanyo Alexander Kenechukwu, Qingguo Guo, Guoli Zhang, and Xin Deng. "Hormesis of low-dose inhibition of pAkt1 (Ser473) followed by a great increase of proline-rich inositol polyphosphate 5-phosphatase (PIPP) level in oocytes." In Vitro Cellular & Developmental Biology - Animal 57, no. 3 (February 3, 2021): 342–49. http://dx.doi.org/10.1007/s11626-021-00546-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dyson, Jennifer M., Cindy J. O'Malley, Jelena Becanovic, Adam D. Munday, Michael C. Berndt, Imogen D. Coghill, Harshal H. Nandurkar, Lisa M. Ooms, and Christina A. Mitchell. "The SH2-containing inositol polyphosphate 5-phosphatase, SHIP-2, binds filamin and regulates submembraneous actin." Journal of Cell Biology 155, no. 6 (December 10, 2001): 1065–80. http://dx.doi.org/10.1083/jcb.200104005.

Full text
Abstract:
SHIP-2 is a phosphoinositidylinositol 3,4,5 trisphosphate (PtdIns[3,4,5]P3) 5-phosphatase that contains an NH2-terminal SH2 domain, a central 5-phosphatase domain, and a COOH-terminal proline-rich domain. SHIP-2 negatively regulates insulin signaling. In unstimulated cells, SHIP-2 localized in a perinuclear cytosolic distribution and at the leading edge of the cell. Endogenous and recombinant SHIP-2 localized to membrane ruffles, which were mediated by the COOH-terminal proline–rich domain. To identify proteins that bind to the SHIP-2 proline–rich domain, yeast two-hybrid screening was performed, which isolated actin-binding protein filamin C. In addition, both filamin A and B specifically interacted with SHIP-2 in this assay. SHIP-2 coimmunoprecipitated with filamin from COS-7 cells, and association between these species did not change after epidermal growth factor stimulation. SHIP-2 colocalized with filamin at Z-lines and the sarcolemma in striated muscle sections and at membrane ruffles in COS-7 cells, although the membrane ruffling response was reduced in cells overexpressing SHIP-2. SHIP-2 membrane ruffle localization was dependent on filamin binding, as SHIP-2 was expressed exclusively in the cytosol of filamin-deficient cells. Recombinant SHIP-2 regulated PtdIns(3,4,5)P3 levels and submembraneous actin at membrane ruffles after growth factor stimulation, dependent on SHIP-2 catalytic activity. Collectively these studies demonstrate that filamin-dependent SHIP-2 localization critically regulates phosphatidylinositol 3 kinase signaling to the actin cytoskeleton.
APA, Harvard, Vancouver, ISO, and other styles
5

Ooms, Lisa M., Brad K. McColl, Fenny Wiradjaja, A. P. W. Wijayaratnam, Paul Gleeson, Mary Jane Gething, Joe Sambrook, and Christina A. Mitchell. "The Yeast Inositol Polyphosphate 5-Phosphatases Inp52p and Inp53p Translocate to Actin Patches following Hyperosmotic Stress: Mechanism for Regulating Phosphatidylinositol 4,5-Bisphosphate at Plasma Membrane Invaginations." Molecular and Cellular Biology 20, no. 24 (December 15, 2000): 9376–90. http://dx.doi.org/10.1128/mcb.20.24.9376-9390.2000.

Full text
Abstract:
ABSTRACT The Saccharomyces cerevisiae inositol polyphosphate 5-phosphatases (Inp51p, Inp52p, and Inp53p) each contain an N-terminal Sac1 domain, followed by a 5-phosphatase domain and a C-terminal proline-rich domain. Disruption of any two of these 5-phosphatases results in abnormal vacuolar and plasma membrane morphology. We have cloned and characterized the Sac1-containing 5-phosphatases Inp52p and Inp53p. Purified recombinant Inp52p lacking the Sac1 domain hydrolyzed phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and PtdIns(3,5)P2. Inp52p and Inp53p were expressed in yeast as N-terminal fusion proteins with green fluorescent protein (GFP). In resting cells recombinant GFP-tagged 5-phosphatases were expressed diffusely throughout the cell but were excluded from the nucleus. Following hyperosmotic stress the GFP-tagged 5-phosphatases rapidly and transiently associated with actin patches, independent of actin, in both the mother and daughter cells of budding yeast as demonstrated by colocalization with rhodamine phalloidin. Both the Sac1 domain and proline-rich domains were able to independently mediate translocation of Inp52p to actin patches, following hyperosmotic stress, while the Inp53p proline-rich domain alone was sufficient for stress-mediated localization. Overexpression of Inp52p or Inp53p, but not catalytically inactive Inp52p, which lacked PtdIns(4,5)P2 5-phosphatase activity, resulted in a dramatic reduction in the repolarization time of actin patches following hyperosmotic stress. We propose that the osmotic-stress-induced translocation of Inp52p and Inp53p results in the localized regulation of PtdIns(3,5)P2 and PtdIns(4,5)P2 at actin patches and associated plasma membrane invaginations. This may provide a mechanism for regulating actin polymerization and cell growth as an acute adaptive response to hyperosmotic stress.
APA, Harvard, Vancouver, ISO, and other styles
6

Ware, MD, P. Rosten, JE Damen, L. Liu, RK Humphries, and G. Krystal. "Cloning and characterization of human SHIP, the 145-kD inositol 5- phosphatase that associates with SHC after cytokine stimulation." Blood 88, no. 8 (October 15, 1996): 2833–40. http://dx.doi.org/10.1182/blood.v88.8.2833.bloodjournal8882833.

Full text
Abstract:
We recently cloned and sequenced a cDNA encoding a 145-kD protein from the murine hematopoietic cell line B6SUtA, that becomes tyrosine phosphorylated and associated with Shc after cytokine stimulation. Based on its domains and enzymatic activity, we named this protein SHIP for SH2-containing inositol phosphatase (Damen et al, Proc Natl Acad Sci USA 93:1689, 1996). We describe here the cloning of the human homologue of murine SHIP (mSHIP) from a human megakaryocytic cell line (MO7e) lambda gt11 cDNA library using two nonoverlapping mSHIP cDNA fragments as probes. Northern blot analysis suggests that human SHIP (hSHIP) is expressed as a 5.3-kb mRNA in human bone marrow and a wide variety of other tissues. Sequence analysis of this cDNA predicts a protein of 1188 amino acids exhibiting 87.2% overall sequence identity with mSHIP. Contained within the defined open reading frame is an N-terminal, group l src homology 2 (SH2) domain; three NXXY motifs that, if phosphorylated, could be bound by phosphotyrosine binding (PTB) domains; a C-terminal proline-rich region; and two centrally located inositol polyphosphate 5-phosphatase motifs. Fluorescence in situ hybridization, using the full-length hSHIP cDNA as a probe, mapped hSHIP to the long arm of chromosome 2 at the border between 2q36 and 2q37.
APA, Harvard, Vancouver, ISO, and other styles
7

Deng, X., C. Feng, E. H. Wang, Y. Q. Zhu, C. Cui, Z. H. Zong, G. S. Li, C. Liu, J. Meng, and B. Z. Yu. "Influence of proline-rich inositol polyphosphate 5-phosphatase, on early development of fertilized mouse eggs, via inhibition of phosphorylation of Akt." Cell Proliferation 44, no. 2 (March 15, 2011): 156–65. http://dx.doi.org/10.1111/j.1365-2184.2011.00743.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Odai, Hideharu, Ko Sasaki, Akihiro Iwamatsu, Tetsuya Nakamoto, Hiroo Ueno, Tetsuya Yamagata, Kinuko Mitani, Yoshio Yazaki, and Hisamaru Hirai. "Purification and Molecular Cloning of SH2- and SH3-Containing Inositol Polyphosphate-5-Phosphatase, Which Is Involved in the Signaling Pathway of Granulocyte-Macrophage Colony-Stimulating Factor, Erythropoietin, and Bcr-Abl." Blood 89, no. 8 (April 15, 1997): 2745–56. http://dx.doi.org/10.1182/blood.v89.8.2745.

Full text
Abstract:
Abstract Grb2/Ash and Shc are the adapter proteins that link tyrosine-kinase receptors to Ras and make tyrosine-kinase functionally associated with receptors and Ras in fibroblasts and hematopoietic cells. Grb2/Ash and Shc have the SH3, SH2, or phosphotyrosine binding domains. These domains bind to proteins containing proline-rich regions or tyrosine-phosphorylated proteins and contribute to the association of Grb2/Ash and Shc with other signaling molecules. However, there could remain unidentified signaling molecules that physically and functionally interact with these adapter proteins and have biologically important roles in the signaling pathways. By using the GST fusion protein including the full length of Grb2/Ash, we have found that c-Cbl and an unidentified 135-kD protein (pp135) are associated with Grb2/Ash. We have also found that they become tyrosine-phosphorylated by treatment of a human leukemia cell line, UT-7, with granulocyte-macrophage colony-stimulating factor (GM-CSF ). We have purified the pp135 by using GST-Grb2/Ash affinity column and have isolated the full-length complementary DNA (cDNA) encoding the pp135 using a cDNA probe, which was obtained by the degenerate polymerase chain reaction based on a peptide sequence of the purified pp135. The cloned cDNA has 3,958 nucleotides that contain a single long open reading frame of 3,567 nucleotides, encoding a 1,189 amino acid protein with a predicted molecular weight of approximately 133 kD. The deduced amino acid sequence reveals that pp135 is a protein that has one SH2, one SH3, and one proline-rich domain. The pp135, which contains two motifs conserved among the inositol polyphosphate-5-phosphatase proteins, was shown to have the inositol polyphosphate-5-phosphatase activity. The pp135 was revealed to associate constitutively with Grb2/Ash and inducibly with Shc using UT-7 cells stimulated with GM-CSF. In the cell lines derived from human chronic myelogenous leukemia, pp135 was constitutively tyrosine-phosphorylated and associated with Shc and Bcr-Abl. These facts suggest that pp135 is a signaling molecule that has a unique enzymatic activity and should play an important role in the signaling pathway triggered by GM-CSF and in the transformation of hematopoietic cells caused by Bcr-Abl.
APA, Harvard, Vancouver, ISO, and other styles
9

Rodgers, Samuel J., Daniel T. Ferguson, Christina A. Mitchell, and Lisa M. Ooms. "Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases." Bioscience Reports 37, no. 1 (February 10, 2017). http://dx.doi.org/10.1042/bsr20160432.

Full text
Abstract:
Class I phosphoinositide 3-kinase (PI3K) generates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) at the plasma membrane in response to growth factors, activating a signalling cascade that regulates many cellular functions including cell growth, proliferation, survival, migration and metabolism. The PI3K pathway is commonly dysregulated in human cancer, and drives tumorigenesis by promoting aberrant cell growth and transformation. PtdIns(3,4,5)P3 facilitates the activation of many pleckstrin homology (PH) domain-containing proteins including the serine/threonine kinase AKT. There are three AKT isoforms that are frequently hyperactivated in cancer through mutation, amplification or dysregulation of upstream regulatory proteins. AKT isoforms have converging and opposing functions in tumorigenesis. PtdIns(3,4,5)P3 signalling is degraded and terminated by phosphoinositide phosphatases such as phosphatase and tensin homologue (PTEN), proline-rich inositol polyphosphate 5-phosphatase (PIPP) (INPP5J) and inositol polyphosphate 4-phosphatase type II (INPP4B). PtdIns(3,4,5)P3 is rapidly hydrolysed by PIPP to generate phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), which is further hydrolysed by INPP4B to form phosphatidylinositol 3-phosphate (PtdIns3P). PtdIns(3,4)P2 and PtdIns3P are also important signalling molecules; PtdIns(3,4)P2 together with PtdIns(3,4,5)P3 are required for maximal AKT activation and PtdIns3P activates PI3K-dependent serum and glucocorticoid-regulated kinase (SGK3) signalling. Loss of Pten, Pipp or Inpp4b expression or function promotes tumour growth in murine cancer models through enhanced AKT isoform-specific signalling. INPP4B inhibits PtdIns(3,4)P2-mediated AKT activation in breast and prostate cancer; however, INPP4B expression is increased in acute myeloid leukaemia (AML), melanoma and colon cancer where it paradoxically promotes cell proliferation, transformation and/or drug resistance. This review will discuss how PTEN, PIPP and INPP4B distinctly regulate PtdIns(3,4,5)P3 signalling downstream of PI3K and how dysregulation of these phosphatases affects cancer outcomes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography