Academic literature on the topic 'Projective duality'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Projective duality.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Projective duality"
Kuznetsov, Alexander. "Homological projective duality." Publications mathématiques de l'IHÉS 105, no. 1 (June 2007): 157–220. http://dx.doi.org/10.1007/s10240-007-0006-8.
Full textPerry, Alexander. "Noncommutative homological projective duality." Advances in Mathematics 350 (July 2019): 877–972. http://dx.doi.org/10.1016/j.aim.2019.04.052.
Full textRennemo, Jørgen Vold, and Ed Segal. "Hori-mological projective duality." Duke Mathematical Journal 168, no. 11 (August 2019): 2127–205. http://dx.doi.org/10.1215/00127094-2019-0014.
Full textGarcia, A., and J. F. Voloch. "Duality for projective curves." Boletim da Sociedade Brasileira de Matem�tica 21, no. 2 (September 1991): 159–75. http://dx.doi.org/10.1007/bf01237362.
Full textGoerss, Paul G. "Projective and Injective Hopf Algebras Over the Dyer-Lashof Algebra." Canadian Journal of Mathematics 45, no. 5 (October 1, 1993): 944–76. http://dx.doi.org/10.4153/cjm-1993-053-9.
Full textKuznetsov, Alexander, and Alexander Perry. "Homological projective duality for quadrics." Journal of Algebraic Geometry 30, no. 3 (January 15, 2021): 457–76. http://dx.doi.org/10.1090/jag/767.
Full textFRISK, ANDERS, and VOLODYMYR MAZORCHUK. "PROPERLY STRATIFIED ALGEBRAS AND TILTING." Proceedings of the London Mathematical Society 92, no. 1 (December 19, 2005): 29–61. http://dx.doi.org/10.1017/s0024611505015431.
Full textBruce, J. W. "Lines, surfaces and duality." Mathematical Proceedings of the Cambridge Philosophical Society 112, no. 1 (July 1992): 53–61. http://dx.doi.org/10.1017/s0305004100070754.
Full textBarrett, David E. "Holomorphic projection and duality for domains in complex projective space." Transactions of the American Mathematical Society 368, no. 2 (April 3, 2015): 827–50. http://dx.doi.org/10.1090/tran/6338.
Full textBenson, D. J., and Jon F. Carlson. "Projective Resolutions and Poincare Duality Complexes." Transactions of the American Mathematical Society 342, no. 2 (April 1994): 447. http://dx.doi.org/10.2307/2154636.
Full textDissertations / Theses on the topic "Projective duality"
Hefez, Abramo. "Duality for projective varieties." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/86249.
Full textAbuaf, Roland. "Dualité homologique projective et résolutions catégoriques des singularités." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM057/document.
Full textLet $X$ be an algebraic variety with Gorenstein rational singularities. A crepant resolution of $X$ is often considered to be a minimal resolution of singularities for $X$. Unfortunately, crepant resolution of singularities are very rare. For instance, determinantal varieties of skew-symmetric matrices never admit crepant resolution of singularities. In this thesis, we discuss various notions of categorical crepant resolution of singularities as defined by Alexander Kuznetsov. Conjecturally, these resolutions are minimal from the categorical point of view. We introduce the notion of wonderful resolution of singularities and we prove that a variety endowed with such a resolution admits a weakly crepant resolution of singularities. As a corollary, we prove that all determinantal varieties (square, as well as symmetric and skew-symmetric) admit weakly crepant resolution of singularities. Finally, we study some quartics hypersurfaces which come from the Tits-Freudenthal magic square. Though they do no admit any wonderful resolution of singularities, we are still able to prove that they have a weakly crepant resolution of singularities. This last result should be of interest in order to construct homological projective duals for some symplectic Grassmannians over the composition algebras
Hilburn, Justin. "GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O." Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20456.
Full textContatto, Felipe. "Vortices, Painlevé integrability and projective geometry." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275099.
Full textBenchoufi, Mehdi. "Théorie microlocale des faisceaux pour la transformation Radon." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS475.
Full textThe subject of this thesis is a microlocal approach to the transformation of Radon. It is a question of applying to real and complex projective duality the techniques initiated in the founding article of Sato-Kashiwara-Kawai of 1972 and to find, reformulate, improve more classic analytical work on this subject, in particular those of G. Henkin or S. Gindikin. Pro-jective duality seen from the microlocal and sheaf point of view appeared for the first time in an important work by J-L. Brylinski on perverse sheaves, work then taken up by D'Agnolo and Schapira in the framework of D-modules. Our work is to systematically resume this study with the new tools of the microlocal sheaf theory (theory which did not exist at the time of SKK72). This work essentially consists of two parts. In the first, we begin by recalling in a general framework the construction of quantized ca-nonical transformations, under the hypothesis of the existence of a simple non-degenerate section (introduced under another name by J. Leray). This construction had never been done in a global framework outside the projective case. We then show that these transfor-mations exchange the action of the microdifferential operators. This is a fundamental re-sult without any consistent proof existing in the literature, this result being more or less implied in SKK72. The second part of the thesis deals with the applications to the “classical” Radon trans-form. The basic idea is that this transform exchanges the support of hyperfunctions (modu-lo analyticity) and the analytic wavefront set. We thus obtain theorems of continuation or uniqueness on linearly concave domain. We also get a residue theorem for the boundary values of finite cohomology classes defined on cones with (1, n-1) signature, substantially clari-fying the work of Cordaro-Gindikin-Trèves
Tur, Laurent. "Dualité étrange sur le plan projectif." Nice, 2003. http://www.theses.fr/2003NICE4089.
Full textDANILA, GENTIANA. "Formule de verlinde et dualite etrange sur le plan projectif." Paris 7, 1999. http://www.theses.fr/1999PA077065.
Full textWilfer, Oleg. "Duality investigations for multi-composed optimization problems with applications in location theory." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-222660.
Full textWeimann, Martin. "La trace en géométrie projective et torique." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00136109.
Full textl'aide du calcul résiduel dans les cadres projectifs et toriques.
Dans la première partie, on obtient une caractérisation algébrique des formes traces sur une hypersurface analytique à l'aide du calcul résiduel élémentaire d'une variable. En conséquence, une version plus forte du théorème d'Abel-inverse de Henkin et Passare est prouvée. On montre que ce théorème est conséquence de la rigidité d'un système différentiel particulier lié à une équation de type ”onde de choc” et on établit le lien avec le théorème de Wood sur l'algébricité d'une famille de germes d'hypersurfaces analytiques. Enfin, on obtient une nouvelle méthode pour calculer la dimension de l'espace des formes abéliennes de degré maximal sur une hypersurface projective.
Dans la seconde partie, on caractérise de manière combinatoire les familles de fibrés en droites permettant de définir une notion intrinsèque de concavité dans une variété torique complète lisse et on étudie les ensembles analytiques dégénérés correspondants. On étend ainsi la notion de trace au cas torique. Courants résidus, résidus toriques et résultants donnent une borne optimale sur le degrés des traces en les différents paramètres. Si la variété torique est projective, on obtient finalement une version torique des théorèmes de Wood et d'Abel-inverse, permettant une description plus précise du support du polynôme construit dans le cas hypersurface.
Phan, Tran Duc Minh. "Une méthode de dualité pour des problèmes non convexes du Calcul des Variations." Thesis, Toulon, 2018. http://www.theses.fr/2018TOUL0006/document.
Full textIn this thesis, we study a general principle of convexification to treat certain non convex variationalproblems in Rd. Thanks to this principle we are able to enforce the powerful duality techniques andbring back such problems to primal-dual formulations in Rd+1, thus making efficient the numericalsearch of a global minimizer. A theory of duality and calibration fields is reformulated in the caseof linear-growth functionals. Under suitable assumptions, this allows us to revisit and extend anexclusion principle discovered by Visintin in the 1990s and to reduce the original problem to theminimization of a convex functional in Rd. This result is then applied successfully to a class offree boundary or multiphase problems that we treat numerically obtaining very accurate interfaces.On the other hand we apply the theory of calibrations to a classical problem of minimal surfaceswith free boundary and establish new results related to the comparison with its variant where theminimal surfaces functional is replaced by the total variation. We generalize the notion of calibrabilityintroduced by Caselles-Chambolle and Al. and construct explicitly a dual solution for the problemassociated with the second functional by using a locally Lipschitzian potential related to the distanceto the cut-locus. The last part of the thesis is devoted to primal-dual optimization algorithms forthe search of saddle points, introducing new more efficient variants in precision and computationtime. In particular, we experiment a semi-implicit variant of the Arrow-Hurwicz method whichallows to reduce drastically the number of iterations necessary to obtain a sharp accuracy of theinterfaces. Eventually we tackle the structural non-differentiability of the Lagrangian arising fromour method by means of a geometric projection method on the epigraph, thus offering an alternativeto all classical regularization methods
Books on the topic "Projective duality"
Kunz, Ernst. Residues and Duality for Projective Algebraic Varieties. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/ulect/047.
Full textResidues and duality for projective algebraic varieties. Providence, R.I: American Mathematical Society, 2008.
Find full textBlecher, David P. Categories of operator modules: Morita equivalence and projective modules. Providence, R.I: American Mathematical Society, 2000.
Find full textAbe, Takeshi. Strange duality for parabolic symplectic bundles on a pointed projective line. Kyoto, Japan: Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2008.
Find full textProjective Duality and Homogeneous Spaces. Berlin/Heidelberg: Springer-Verlag, 2005. http://dx.doi.org/10.1007/b138367.
Full textProjective Duality and Homogeneous Spaces. Springer Berlin / Heidelberg, 2010.
Find full textTevelev, Evgueni A. Projective Duality and Homogeneous Spaces. Springer London, Limited, 2005.
Find full textProjective Duality and Homogeneous Spaces (Encyclopaedia of Mathematical Sciences). Springer, 2005.
Find full textBook chapters on the topic "Projective duality"
Faure, Claude-Alain, and Alfred Frölicher. "Duality." In Modern Projective Geometry, 255–73. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9590-2_11.
Full textCoxeter, H. S. M. "The Principle of Duality." In Projective Geometry, 24–32. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-6385-2_3.
Full textCiblac, Thierry, and Jean-Claude Morel. "Projective Properties and Duality." In Sustainable Masonry, 155–90. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119003564.ch8.
Full textPositselski, Leonid. "Flat and Finitely Projective Koszulity." In Relative Nonhomogeneous Koszul Duality, 9–38. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89540-2_2.
Full textUrquhart, Alasdair. "Duality Theory for Projective Algebras." In Relational Methods in Computer Science, 33–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11734673_3.
Full textReider, Igor. "J(X; L, d) and the Langlands Duality." In Nonabelian Jacobian of Projective Surfaces, 197–212. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35662-9_12.
Full textFillastre, François, and Andrea Seppi. "Spherical, hyperbolic, and other projective geometries: convexity, duality, transitions." In Eighteen Essays in Non-Euclidean Geometry, 321–409. Zuerich, Switzerland: European Mathematical Society Publishing House, 2019. http://dx.doi.org/10.4171/196-1/16.
Full textGeorg Schaathun, Hans. "Duality and Greedy Weights of Linear Codes and Projective Multisets." In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 92–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45624-4_10.
Full textConradt, Oliver. "The Principle of Duality in Clifford Algebra and Projective Geometry." In Clifford Algebras and their Applications in Mathematical Physics, 157–93. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1368-0_10.
Full textSTOLFI, JORGE. "Duality." In Oriented Projective Geometry, 83–93. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-12-672025-9.50013-7.
Full textConference papers on the topic "Projective duality"
Skala, Vaclav. "Projective geometry and duality for graphics, games and visualization." In SIGGRAPH Asia 2012 Courses. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2407783.2407793.
Full textRAFTOPOULOS, DIONYSIOS G. "Projective Geometrical Space, Duality, Harmonicity and the Inverse Square Law." In Unified Field Mechanics II: Preliminary Formulations and Empirical Tests, 10th International Symposium Honouring Mathematical Physicist Jean-Pierre Vigier. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813232044_0046.
Full textSkala, Vaclav. "Projective geometry, duality and Plücker coordinates for geometric computations with determinants on GPUs." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992684.
Full textWang, Geyang, Yao Zhao, Chunyu Lin, Meiqin Liu, and Jian Jin. "Dually Octagonal Projection for 360 Video with Less-Distortion Introduced." In 2020 15th IEEE International Conference on Signal Processing (ICSP). IEEE, 2020. http://dx.doi.org/10.1109/icsp48669.2020.9320966.
Full text