Dissertations / Theses on the topic 'Projective duality'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 24 dissertations / theses for your research on the topic 'Projective duality.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hefez, Abramo. "Duality for projective varieties." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/86249.
Full textAbuaf, Roland. "Dualité homologique projective et résolutions catégoriques des singularités." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM057/document.
Full textLet $X$ be an algebraic variety with Gorenstein rational singularities. A crepant resolution of $X$ is often considered to be a minimal resolution of singularities for $X$. Unfortunately, crepant resolution of singularities are very rare. For instance, determinantal varieties of skew-symmetric matrices never admit crepant resolution of singularities. In this thesis, we discuss various notions of categorical crepant resolution of singularities as defined by Alexander Kuznetsov. Conjecturally, these resolutions are minimal from the categorical point of view. We introduce the notion of wonderful resolution of singularities and we prove that a variety endowed with such a resolution admits a weakly crepant resolution of singularities. As a corollary, we prove that all determinantal varieties (square, as well as symmetric and skew-symmetric) admit weakly crepant resolution of singularities. Finally, we study some quartics hypersurfaces which come from the Tits-Freudenthal magic square. Though they do no admit any wonderful resolution of singularities, we are still able to prove that they have a weakly crepant resolution of singularities. This last result should be of interest in order to construct homological projective duals for some symplectic Grassmannians over the composition algebras
Hilburn, Justin. "GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O." Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20456.
Full textContatto, Felipe. "Vortices, Painlevé integrability and projective geometry." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275099.
Full textBenchoufi, Mehdi. "Théorie microlocale des faisceaux pour la transformation Radon." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS475.
Full textThe subject of this thesis is a microlocal approach to the transformation of Radon. It is a question of applying to real and complex projective duality the techniques initiated in the founding article of Sato-Kashiwara-Kawai of 1972 and to find, reformulate, improve more classic analytical work on this subject, in particular those of G. Henkin or S. Gindikin. Pro-jective duality seen from the microlocal and sheaf point of view appeared for the first time in an important work by J-L. Brylinski on perverse sheaves, work then taken up by D'Agnolo and Schapira in the framework of D-modules. Our work is to systematically resume this study with the new tools of the microlocal sheaf theory (theory which did not exist at the time of SKK72). This work essentially consists of two parts. In the first, we begin by recalling in a general framework the construction of quantized ca-nonical transformations, under the hypothesis of the existence of a simple non-degenerate section (introduced under another name by J. Leray). This construction had never been done in a global framework outside the projective case. We then show that these transfor-mations exchange the action of the microdifferential operators. This is a fundamental re-sult without any consistent proof existing in the literature, this result being more or less implied in SKK72. The second part of the thesis deals with the applications to the “classical” Radon trans-form. The basic idea is that this transform exchanges the support of hyperfunctions (modu-lo analyticity) and the analytic wavefront set. We thus obtain theorems of continuation or uniqueness on linearly concave domain. We also get a residue theorem for the boundary values of finite cohomology classes defined on cones with (1, n-1) signature, substantially clari-fying the work of Cordaro-Gindikin-Trèves
Tur, Laurent. "Dualité étrange sur le plan projectif." Nice, 2003. http://www.theses.fr/2003NICE4089.
Full textDANILA, GENTIANA. "Formule de verlinde et dualite etrange sur le plan projectif." Paris 7, 1999. http://www.theses.fr/1999PA077065.
Full textWilfer, Oleg. "Duality investigations for multi-composed optimization problems with applications in location theory." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-222660.
Full textWeimann, Martin. "La trace en géométrie projective et torique." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00136109.
Full textl'aide du calcul résiduel dans les cadres projectifs et toriques.
Dans la première partie, on obtient une caractérisation algébrique des formes traces sur une hypersurface analytique à l'aide du calcul résiduel élémentaire d'une variable. En conséquence, une version plus forte du théorème d'Abel-inverse de Henkin et Passare est prouvée. On montre que ce théorème est conséquence de la rigidité d'un système différentiel particulier lié à une équation de type ”onde de choc” et on établit le lien avec le théorème de Wood sur l'algébricité d'une famille de germes d'hypersurfaces analytiques. Enfin, on obtient une nouvelle méthode pour calculer la dimension de l'espace des formes abéliennes de degré maximal sur une hypersurface projective.
Dans la seconde partie, on caractérise de manière combinatoire les familles de fibrés en droites permettant de définir une notion intrinsèque de concavité dans une variété torique complète lisse et on étudie les ensembles analytiques dégénérés correspondants. On étend ainsi la notion de trace au cas torique. Courants résidus, résidus toriques et résultants donnent une borne optimale sur le degrés des traces en les différents paramètres. Si la variété torique est projective, on obtient finalement une version torique des théorèmes de Wood et d'Abel-inverse, permettant une description plus précise du support du polynôme construit dans le cas hypersurface.
Phan, Tran Duc Minh. "Une méthode de dualité pour des problèmes non convexes du Calcul des Variations." Thesis, Toulon, 2018. http://www.theses.fr/2018TOUL0006/document.
Full textIn this thesis, we study a general principle of convexification to treat certain non convex variationalproblems in Rd. Thanks to this principle we are able to enforce the powerful duality techniques andbring back such problems to primal-dual formulations in Rd+1, thus making efficient the numericalsearch of a global minimizer. A theory of duality and calibration fields is reformulated in the caseof linear-growth functionals. Under suitable assumptions, this allows us to revisit and extend anexclusion principle discovered by Visintin in the 1990s and to reduce the original problem to theminimization of a convex functional in Rd. This result is then applied successfully to a class offree boundary or multiphase problems that we treat numerically obtaining very accurate interfaces.On the other hand we apply the theory of calibrations to a classical problem of minimal surfaceswith free boundary and establish new results related to the comparison with its variant where theminimal surfaces functional is replaced by the total variation. We generalize the notion of calibrabilityintroduced by Caselles-Chambolle and Al. and construct explicitly a dual solution for the problemassociated with the second functional by using a locally Lipschitzian potential related to the distanceto the cut-locus. The last part of the thesis is devoted to primal-dual optimization algorithms forthe search of saddle points, introducing new more efficient variants in precision and computationtime. In particular, we experiment a semi-implicit variant of the Arrow-Hurwicz method whichallows to reduce drastically the number of iterations necessary to obtain a sharp accuracy of theinterfaces. Eventually we tackle the structural non-differentiability of the Lagrangian arising fromour method by means of a geometric projection method on the epigraph, thus offering an alternativeto all classical regularization methods
Zhang, Yiqun. "Contribution à l'étude de la vision dynamique : une approche basée sur la géométrie projective." Compiègne, 1993. http://www.theses.fr/1993COMPD650.
Full textHolweck, Frédéric. "Lieu singulier des variétés duales : approche géométrique et applications aux variétés homogènes." Toulouse 3, 2004. http://www.theses.fr/2004TOU30155.
Full textLakhlili, Jalal. "Modélisation et simulation numériques de l'érosion par méthode DDFV." Thesis, Toulon, 2015. http://www.theses.fr/2015TOUL0013/document.
Full textThis study focuses on the numerical modelling of the interfacial erosion occurring at a cohesive soil undergoing an incompressible flow process. The model assumes that the erosion velocity is driven by a fluid shear stress at the water/soil interface. The numerical modelling is based on the eulerian approach: a penalization procedure is used to compute Navier-Stokes equations around soil obstacle, with a fictitious domain method, in order to avoid body- fitted unstructured meshes. The water/soil interface’s evolution is described by a Level Set function coupled to a threshold erosion law.Because we use adaptive mesh refinement, we develop a Discrete Duality Finite Volume scheme (DDFV), which allows non-conforming and non-structured meshes. The penalization method, used to take into account a free velocity in the soil with non-body-fitted mesh, introduces an inaccurate shear stress at the interface. We propose two approaches to compute accurately the erosion velocity of this free boundary problem. The ability of the model to predict the interfacial erosion of soils is confirmed by presenting several simulations that provide better evaluation and comprehension of erosion phenomena
Candu, Constantin. "Discrétisation des modèles sigma invariants conformes sur des supersphères et superespaces projectifs." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00494973.
Full textHendrich, Christopher. "Proximal Splitting Methods in Nonsmooth Convex Optimization." Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-149548.
Full textFrédéric, Holweck. "Lieu singulier des variétés duales : approche géométrique et applications aux variétés homogènes." Phd thesis, Université Paul Sabatier - Toulouse III, 2004. http://tel.archives-ouvertes.fr/tel-00737441.
Full textWang, Xiaozong. "On the Bertini theorem in Arakelov geometry." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM015.
Full textThe purpose of this thesis is to study the geometric properties of the arithmetic varieties. More precisely, we are interested in the existence of regular projective subschemes of a regular projective arithmetic variety. First we extend a result of Poonen. In particular, we prove that given a smooth projective variety X over a finite field and an ample line bundle L on X, the proportion of global sections of L⊗d which has a smooth divisor tends to ζx(1+dim X)⁻¹ when d tends to infinity. Then we show that for a regular projective arithmetic variety X equipped with an ample hermitian line bundle L, the proportion of global sections of supremum norm strictly smaller than 1 of L⊗d whose divisor does not have a singular point on the fiber Xp over any prime p ≤ eᵋᵈ tends to ζx(1+dim X)⁻¹ as d tends to infinity
Fernandes, Karoline Victor. "Métricas de Randers Localmente Dualmente Flat." Universidade Federal de Goiás, 2010. http://repositorio.bc.ufg.br/tede/handle/tde/1968.
Full textWe will study the Finsler metric, on a manifold M, defined as the sum of a Riemannian metric and a 1-form, they are known as Randers metric. We will classify those that are locally dually flat, that is, for all point exists a coordinate system in which the equation of the geodesic has a special form, the coefficients of spray is given in terms of the metric one and a local scalar function, we will also characterize the Randers metric that is locally dually flat with almost isotropic flag curvature
Estudaremos as métricas de Finsler, em uma variedade M, definidas como soma de uma métrica Riemanniana e de uma 1-forma, elas são conhecidas como métricas de Randers. Classificaremos aquelas que são localmente dualmente flat, isto é, para todo ponto existe um sistema de coordenadas no qual a equação das geodésicas tem uma forma especial pois os coeficientes do spray são dados em termos da métrica e de uma função escalar, caracterizaremos também as métricas de Randers que são localmente dualmente flat com curvatura flag quase-isotrópica
Li, Paul. "On the universal embeddings of the binary symplectic and unitary dual polar spaces /." 2001. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3006525.
Full textMurfet, Daniel Saul. "The mock homotopy category of projectives and Grothendieck duality." Phd thesis, 2007. http://hdl.handle.net/1885/151476.
Full textPinet, Théo. "La structure des représentations des algèbres de Temperley-Lieb affines sur la chaîne de spins XXZ." Thesis, 2020. http://hdl.handle.net/1866/24349.
Full textThis master’s thesis reveals the structure of the representations of the affine Temperley-Lieb algebras aTLN(β) on the eigenspaces CN(q,v,d) (of the total spin Sz) of the periodic XXZ spin chains. In particular, we show that these representations, introduced by Martin/Saleur and Morin-Duchesne/Saint-Aubin, always admit a structure akin that of the Feigin-Fuchs representations of the Virasoro Vir algebra and that the different possibilities, for the structure of a Feigin-Fuchs Vir-module, are all realized by a given eigenspace. We also give a plethora of aTLN(β)-linear maps between different eigenspaces by considering a natural action of the Lusztig extension LUqsl2 on the periodic XXZ chains and we then fully characterize the kernel and image of these morphisms by means of long exact sequences and a generalized Clebsch-Gordan decomposition. Finally, we explicitly give the image of the intertwiner iNd(q,v) defined by Morin-Duchesne/Saint-Aubin and we also introduce a new explicit realization for the projective covers in the category modLUqsl2.
Wilfer, Oleg. "Duality investigations for multi-composed optimization problems with applications in location theory." Doctoral thesis, 2016. https://monarch.qucosa.de/id/qucosa%3A20674.
Full textKálnai, Peter. "Kompaktní objekty v kategoriích modulů." Master's thesis, 2012. http://www.nusl.cz/ntk/nusl-304174.
Full textChester, Sean. "Representative Subsets for Preference Queries." Thesis, 2013. http://hdl.handle.net/1828/4833.
Full textGraduate
0984