To see the other types of publications on this topic, follow the link: Projective duality.

Dissertations / Theses on the topic 'Projective duality'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 24 dissertations / theses for your research on the topic 'Projective duality.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Hefez, Abramo. "Duality for projective varieties." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/86249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Abuaf, Roland. "Dualité homologique projective et résolutions catégoriques des singularités." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM057/document.

Full text
Abstract:
Soit $X$ une variété algébrique de Gorenstein à singularités rationnelles. Une résolution des singularités crépante de $X$ est souvent considérée comme une résolution des singularités minimales de $X$. Malheureusement, les résolutions crépantes sont très rares. Ainsi, les variétés déterminantielles de matrices anti-symétriques n'admettent jamais de résolution crépante des singularités. Dans cette thèse, on discutera de diverses notions de résolutions catégoriques crépantes développées par Alexander Kuznetsov. Conjecturalement, ces résolutions doivent être minimale du point de vue catégorique. On introduit dans ce manuscrit la notion de résolution magnifiques des singularités et on montre que tout variété munie d'une telle résolution admet une résolution catégorique faiblement crépante. On en déduit que toutes les variétés déterminantielles (carrées, symétriques et anti-symétriques) admettent des résolutions catégoriques faiblement crépantes. Finalement, on s'intéressera à des hypersurfaces quartiques issues du carré magique de Tits-Freudenthal. On ne peut pas construire de résolution magnifique des singularités pour de telles hypersurfaces, mais on montrera qu'elles admettent tout de même des résolutions catégorique faiblement crépantes des singularités. Ce résultat devrait s'avérer intéressant pour la construction de duales projectives homologiques de certaines Grassmaniennes symplectiques sur les algèbres de composition
Let $X$ be an algebraic variety with Gorenstein rational singularities. A crepant resolution of $X$ is often considered to be a minimal resolution of singularities for $X$. Unfortunately, crepant resolution of singularities are very rare. For instance, determinantal varieties of skew-symmetric matrices never admit crepant resolution of singularities. In this thesis, we discuss various notions of categorical crepant resolution of singularities as defined by Alexander Kuznetsov. Conjecturally, these resolutions are minimal from the categorical point of view. We introduce the notion of wonderful resolution of singularities and we prove that a variety endowed with such a resolution admits a weakly crepant resolution of singularities. As a corollary, we prove that all determinantal varieties (square, as well as symmetric and skew-symmetric) admit weakly crepant resolution of singularities. Finally, we study some quartics hypersurfaces which come from the Tits-Freudenthal magic square. Though they do no admit any wonderful resolution of singularities, we are still able to prove that they have a weakly crepant resolution of singularities. This last result should be of interest in order to construct homological projective duals for some symplectic Grassmannians over the composition algebras
APA, Harvard, Vancouver, ISO, and other styles
3

Hilburn, Justin. "GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O." Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20456.

Full text
Abstract:
In this thesis I show that indecomposable projective and tilting modules in hypertoric category O are obtained by applying a variant of the geometric Jacquet functor of Emerton, Nadler, and Vilonen to certain Gel'fand-Kapranov-Zelevinsky hypergeometric systems. This proves the abelian case of a conjecture of Bullimore, Gaiotto, Dimofte, and Hilburn on the behavior of generic Dirichlet boundary conditions in 3d N=4 SUSY gauge theories.
APA, Harvard, Vancouver, ISO, and other styles
4

Contatto, Felipe. "Vortices, Painlevé integrability and projective geometry." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275099.

Full text
Abstract:
GaugThe first half of the thesis concerns Abelian vortices and Yang-Mills theory. It is proved that the 5 types of vortices recently proposed by Manton are actually symmetry reductions of (anti-)self-dual Yang-Mills equations with suitable gauge groups and symmetry groups acting as isometries in a 4-manifold. As a consequence, the twistor integrability results of such vortices can be derived. It is presented a natural definition of their kinetic energy and thus the metric of the moduli space was calculated by the Samols' localisation method. Then, a modified version of the Abelian–Higgs model is proposed in such a way that spontaneous symmetry breaking and the Bogomolny argument still hold. The Painlevé test, when applied to its soliton equations, reveals a complete list of its integrable cases. The corresponding solutions are given in terms of third Painlevé transcendents and can be interpreted as original vortices on surfaces with conical singularity. The last two chapters present the following results in projective differential geometry and Hamiltonians of hydrodynamic-type systems. It is shown that the projective structures defined by the Painlevé equations are not metrisable unless either the corresponding equations admit first integrals quadratic in first derivatives or they define projectively flat structures. The corresponding first integrals can be derived from Killing vectors associated to the metrics that solve the metrisability problem. Secondly, it is given a complete set of necessary and sufficient conditions for an arbitrary affine connection in 2D to admit, locally, 0, 1, 2 or 3 Killing forms. These conditions are tensorial and simpler than the ones in previous literature. By defining suitable affine connections, it is shown that the problem of existence of Killing forms is equivalent to the conditions of the existence of Hamiltonian structures for hydrodynamic-type systems of two components.
APA, Harvard, Vancouver, ISO, and other styles
5

Benchoufi, Mehdi. "Théorie microlocale des faisceaux pour la transformation Radon." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS475.

Full text
Abstract:
Le sujet de cette thèse est une approche microlocale de la transformation de Radon. Il s’agit d’appliquer à la dualité projective complexe et réelle les techniques initiées dans l’article fondateur de Sato-Kashiwara-Kawai de 1972 et de retrouver, reformuler, améliorer des travaux d’analyse plus classiques sur ce sujet, en particulier ceux de G. Henkin ou S. Gindikin. La dualité projective vue sous l’angle microlocal et faisceautique est apparue pour la première fois dans un travail important de J-L. Brylinski sur les faisceaux pervers, travail repris ensuite par D’Agnolo et Schapira dans le cadre des D-modules. Notre travail est de reprendre systématiquement cette étude avec les nouveaux outils de la théorie microlocale des faisceaux (théorie qui n’existait pas à l’époque de SKK72). Ce travail se compose essentiellement de deux parties. Dans la première, nous commençons par rappeler dans un cadre général la construction des transformations canoniques quantifiées, sous l’hypothèse de l’existence d’une section simple non-dégénérée (introduite sous un autre nom par J. Leray). Cette construction n’avait jamais été faite dans un cadre global hors du cas projectif. Nous montrons alors que ces transformations commutent à l’action des opérateurs microdifferentiels. Il s’agit là d’un résultat fondamental sans qu’aucune preuve consistante n’existe dans la littérature, ce résultat étant plus ou moins sous-entendu dans SKK72. La deuxième partie de la thèse traite des applications à la transformation de Radon “clas-sique”. L’idée de base est que cette transformation échange support des hyperfonctions (modulo analyticité) et front d’onde analytique. Nous obtenons ainsi des théorèmes de prolongement ou d’unicité sur les ouverts linéellement concave. Nous obtenons aussi un théorème des résidus pour les valeurs au bord de classes de cohomologie définies sur les cônes de signatures (1, n − 1), clarifiant substantiellement des travaux de Cordaro-Gindikin-Trèves
The subject of this thesis is a microlocal approach to the transformation of Radon. It is a question of applying to real and complex projective duality the techniques initiated in the founding article of Sato-Kashiwara-Kawai of 1972 and to find, reformulate, improve more classic analytical work on this subject, in particular those of G. Henkin or S. Gindikin. Pro-jective duality seen from the microlocal and sheaf point of view appeared for the first time in an important work by J-L. Brylinski on perverse sheaves, work then taken up by D'Agnolo and Schapira in the framework of D-modules. Our work is to systematically resume this study with the new tools of the microlocal sheaf theory (theory which did not exist at the time of SKK72). This work essentially consists of two parts. In the first, we begin by recalling in a general framework the construction of quantized ca-nonical transformations, under the hypothesis of the existence of a simple non-degenerate section (introduced under another name by J. Leray). This construction had never been done in a global framework outside the projective case. We then show that these transfor-mations exchange the action of the microdifferential operators. This is a fundamental re-sult without any consistent proof existing in the literature, this result being more or less implied in SKK72. The second part of the thesis deals with the applications to the “classical” Radon trans-form. The basic idea is that this transform exchanges the support of hyperfunctions (modu-lo analyticity) and the analytic wavefront set. We thus obtain theorems of continuation or uniqueness on linearly concave domain. We also get a residue theorem for the boundary values of finite cohomology classes defined on cones with (1, n-1) signature, substantially clari-fying the work of Cordaro-Gindikin-Trèves
APA, Harvard, Vancouver, ISO, and other styles
6

Tur, Laurent. "Dualité étrange sur le plan projectif." Nice, 2003. http://www.theses.fr/2003NICE4089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

DANILA, GENTIANA. "Formule de verlinde et dualite etrange sur le plan projectif." Paris 7, 1999. http://www.theses.fr/1999PA077065.

Full text
Abstract:
Nous donnons des exemples a l'appui de la conjecture de dualite etrange de le potier, dans le cas de l'espace de modules m des faisceaux semi-stables de rang 2 sur le plan projectif, avec premiere classe de chern paire, et seconde classe de chern c 2 inferieure ou egale a 19. Nous calculons dans ce cas la dimension de l'espace des sections globales du fibre determinant sur m, ce qui correspond a un analogue de la formule de verlinde pour le plan projectif. Nous calculons a ce but les espaces de cohomologie du fibre tautologique tensorise par le fibre determinant sur le schema de hilbert ponctuel hilb m(x) d'une surface complexe projective et lisse. Nous montrons que pour l et a fibres vectoriels inversibles sur x, et w x le fibre canonique sur x, si h q(x, a) = 0 = h q(x, lisotimes a) pour tout q 1, alors les groupes de cohomologie superieurs sur hilb m(x) du fibre tautologique associe a l tensorise par le fibre determinant associe a a, s'annulent. Nous calculons egalement l'espace des sections globales en termes de h 0(a) et h 0(x, lisotimes a). Finalement nous prouvons que la dualite etrange est verifiee pour les puissances deuxieme et troisieme du fibre determinant sur m, lorsque la deuxieme classe de chern est inferieure ou egale a 5, et nous calculons l'espace des sections globales de toutes les puissances du fibre determinant sur m lorsque la deuxieme classe de chern c 2 est egale a 3 ou a 4.
APA, Harvard, Vancouver, ISO, and other styles
8

Wilfer, Oleg. "Duality investigations for multi-composed optimization problems with applications in location theory." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-222660.

Full text
Abstract:
The goal of this thesis is two-fold. On the one hand, it pursues to provide a contribution to the conjugate duality by proposing a new duality concept, which can be understood as an umbrella for different meaningful perturbation methods. On the other hand, this thesis aims to investigate minimax location problems by means of the duality concept introduced in the first part of this work, followed by a numerical approach using epigraphical splitting methods. After summarizing some elements of the convex analysis as well as introducing important results needed later, we consider an optimization problem with geometric and cone constraints, whose objective function is a composition of n+1 functions. For this problem we propose a conjugate dual problem, where the functions involved in the objective function of the primal problem are decomposed. Furthermore, we formulate generalized interior point regularity conditions for strong duality and give necessary and sufficient optimality conditions. As applications of this approach we determine the formulae of the conjugate as well as the biconjugate of the objective function of the primal problem and analyze an optimization problem having as objective function the sum of reciprocals of concave functions. In the second part of this thesis we discuss in the sense of the introduced duality concept three classes of minimax location problems. The first one consists of nonlinear and linear single minimax location problems with geometric constraints, where the maximum of nonlinear or linear functions composed with gauges between pairs of a new and existing points will be minimized. The version of the nonlinear location problem is additionally considered with set-up costs. The second class of minimax location problems deals with multifacility location problems as suggested by Drezner (1991), where for each given point the sum of weighted distances to all facilities plus set-up costs is determined and the maximal value of these sums is to be minimized. As the last and third class the classical multifacility location problem with geometrical constraints is considered in a generalized form where the maximum of gauges between pairs of new facilities and the maximum of gauges between pairs of new and existing facilities will be minimized. To each of these location problems associated dual problems will be formulated as well as corresponding duality statements and necessary and sufficient optimality conditions. To illustrate the results of the duality approach and to give a more detailed characterization of the relations between the location problems and their corresponding duals, we consider examples in the Euclidean space. This thesis ends with a numerical approach for solving minimax location problems by epigraphical splitting methods. In this framework, we give formulae for the projections onto the epigraphs of several sums of powers of weighted norms as well as formulae for the projection onto the epigraphs of gauges. Numerical experiments document the usefulness of our approach for the discussed location problems.
APA, Harvard, Vancouver, ISO, and other styles
9

Weimann, Martin. "La trace en géométrie projective et torique." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00136109.

Full text
Abstract:
On étudie la notion de trace et les problèmes d'Abel-inverse à
l'aide du calcul résiduel dans les cadres projectifs et toriques.
Dans la première partie, on obtient une caractérisation algébrique des formes traces sur une hypersurface analytique à l'aide du calcul résiduel élémentaire d'une variable. En conséquence, une version plus forte du théorème d'Abel-inverse de Henkin et Passare est prouvée. On montre que ce théorème est conséquence de la rigidité d'un système différentiel particulier lié à une équation de type ”onde de choc” et on établit le lien avec le théorème de Wood sur l'algébricité d'une famille de germes d'hypersurfaces analytiques. Enfin, on obtient une nouvelle méthode pour calculer la dimension de l'espace des formes abéliennes de degré maximal sur une hypersurface projective.
Dans la seconde partie, on caractérise de manière combinatoire les familles de fibrés en droites permettant de définir une notion intrinsèque de concavité dans une variété torique complète lisse et on étudie les ensembles analytiques dégénérés correspondants. On étend ainsi la notion de trace au cas torique. Courants résidus, résidus toriques et résultants donnent une borne optimale sur le degrés des traces en les différents paramètres. Si la variété torique est projective, on obtient finalement une version torique des théorèmes de Wood et d'Abel-inverse, permettant une description plus précise du support du polynôme construit dans le cas hypersurface.
APA, Harvard, Vancouver, ISO, and other styles
10

Phan, Tran Duc Minh. "Une méthode de dualité pour des problèmes non convexes du Calcul des Variations." Thesis, Toulon, 2018. http://www.theses.fr/2018TOUL0006/document.

Full text
Abstract:
Dans cette thèse, nous étudions un principe général de convexification permettant de traiter certainsproblèmes variationnels non convexes sur Rd. Grâce à ce principe nous pouvons mettre en oeuvre lespuissantes techniques de dualité et ramener de tels problèmes à des formulations de type primal–dualdans Rd+1, rendant ainsi efficace la recherche numérique de minima globaux. Une théorie de ladualité et des champs de calibration est reformulée dans le cas de fonctionnelles à croissance linéaire.Sous certaines hypothèses, cela nous permet de généraliser un principe d’exclusion découvert parVisintin dans les années 1990 et de réduire le problème initial à la minimisation d’une fonctionnelleconvexe sur Rd. Ce résultat s’applique notamment à une classe de problèmes à frontière libre oumulti-phasique donnant lieu à des tests numériques très convaincants au vu de la qualité des interfacesobtenues. Ensuite nous appliquons la théorie des calibrations à un problème classique de surfacesminimales avec frontière libre et établissons de nouveaux résultats de comparaison avec sa varianteoù la fonctionnelle des surfaces minimales est remplacée par la variation totale. Nous généralisonsla notion de calibrabilité introduite par Caselles-Chambolle et Al. et construisons explicitementune solution duale pour le problème associé à la seconde fonctionnelle en utilisant un potentiellocalement Lipschitzien lié à la distance au cut-locus. La dernière partie de la thèse est consacrée auxalgorithmes d’optimisation de type primal-dual pour la recherche de points selle, en introduisant denouvelles variantes plus efficaces en précision et temps calcul. Nous avons en particulier introduit unevariante semi-implicite de la méthode d’Arrow-Hurwicz qui permet de réduire le nombre d’itérationsnécessaires pour obtenir une qualité satisfaisante des interfaces. Enfin nous avons traité la nondifférentiabilité structurelle des Lagrangiens utilisés à l’aide d’une méthode géométrique de projectionsur l’épigraphe offrant ainsi une alternative aux méthodes classiques de régularisation
In this thesis, we study a general principle of convexification to treat certain non convex variationalproblems in Rd. Thanks to this principle we are able to enforce the powerful duality techniques andbring back such problems to primal-dual formulations in Rd+1, thus making efficient the numericalsearch of a global minimizer. A theory of duality and calibration fields is reformulated in the caseof linear-growth functionals. Under suitable assumptions, this allows us to revisit and extend anexclusion principle discovered by Visintin in the 1990s and to reduce the original problem to theminimization of a convex functional in Rd. This result is then applied successfully to a class offree boundary or multiphase problems that we treat numerically obtaining very accurate interfaces.On the other hand we apply the theory of calibrations to a classical problem of minimal surfaceswith free boundary and establish new results related to the comparison with its variant where theminimal surfaces functional is replaced by the total variation. We generalize the notion of calibrabilityintroduced by Caselles-Chambolle and Al. and construct explicitly a dual solution for the problemassociated with the second functional by using a locally Lipschitzian potential related to the distanceto the cut-locus. The last part of the thesis is devoted to primal-dual optimization algorithms forthe search of saddle points, introducing new more efficient variants in precision and computationtime. In particular, we experiment a semi-implicit variant of the Arrow-Hurwicz method whichallows to reduce drastically the number of iterations necessary to obtain a sharp accuracy of theinterfaces. Eventually we tackle the structural non-differentiability of the Lagrangian arising fromour method by means of a geometric projection method on the epigraph, thus offering an alternativeto all classical regularization methods
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, Yiqun. "Contribution à l'étude de la vision dynamique : une approche basée sur la géométrie projective." Compiègne, 1993. http://www.theses.fr/1993COMPD650.

Full text
Abstract:
Le travail de cette thèse s'inscrit dans le cadre de la vision 3D et se consacre plus spécialement à la reconstitution de scènes à partir d'une séquence d'images monoculaires saisie par une caméra en mouvement. Il s'agit de reconstruire les éléments 3D du type segments de droite d'une scène en utilisant la connaissance du mouvement de la caméra. L'étude a été faite dans le contexte de la géométrie projective, ce qui a permis, dans le cas d'une translation, le développement d'une approche basée sur le principe de dualité projective. L'idée consiste à résoudre le problème en trois phases séquentielles : - Diviser les droites de la scène en groupes de droites parallèles via un groupement correspondant de leurs images et déterminer la direction de chaque groupe. - Reconstruire les droites groupe par groupe. - Retrouver les segments portés par chacune des droites reconstruites. Dans l'optique de la dualité projective, chacune des deux premières phases revient à représenter les primitives 2D, droites support des segments extraits des images, par des points dans un plan projectif et a mettre en évidence de l'alignement des points qui correspond a un groupe de droites parallèles pour la première phase ou a une seule droite de la scène pour la seconde. Un ensemble d'algorithmes dont le principe se fond essentiellement sur la transformation de Hough a été développé pour réaliser les trois phases. Cette approche privilégie le traitement de longues et denses séquences d'images. Des résultats expérimentaux ont été présentés en vue de montrer sa performance.
APA, Harvard, Vancouver, ISO, and other styles
12

Holweck, Frédéric. "Lieu singulier des variétés duales : approche géométrique et applications aux variétés homogènes." Toulouse 3, 2004. http://www.theses.fr/2004TOU30155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lakhlili, Jalal. "Modélisation et simulation numériques de l'érosion par méthode DDFV." Thesis, Toulon, 2015. http://www.theses.fr/2015TOUL0013/document.

Full text
Abstract:
L’objectif de cette étude est de simuler l’érosion d’un sol cohésif sous l’effet d’un écoulement incompressible. Le modèle élaboré décrit une vitesse d’érosion interfaciale qui dépend de la contrainte de cisaillement de l’écoulement. La modélisation numérique proposée est une approche eulérienne, où une méthode de pénalisation de domaines est utilisée pour résoudre les équations de Navier-Stokes autour d’un obstacle. L’interface eau/sol est décrite par une fonction Level Set couplée à une loi d’érosion à seuil.L’approximation numérique est basée sur un schéma DDFV (Discrete Duality Finite Volume) autorisant des raffinements locaux sur maillages non-conformes et non-structurés. L’approche par pénalisation a mis en évidence une couche limite d'inconsistance à l'interface fluide/solide lors du calcul de la contrainte de cisaillement. Deux approches sont proposées pour estimer précisément la contrainte de ce problème à frontière libre. La pertinence du modèle à prédire l’érosion interfaciale du sol est confirmée par la présentation de plusieurs résultats de simulation, qui offrent une meilleure évaluation et compréhension des phénomènes d'érosion
This study focuses on the numerical modelling of the interfacial erosion occurring at a cohesive soil undergoing an incompressible flow process. The model assumes that the erosion velocity is driven by a fluid shear stress at the water/soil interface. The numerical modelling is based on the eulerian approach: a penalization procedure is used to compute Navier-Stokes equations around soil obstacle, with a fictitious domain method, in order to avoid body- fitted unstructured meshes. The water/soil interface’s evolution is described by a Level Set function coupled to a threshold erosion law.Because we use adaptive mesh refinement, we develop a Discrete Duality Finite Volume scheme (DDFV), which allows non-conforming and non-structured meshes. The penalization method, used to take into account a free velocity in the soil with non-body-fitted mesh, introduces an inaccurate shear stress at the interface. We propose two approaches to compute accurately the erosion velocity of this free boundary problem. The ability of the model to predict the interfacial erosion of soils is confirmed by presenting several simulations that provide better evaluation and comprehension of erosion phenomena
APA, Harvard, Vancouver, ISO, and other styles
14

Candu, Constantin. "Discrétisation des modèles sigma invariants conformes sur des supersphères et superespaces projectifs." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00494973.

Full text
Abstract:
Le but de cette thèse a été l'étude de quelques représentants des modèles sigma en deux dimensions invariants conformes et avec symétrie continue qui sortent du cadre traditionnel, établie par la recherche des dernières décennies dans le domaine des théories conformes, des modèles sigma de Wess-Zumino-Witten ou des modèles gaussiens. Les modèles sigma sur des superespaces symétriques, définis par une action métrique standard, offrent de tels exemples. La difficulté de résoudre ces modèles sigma est relié au fait qu'ils ne possèdent pas de symétrie de Kac-Moody, qui est normalement nécessaire pour intégrer les théories conformes nongaussiennes avec symétrie continue. Dans cette thèse on considère les modèles sigma sur les supersphères S^(2S+1/2S) et sur les superespaces projectifs). Les deux modèles continus admettent une discrétisation par un gaz de boucles denses qui s'intersectent et dont l'algèbre des matrices de transfert est une algèbre de type Brauer. La stratégie principale qu'on a adoptée dans la recherche des résultats exacts sur ces modèles sigma est l'étude détaillée des symétries de la théorie continue, d'un coté, et du modèle discret, de l'autre. Cette analyse permet de faire le pont entre le comportement du modèle discret et la théorie continue. L'analyse détaillée des symétries discrètes - en particulier la structure des blocs de l'algèbre de Brauer - combinée à des calculs perturbatifs donne lieu à une proposition pour, selon les cas, le spectre partiel ou complet de la théorie conforme. Une dualité exacte du type couplage faible/couplage fort est également conjecturée dans les cas des modèles sigma sur les supersphères.
APA, Harvard, Vancouver, ISO, and other styles
15

Hendrich, Christopher. "Proximal Splitting Methods in Nonsmooth Convex Optimization." Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-149548.

Full text
Abstract:
This thesis is concerned with the development of novel numerical methods for solving nondifferentiable convex optimization problems in real Hilbert spaces and with the investigation of their asymptotic behavior. To this end, we are also making use of monotone operator theory as some of the provided algorithms are originally designed to solve monotone inclusion problems. After introducing basic notations and preliminary results in convex analysis, we derive two numerical methods based on different smoothing strategies for solving nondifferentiable convex optimization problems. The first approach, known as the double smoothing technique, solves the optimization problem with some given a priori accuracy by applying two regularizations to its conjugate dual problem. A special fast gradient method then solves the regularized dual problem such that an approximate primal solution can be reconstructed from it. The second approach affects the primal optimization problem directly by applying a single regularization to it and is capable of using variable smoothing parameters which lead to a more accurate approximation of the original problem as the iteration counter increases. We then derive and investigate different primal-dual methods in real Hilbert spaces. In general, one considerable advantage of primal-dual algorithms is that they are providing a complete splitting philosophy in that the resolvents, which arise in the iterative process, are only taken separately from each maximally monotone operator occurring in the problem description. We firstly analyze the forward-backward-forward algorithm of Combettes and Pesquet in terms of its convergence rate for the objective of a nondifferentiable convex optimization problem. Additionally, we propose accelerations of this method under the additional assumption that certain monotone operators occurring in the problem formulation are strongly monotone. Subsequently, we derive two Douglas–Rachford type primal-dual methods for solving monotone inclusion problems involving finite sums of linearly composed parallel sum type monotone operators. To prove their asymptotic convergence, we use a common product Hilbert space strategy by reformulating the corresponding inclusion problem reasonably such that the Douglas–Rachford algorithm can be applied to it. Finally, we propose two primal-dual algorithms relying on forward-backward and forward-backward-forward approaches for solving monotone inclusion problems involving parallel sums of linearly composed monotone operators. The last part of this thesis deals with different numerical experiments where we intend to compare our methods against algorithms from the literature. The problems which arise in this part are manifold and they reflect the importance of this field of research as convex optimization problems appear in lots of applications of interest.
APA, Harvard, Vancouver, ISO, and other styles
16

Frédéric, Holweck. "Lieu singulier des variétés duales : approche géométrique et applications aux variétés homogènes." Phd thesis, Université Paul Sabatier - Toulouse III, 2004. http://tel.archives-ouvertes.fr/tel-00737441.

Full text
Abstract:
On doit à Friedrich Knop un étonnant théorème qui établit un lien entre algèbres de Lie simples de type A-D-E, et singularités simples de même type. Le résultat est le suivant : on considère la projectivisation de l'orbite de plus haut poids pour l'action adjointe d'un groupe de Lie simple sur son algèbre de Lie (une telle variété est appelée variété adjointe). Il existe alors un hyperplan tangent à l'orbite ayant un unique point singulier du même type que celui de l'algèbre de Lie. Ce théorème est le point de départ de nos travaux. Afin de mieux comprendre ce lien, nous étudions la géométrie des variétés duales des variétés adjointes. Dans le premier chapitre nous prouvons une version duale du théorème de Knop. Notre théorème permet d'obtenir le discriminant d'une singularité simple à partir de la duale de la variété adjointe. L'hyperplan considéré par Knop s'interprète alors comme un point très singulier de la duale. Dans le deuxième chapitre nous considérons le lieu singulier de la duale pour une variétés projective lisse. Nous montrons que l'existence de certaines strates de dimensions maximales équivaut à l'existence de section hyperplane de la variété d'origine admettant des points singuliers d'un type donné. Nous insistons alors sur l'importance de deux strates qui ont un sens géométrique : la duale de la variété des tangentes et la duale de la variété des sécantes. Enfin dans un dernier chapitre nous appliquons ces résultats à l'étude de la normalité des duales des variétés homogènes.
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Xiaozong. "On the Bertini theorem in Arakelov geometry." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM015.

Full text
Abstract:
Cette thèse a pour objet l'étude des propriétés géométriques des variétés arithmétiques. Plus précisément, nous nous intéressons à l'existence des sous-schémas projectifs réguliers sur une variété arithmétique projective régulière. Nous étendons d'abord un résultat de Poonen. Nous prouvons notamment qu'étant donnés une variété projective lisse X sur un corps fini et un faisceau ample L au-dessus de X, la proportion des sections globales de L⊗d ayant un diviseur lisse tend vers ζx(1+dim X)⁻¹ quand d tend vers l'infini. Nous montrons ensuite que pour une variété arithmétique projective régulière X muni d'un faisceau hermitien ample L, la proportion des sections globales de norme infinie strictement plus petite que 1 de L⊗d dont le diviseur n'a pas de point singulier sur la fibre Xp au-dessus d'aucun nombre premier p ≤ eᵋᵈ tend vers ζx(1+dim X)⁻¹ quand d tend vers l'infini
The purpose of this thesis is to study the geometric properties of the arithmetic varieties. More precisely, we are interested in the existence of regular projective subschemes of a regular projective arithmetic variety. First we extend a result of Poonen. In particular, we prove that given a smooth projective variety X over a finite field and an ample line bundle L on X, the proportion of global sections of L⊗d which has a smooth divisor tends to ζx(1+dim X)⁻¹ when d tends to infinity. Then we show that for a regular projective arithmetic variety X equipped with an ample hermitian line bundle L, the proportion of global sections of supremum norm strictly smaller than 1 of L⊗d whose divisor does not have a singular point on the fiber Xp over any prime p ≤ eᵋᵈ tends to ζx(1+dim X)⁻¹ as d tends to infinity
APA, Harvard, Vancouver, ISO, and other styles
18

Fernandes, Karoline Victor. "Métricas de Randers Localmente Dualmente Flat." Universidade Federal de Goiás, 2010. http://repositorio.bc.ufg.br/tede/handle/tde/1968.

Full text
Abstract:
Made available in DSpace on 2014-07-29T16:02:22Z (GMT). No. of bitstreams: 1 dissertacao karoline fernandes.pdf: 700169 bytes, checksum: bbcf93fe91f369b6605215c70576e124 (MD5) Previous issue date: 2010-02-26
We will study the Finsler metric, on a manifold M, defined as the sum of a Riemannian metric and a 1-form, they are known as Randers metric. We will classify those that are locally dually flat, that is, for all point exists a coordinate system in which the equation of the geodesic has a special form, the coefficients of spray is given in terms of the metric one and a local scalar function, we will also characterize the Randers metric that is locally dually flat with almost isotropic flag curvature
Estudaremos as métricas de Finsler, em uma variedade M, definidas como soma de uma métrica Riemanniana e de uma 1-forma, elas são conhecidas como métricas de Randers. Classificaremos aquelas que são localmente dualmente flat, isto é, para todo ponto existe um sistema de coordenadas no qual a equação das geodésicas tem uma forma especial pois os coeficientes do spray são dados em termos da métrica e de uma função escalar, caracterizaremos também as métricas de Randers que são localmente dualmente flat com curvatura flag quase-isotrópica
APA, Harvard, Vancouver, ISO, and other styles
19

Li, Paul. "On the universal embeddings of the binary symplectic and unitary dual polar spaces /." 2001. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3006525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Murfet, Daniel Saul. "The mock homotopy category of projectives and Grothendieck duality." Phd thesis, 2007. http://hdl.handle.net/1885/151476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Pinet, Théo. "La structure des représentations des algèbres de Temperley-Lieb affines sur la chaîne de spins XXZ." Thesis, 2020. http://hdl.handle.net/1866/24349.

Full text
Abstract:
Ce mémoire révèle la structure des représentations des algèbres de Temperley-Lieb affines aTLN(β) sur les espaces propres CN(q,v,d) (du spin total Sz) des chaînes de spins XXZ périodiques. En particulier, on y démontre que ces représentations, introduites dans Martin/Saleur et Morin-Duchesne/Saint-Aubin, admettent toujours une structure similaire à celle des représentations de Feigin-Fuchs de l’algèbre de Virasoro Vir et que les différentes possibilités, pour la structure d’un Vir-module de Feigin-Fuchs, sont toutes réalisées par un espace propre donné. On introduit aussi une pléthore d’applications aTLN(β)-linéaires entre différents espaces propres en considérant une action naturelle de l’extension de Lusztig LUqsl2 sur les chaînes XXZ périodiques et on caractérise entièrement le noyau ainsi que l’image de ces applications à l’aide de longues suites exactes et d’une décomposition de Clebsch-Gordan généralisée. Finalement, on identifie l’image du morphisme iNd(q,v) défini par Morin-Duchesne/Saint-Aubin et on donne également une nouvelle réalisation explicite pour les couvertures projectives de la catégorie modLUqsl2.
This master’s thesis reveals the structure of the representations of the affine Temperley-Lieb algebras aTLN(β) on the eigenspaces CN(q,v,d) (of the total spin Sz) of the periodic XXZ spin chains. In particular, we show that these representations, introduced by Martin/Saleur and Morin-Duchesne/Saint-Aubin, always admit a structure akin that of the Feigin-Fuchs representations of the Virasoro Vir algebra and that the different possibilities, for the structure of a Feigin-Fuchs Vir-module, are all realized by a given eigenspace. We also give a plethora of aTLN(β)-linear maps between different eigenspaces by considering a natural action of the Lusztig extension LUqsl2 on the periodic XXZ chains and we then fully characterize the kernel and image of these morphisms by means of long exact sequences and a generalized Clebsch-Gordan decomposition. Finally, we explicitly give the image of the intertwiner iNd(q,v) defined by Morin-Duchesne/Saint-Aubin and we also introduce a new explicit realization for the projective covers in the category modLUqsl2.
APA, Harvard, Vancouver, ISO, and other styles
22

Wilfer, Oleg. "Duality investigations for multi-composed optimization problems with applications in location theory." Doctoral thesis, 2016. https://monarch.qucosa.de/id/qucosa%3A20674.

Full text
Abstract:
The goal of this thesis is two-fold. On the one hand, it pursues to provide a contribution to the conjugate duality by proposing a new duality concept, which can be understood as an umbrella for different meaningful perturbation methods. On the other hand, this thesis aims to investigate minimax location problems by means of the duality concept introduced in the first part of this work, followed by a numerical approach using epigraphical splitting methods. After summarizing some elements of the convex analysis as well as introducing important results needed later, we consider an optimization problem with geometric and cone constraints, whose objective function is a composition of n+1 functions. For this problem we propose a conjugate dual problem, where the functions involved in the objective function of the primal problem are decomposed. Furthermore, we formulate generalized interior point regularity conditions for strong duality and give necessary and sufficient optimality conditions. As applications of this approach we determine the formulae of the conjugate as well as the biconjugate of the objective function of the primal problem and analyze an optimization problem having as objective function the sum of reciprocals of concave functions. In the second part of this thesis we discuss in the sense of the introduced duality concept three classes of minimax location problems. The first one consists of nonlinear and linear single minimax location problems with geometric constraints, where the maximum of nonlinear or linear functions composed with gauges between pairs of a new and existing points will be minimized. The version of the nonlinear location problem is additionally considered with set-up costs. The second class of minimax location problems deals with multifacility location problems as suggested by Drezner (1991), where for each given point the sum of weighted distances to all facilities plus set-up costs is determined and the maximal value of these sums is to be minimized. As the last and third class the classical multifacility location problem with geometrical constraints is considered in a generalized form where the maximum of gauges between pairs of new facilities and the maximum of gauges between pairs of new and existing facilities will be minimized. To each of these location problems associated dual problems will be formulated as well as corresponding duality statements and necessary and sufficient optimality conditions. To illustrate the results of the duality approach and to give a more detailed characterization of the relations between the location problems and their corresponding duals, we consider examples in the Euclidean space. This thesis ends with a numerical approach for solving minimax location problems by epigraphical splitting methods. In this framework, we give formulae for the projections onto the epigraphs of several sums of powers of weighted norms as well as formulae for the projection onto the epigraphs of gauges. Numerical experiments document the usefulness of our approach for the discussed location problems.
APA, Harvard, Vancouver, ISO, and other styles
23

Kálnai, Peter. "Kompaktní objekty v kategoriích modulů." Master's thesis, 2012. http://www.nusl.cz/ntk/nusl-304174.

Full text
Abstract:
Title: Compact objects in categories of modules Author: Peter Kálnai Department: Department of Algebra Supervisor: Mgr. Jan Žemlička, Ph.D., Department of Algebra Abstract: In the thesis we state baic properties of compact objects in various appropriate categories like categories of modules, stable factor category over a perfect ring and Grothendieck categories. We find a ring R such that the class of dually slender R-modules is closed under direct products under some set-theoretic assumption. Finally, we characterize the conditions, when countably generat- ed projective modules are finitely generated, expressed by their Grothendieck monoid. Keywords: compact, dually slender module, stable module category, projective module, self-small
APA, Harvard, Vancouver, ISO, and other styles
24

Chester, Sean. "Representative Subsets for Preference Queries." Thesis, 2013. http://hdl.handle.net/1828/4833.

Full text
Abstract:
We focus on the two overlapping areas of preference queries and dataset summarization. A (linear) preference query specifies the relative importance of the attributes in a dataset and asks for the tuples that best match those preferences. Dataset summarization is the task of representing an entire dataset by a small, representative subset. Within these areas, we focus on three important sub-problems, significantly advancing the state-of-the-art in each. We begin with an investigation into a new formulation of preference queries, identifying a neglected and important subclass that we call threshold projection queries. While literature typically constrains the attribute preferences (which are real-valued weights) such that their sum is one, we show that this introduces bias when querying by threshold rather than cardinality. Using projection, rather than inner product as in that literature, removes the bias. We then give algorithms for building and querying indices for this class of query, based, in the general case, on geometric duality and halfspace range searching, and, in an important special case, on stereographic projection. In the second part of the dissertation, we investigate the monochromatic reverse top-k (mRTOP) query in two dimensions. A mRTOP query asks for, given a tuple and a dataset, the linear preference queries on the dataset that will include the given tuple. Towards this goal, we consider the novel scenario of building an index to support mRTOP queries, using geometric duality and plane sweep. We show theoretically and empirically that the index is quick to build, small on disk, and very efficient at answering mRTOP queries. As a corollary to these efforts, we defined the top-k rank contour, which encodes the k-ranked tuple for every possible linear preference query. This is tremendously useful in answering mRTOP queries, but also, we posit, of significant independent interest for its relation to myriad related linear preference query problems. Intuitively, the top-k rank contour is the minimum possible representation of knowledge needed to identify the k-ranked tuple for any query, without apriori knowledge of that query. We also introduce k-regret minimizing sets, a very succinct approximation of a numeric dataset. The purpose of the approximation is to represent the entire dataset by just a small subset that nonetheless will contain a tuple within or near to the top-k for any linear preference query. We show that the problem of finding k-regret minimizing sets—and, indeed, the problem in literature that it generalizes—is NP-Hard. Still, for the special case of two dimensions, we provide a fast, exact algorithm based on the top-k rank contour. For arbitrary dimension, we introduce a novel greedy algorithm based on linear programming and randomization that does excellently in our empirical investigation.
Graduate
0984
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography