Dissertations / Theses on the topic 'Programmation mixte en nombre entiers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 29 dissertations / theses for your research on the topic 'Programmation mixte en nombre entiers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Preda, Dorin Noailles Joseph. "Intégration d'une contrainte logique dans les problèmes de contrôle optimal et résolution par la programmation mixte." Toulouse : INP Toulouse, 2005. http://ethesis.inp-toulouse.fr/archive/00000047.
Full textFeng, Jianguang. "Modélisation et optimisation des Hoist Scheduling Problems." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLC043/document.
Full textThis thesis studies hoist scheduling problems (HSPs) arising in automated electroplating lines. In such lines, hoists are often used for material handing between tanks. These hoists play a crucial role in the performance of the lines and an optimal schedule of the hoist operations is a key factor in guaranteeing product quality and maximizing productivity. We focus on extended lines (i.e. with multi-function and/or multi-capacity tanks) with a single hoist. This research investigates three hoist scheduling problems: robust optimization for cyclic HSP, dynamic jobshop HSP in extended lines and cyclic jobshop HSP in extended lines.We first study the robust optimization for a cyclic HSP. The robustness of a cyclic hoist schedule is defined in terms of the free slacks in hoist traveling times. A bi-objective mixed-integer linear programming (MILP) model is developed to optimize the cycle time and the robustness simultaneously. It is proved that the optimal cycle time strictly increases with the robustness, thus there is an infinite number of Pareto optimal solutions. We established lower and upper bounds of these two objectives. Computational results on several benchmark instances and randomly generated instances indicate that the proposed approach can effectively solve the problem.We then examine a dynamic jobshop HSP with multifunction and multi-capacity tanks. We demonstrate that an existing model for a similar problem can lead to suboptimality. To deal with this issue, a new MILP model is developed to generate an optimal reschedule. It can handle the case where a multi-function tank is also multi-capacity. Computational results on instances with and without multifunction tanks indicate that the proposed model always yields optimal solutions, and is more compact and effective than the existing one.Finally, we investigate a cyclic jobshop HSP with multifunction and multi-capacity tanks. An MILP model is developed for the problem. The key issue is to formulate the time-window constraints and the tank capacity constraints. We adapt the formulation of time-window constraints for a simpler cyclic HSP to the jobshop case. The tank capacity constraints are handled by dealing with the relationships between hoist moves so that there is always an empty processing slot for new parts. Computational experiments on numerical examples and randomly generated instances indicate that the proposed model can effectively solve the problem
Preda, Dorin. "Intégration d'une contrainte logique dans les problèmes de contrôle optimal et résolution par la programmation mixte." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2004. http://tel.archives-ouvertes.fr/tel-00008881.
Full textIoan, Daniel. "Safe Navigation Strategies within Cluttered Environment." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG047.
Full textThis thesis pertains to optimization-based navigation and control in multi-obstacle environments. The design problem is commonly stated in the literature in terms of a constrained optimization problem over a non-convex domain. Thus, building on the combination of Model Predictive Control and set-theoretic concepts, we develop a couple of constructive methods based on the geometrical interpretation. In its first part, the thesis focuses based on a thorough analysis of the recent results in the field on the multi-obstacle environment's representation. Hence, we opted to exploit a particular class of convex sets endowed with the symmetry property to model the environment, reduce complexity, and enhance performance. Furthermore, we solve an open problem in navigation within cluttered environments: the feasible space partitioning in accordance with the distribution of obstacles. This methodology's core is the construction of a convex lifting which boils down to convex optimization. We cover both the mathematical foundations and the computational details of the implementation. Finally, we illustrate the concepts with geometrical examples, and we complement the study by further providing global feasibility guarantees and enhancing the effective control by operating at the strategical level
Angilella, Vincent. "Design optimal des réseaux Fiber To The Home." Thesis, Evry, Institut national des télécommunications, 2018. http://www.theses.fr/2018TELE0004/document.
Full textFor operators, FTTH networks are the most widespread solution to the increasing traffic demand. Their layout requires a huge investment. The aim of this work is to ensure a cost effective deployment of quality networks. We start by presenting aspects of this network design problem which make it a complex problem. The related literature is reviewed to highlight the novel issues that we solve. Then, we elaborate strategies to find the best solution in different contexts. Several policies regarding maintenance or civil engineering use will be investigated. The problems encountered are tackled using several combinatorial optimization tools (integer programming, valid inequalities, dynamic programming, approximations, complexity theory, inapproximability…) which will be developed according to our needs. The proposed solutions were tested and validated on real-life instances, and are meant to be implemented in a network planning tool from Orange
Sahraoui, Youcef. "Short-term hydropower production scheduling : feasibility and modeling." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX025/document.
Full textIn the electricity industry, and more specifically at the French utility company EDF, mathematical optimization is used to model and solve problems related to electricity production management.To name a few applications: planning for capacity investments, managing depletion risks of hydro-reservoirs, scheduling outages and refueling for nuclear plants.More specifically, hydroelectricity is a renewable, cheap, flexible but limited source of energy.Harnessing hydroelectricity is thus critical for electricity production management.We are interested in Mixed-Integer Non-Linear Programming (MINLP) optimization problems.They are optimization problems whose decision variables can be continuous or discrete and the functions to express the objective and constraints can be linear or non-linear.The non-linearities and the combinatorial aspect induced by the integer variables make these problems particularly difficult to solve.Indeed existing methods cannot always solve large MINLP problems to the optimum within limited computational timeframes.Prior to solution performance, feasibility is preliminary challenge to tackle since we want to ensure the MINLP problems to solve admit feasible solutions.When infeasibilities occur in complex models, it is useful but not trivial to analyze their causes.Also, certifying the exactness of the results compounds the difficulty of solving MINLP problems as solution methods are generally implemented in floating-point arithmetic, which may lead to approximate precision.In this thesis, we work on two optimization problems - a Mixed-Integer Linear Program (MILP) and a Non-Linear Program (NLP) - related to Short-Term Hydropower production Scheduling (STHS).Given finite resources of water in reservoirs, the purpose of STHS is to prescribe production schedules with largest payoffs that are compatible with technical specifications of the hydroelectric plants.While water volumes, water flows, and electric powers can be represented with continuous variables, commitment statuses of turbine units usually have to be formulated with binary variables.Non-linearities commonly originate from the Input/Output functions that model generated power according to water volume and water flow.We decide to focus on two distinguished problems: a MILP with linear discrete features and a NLP with non-linear continuous features.In the second chapter, we deal with feasibility issues of a real-world MILP STHS.Compared with a standard STHS problem, the model features two additional specifications:discrete operational points of the power-flow curve and mid-horizon and final strict targets for reservoir levels.Issues affecting real-world data and numerical computing, together with specific model features, make our problem harder to solve and often infeasible.Given real-world instances, we reformulate the model to make the problem feasible.We follow a step-by-step approach to exhibit and cope with one source of infeasility at a time, namely numerical errors and model infeasibilities.Computational results show the effectiveness of the approach on an original test set of 66 real-world instances that demonstrated a high occurrence of infeasibilities.The third chapter is about the transposition of the Multiplicative Weights Update algorithm to the (nonconvex) nonlinear and mixed integer nonlinear programming setting, based on a particular parametrized reformulation of the problem - denoted pointwise.We define desirable properties for deriving pointwise reformulation and provide generic guidelines to transpose the algorithm step-by-step.Unlike most metaheuristics, we show that our MWU metaheuristic still retains a relative approximation guarantee in the NLP and MINLP settings.We benchmark it computationally to solve a hard NLP STHS.We find it compares favorably to the well-known Multi-Start method, which, on the other hand, offers no approximation guarantee
Angilella, Vincent. "Design optimal des réseaux Fiber To The Home." Electronic Thesis or Diss., Evry, Institut national des télécommunications, 2018. http://www.theses.fr/2018TELE0004.
Full textFor operators, FTTH networks are the most widespread solution to the increasing traffic demand. Their layout requires a huge investment. The aim of this work is to ensure a cost effective deployment of quality networks. We start by presenting aspects of this network design problem which make it a complex problem. The related literature is reviewed to highlight the novel issues that we solve. Then, we elaborate strategies to find the best solution in different contexts. Several policies regarding maintenance or civil engineering use will be investigated. The problems encountered are tackled using several combinatorial optimization tools (integer programming, valid inequalities, dynamic programming, approximations, complexity theory, inapproximability…) which will be developed according to our needs. The proposed solutions were tested and validated on real-life instances, and are meant to be implemented in a network planning tool from Orange
Hannachi, Marwa. "Placement des tâches matérielles de tailles variables sur des architectures reconfigurables dynamiquement et partiellement." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0297/document.
Full textAdaptive systems based on Field-Programmable Gate Arrays (FPGA) architectures can benefit greatly from the high degree of flexibility offered by dynamic partial reconfiguration (DPR). Thanks to DPR, hardware tasks composing an adaptive system can be allocated and relocated on demand or depending on the dynamically changing environment. Existing design flows and commercial tools have evolved to meet the requirements of reconfigurables architectures, but that are limited in functionality. These tools do not allow an efficient placement and relocation of variable-sized hardware tasks. The main objective of this thesis is to propose a new methodology and a new approaches to facilitate to the designers the design phase of an adaptive and reconfigurable system and to make it operational, valid, optimized and adapted to dynamic changes in the environment. The first contribution of this thesis deals with the issues of relocation of variable-sized hardware tasks. A design methodology is proposed to address a major problem of relocation mechanisms: storing a single configuration bitstream to reduce memory requirements and increasing the reusability of generating hardware modules. A reconfigurable region partitioning technique is applied in this proposed relocation methodology to increase the efficiency of use of hardware resources in the case of reconfigurable tasks of variable sizes. This methodology also takes into account communication between different reconfigurable regions and the static region. To validate the design method, several cases studies are implemented. This validation shows an efficient use of hardware resources and a significant reduction in reconfiguration time. The second part of this thesis presents and details a mathematical formulations in order to automate the floorplanning of the reconfigurable regions in the FPGAs. The algorithms presented in this thesis are based on the optimization technique MILP (mixed integer linear programming). These algorithms allow to define automatically the location, the size and the shape of the dynamic reconfigurable region. We are mainly interested in this research to satisfy the constraints of placement of the reconfigurable zones and those related to the relocation. In addition, we consider the optimization of the hardware resources in the FPGA taking into account the tasks of variable sizes. Finally, an evaluation of the proposed approach is presented
Bonami, Pierre. "Etude et mise en œuvre d'approches polyédriques pour la résolution de programmes en nombres entiers ou mixtes généraux." Paris 6, 2003. http://www.theses.fr/2003PA066362.
Full textBarjhoux, Pierre-Jean. "Towards efficient solutions for large scale structural optimization problems with categorical and continuous mixed design variables." Thesis, Toulouse, ISAE, 2020. http://depozit.isae.fr/theses/2020/2020_Barjhoux_Pierre-Jean.pdf.
Full textNowadays in the aircraft industry, structural optimization problemscan be really complex and combine changes in choices of materials, stiffeners, orsizes/types of elements. In this work, it is proposed to solve large scale structural weightminimization problems with both categorical and continuous variables, subject to stressand displacements constraints. Three algorithms have been proposed. As a first attempt,an algorithm based on the branch and bound generic framework has been implemented.A specific formulation to compute lower bounds has been proposed. According to thenumerical tests, the algorithm returned the exact optima. However, the exponentialscalability of the computational cost with respect to the number of structural elementsprevents from an industrial application. The second algorithm relies on a bi-level formulationof the mixed categorical problem. The master full categorical problem consists ofminimizing a first order like approximation of the slave problem with respect to the categoricaldesign variables. The method offers a quasi-linear scaling of the computationalcost with respect to the number of elements and categorical values. Finally, in the thirdapproach the optimization problem is formulated as a bi-level mixed integer non-linearprogram with relaxable design variables. Numerical tests include an optimization casewith more than one hundred structural elements. Also, the computational cost scalingis quasi-independent from the number of available categorical values per element
Glorieux, Antoine. "Optimizing the imbalances in a graph." Electronic Thesis or Diss., Evry, Institut national des télécommunications, 2017. http://www.theses.fr/2017TELE0011.
Full textThe imbalance of a vertex in a directed graph is the absolute value of the difference between its outdegree and indegree. In this thesis we study the problem of orienting the edges of a graph in such a way that the image of the vector which components are the imbalances of the vertices of the graph under an objective function f is maximized. The first case considered is the problem of maximizing the minimum imbalance of all the vertices over all the possible orientations of the input graph. We first characterize graphs for which the optimal objective value is zero. Next we give several results concerning the computational complexity of the problem. Finally, we deal with several mixed integer programming formulations for this problem and present some numerical experiments. Next, we show that the case for f=1/2 | |·| |₁ leads to the famous unweighted maximum cut problem. We introduce some new formulations along with a new bound shown to be tighter than Michel Goemans & David Williamson's. Theoretical and computational results regarding bounds quality and performance are also reported. Finally, in order to strengthen some formulations of the studied problems, we study a specific class of polytopes. Consider the polytope consisting in the convex hull of the 0/1 assignment matrices where each column contains exactly one coefficient equal to 1 appended with their index of the lowest row that is not identically equal to the zero row. We give a full description of this polytope and some of its variants which naturally appear in the context of several combinatorial optimization problems. We also show that linear optimization over those polytopes can be done in polynomial time
Ouzia, Hacène. "Hiérarchies de relaxations semi-algébriques pour des programmes linéaires mixtes 0-1 : théorie et applications." Paris 6, 2008. http://www.theses.fr/2008PA066349.
Full textWang, Deyun. "Integrated Scheduling of Production and Transportation Operations with Stage-dependent Inventory Costs and Due Dates Considerations." Phd thesis, Université de Technologie de Belfort-Montbeliard, 2012. http://tel.archives-ouvertes.fr/tel-00720660.
Full textLei, Weidong. "Cyclic Hoist Scheduling Problems in Classical and Sustainabl." Thesis, Belfort-Montbéliard, 2014. http://www.theses.fr/2014BELF0244/document.
Full textAutomated treatment surface facilities, which employ computer-controlled hoists for part transportation, have been extensively established in various kinds of industrial companies, because of its numerous advantages over manual system, such as higher productivity, better product quality, and reduced labor intensity. Our research investigates three typical hoist scheduling problems with processing time windows in treatment surface facilities, which are: (I) cyclic single-hoist scheduling problem to minimize the cycle time; (II) cyclic single-hoist scheduling problem to minimize the cycle time and processing resource consumption (and consequently production cost); and (III) cyclic multi-hoist scheduling problem to minimize the cycle time.Due to the NP-completeness of the studied problems and numerous advantages of quantum-inspired evolutionary algorithm (QEA), we first propose a hybrid QEA with improved decoding mechanism and repairing procedure to find the best cycle time for the first problem. After that, to enhance with both the economic and environmental performance, which constitute two of the three pillars of the sustainable strategy nowadays deployed in many industries, we formulate a bi-objective mathematical model for the second problem by using the method of prohibited interval. Then we propose a bi-objective QEA with local search procedure to simultaneously minimize the cycle time and production cost, and we find a set of Pareto-optimal solutions for this problem. As for the third problem, we find that most existing approaches, such as mixed integer programming (MIP) approach, may identify a non-optimal solution to be an optimal one due to an assumption related to the loaded hoist moves which is made in many existing researches. Consequently, we propose an improved MIP approach for this problem by relaxing the above-mentioned assumption. Our approach can guarantee the optimality of its obtained solutions.For each problem, experimental study on industrial instances and random instances has been conducted. Computational results demonstrate that the proposed scheduling algorithms are effective and justify the choices we made
Esqueda, Merino Donovan Manuel. "Contrôle/Commande avancé pour l'optimisation du confort thermique d'un véhicule électrifié." Phd thesis, Supélec, 2013. http://tel.archives-ouvertes.fr/tel-00969132.
Full textDujardin, Yann. "Régulation adaptative multi-objectif et multi-mode aux carrefours à feux." Phd thesis, Université Paris Dauphine - Paris IX, 2013. http://tel.archives-ouvertes.fr/tel-00904781.
Full textRahmouni, Mouna. "Optimisation combinée des approvisionnements et du transport dans une chaine logistique." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4329.
Full textThe proposed joint delivery problem (JDP) is a delivery tour planning problem on a time horizon decomposed into elementary periods or rounds, the time horizon being the common delivery period for all products. The data of these parameters provides a linear formulation of the problem, with binary decision variables. The model also incorporates the constraints of meeting demand from stock and the quantities supplied, storage and transport capacity constraints.In order to also solve the problem of choice of delivery rounds, it is necessary to introduce in the model several constraints and variables related to the sites visited during each round. It is proposed to solve the problem in two steps. The first step is the calculation of the minimum off-line cost of the tour associated with each subset of sites. One can observe that for any given subset of sites, the optimal Hamiltonian cycle linking those sites to the warehouse can be calculated in advance by a traveling salesman problem algorithm (TSP). The goal here is not to fully analyze the TSP, but rather to integrate its solution in the formulation of the JRP. In the second stage, binary variables are associated with each subset and each period to determine the selected subset of sites in each period and its associated fixed cost
Glorieux, Antoine. "Optimizing the imbalances in a graph." Thesis, Evry, Institut national des télécommunications, 2017. http://www.theses.fr/2017TELE0011/document.
Full textThe imbalance of a vertex in a directed graph is the absolute value of the difference between its outdegree and indegree. In this thesis we study the problem of orienting the edges of a graph in such a way that the image of the vector which components are the imbalances of the vertices of the graph under an objective function f is maximized. The first case considered is the problem of maximizing the minimum imbalance of all the vertices over all the possible orientations of the input graph. We first characterize graphs for which the optimal objective value is zero. Next we give several results concerning the computational complexity of the problem. Finally, we deal with several mixed integer programming formulations for this problem and present some numerical experiments. Next, we show that the case for f=1/2 | |·| |₁ leads to the famous unweighted maximum cut problem. We introduce some new formulations along with a new bound shown to be tighter than Michel Goemans & David Williamson's. Theoretical and computational results regarding bounds quality and performance are also reported. Finally, in order to strengthen some formulations of the studied problems, we study a specific class of polytopes. Consider the polytope consisting in the convex hull of the 0/1 assignment matrices where each column contains exactly one coefficient equal to 1 appended with their index of the lowest row that is not identically equal to the zero row. We give a full description of this polytope and some of its variants which naturally appear in the context of several combinatorial optimization problems. We also show that linear optimization over those polytopes can be done in polynomial time
Essafi, Mohamed. "Conception et optimisation d'allocation de ressources dans les lignes d'usinage reconfigurables." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2010. http://tel.archives-ouvertes.fr/tel-00669980.
Full textIbanez, Aurélien. "Emergence of complex behaviors from coordinated predictive control in humanoid robotics." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066325/document.
Full textRising to the challenge of motor control for systems involved in multi-objective and highly-constrained activities is a requirement to enable the emergence of efficient and robust behaviors; the elaboration of complex motor coordination strategies is critical in ensuring performance, feasibility and safety.Although multi-objective predictive approaches enable the definition of complex and constrained strategies coordinating the motor activity of the system, their computational cost is a critical drawback from practical applications.The work presented in this dissertation aims at considering multi-objective predictive control for feasible and practical applications to humanoid robotics.A control architecture is proposed to this purpose as a multi-objective, two-layered controller exploiting the respective advantages of predictive and instantaneous formulations.The contribution of this work takes the form of the validation of the benefits from such an approach in its development for practical challenges and applications, in simulation and real-time implementation, on the iCub and TORO robots and virtual human models.Computational demand of the predictive level is contained with the introduction of reduced multi-objective predictive problems, enabling computationally-favorable formulations of the control problem using mixed-integer programming and sequential and parallel distributions.Despite the resulting approximations on the dynamics of the system at the predictive level, complex behaviors are emerging, exploiting elaborate coordination strategies between conflicting objectives and constraints to increase performance and robustness against disturbances
Keita, Kaba. "Décomposition de Benders pour la gestion opérationnelle du trafic ferroviaire." Thesis, Ecole centrale de Lille, 2017. http://www.theses.fr/2017ECLI0023/document.
Full textIn railway systems, during congested traffic situations, the infrastructure capacity is completely exploited for trains circulation. In these situations, when traffic is perturbed some trains must be stopped or slowed down for ensuring safety, and delays occur. The real-time Railway Traffic Management Problem (rtRTMP) is the problem of modifying trains route and schedule to limit delay propagation. In this thesis, we propose a Benders decomposition of a MILP-based algorithm for this problem, named RECIFE-MILP. After observing that the standard Benders decomposition (BD) does not allow the effective solution of rtRTMP instances, we study three possible approaches to improve the performance. Specifically, we first propose a modification of the problem reformulation which is typical of BD, obtaining what we call reduced BD. Then, we introduce some inequalities to the Benders master problem. Finally, we split the solution process in three steps rather than two as in the standard BD. As we show in a thorough experimental analysis, the combination of the first and last approaches outperforms the original RECIFE-MILP algorithm when tackling large instances with some specific features
Koné, Oumar. "Nouvelles approches pour la résolution du problème d'ordonnancement de projet à moyens limités." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/681/.
Full textIn this thesis, we studied two types of scheduling problems. The major part concerns the Resource-Constrained Project Scheduling Problem (RCPSP). The scheduling problem of handling operations in a warehouse of Crossdocking is also dealt. First, from models using mixed integer linear programming, we proposed two new formulations of this problem, using variables indexed by events. In one of them, we use a binary variable to mark the beginning of the performing of each activity and another variable to mark its end. In the second proposal, a single variable is used. It identifies events in which the activity starts or continues its performing. Overall, compared to other models in the literature on various types of instances, our proposals show more interesting results on the instances with long scheduling horizons containing activities with disparate durations. In particular, on the highly cumulative instances (basic characteristics of RCPSP) of these types of instances, they are the most efficient. We also treat the resolution of the extension of the RCPSP which consists in taking into account specific resources that can be consumed during the performing of each activity, but also produced in another quantity at the end of performing of each activity: it is the RCPSP with consumption and production of resources. To make a comparison between different experimental models, we proposed an adaptation of our event-based formulations, the discrete-time formulations of Pritsker and Christofides, and the flow-based continuous-time formulation (proposed by Artigues on basis of the work of Balas). Overall, the results show that our event-based formulations are most successful on many types of instances. Second, in one less extensive part, we proposed a branch-and-bound using some cuts based on the Pareto frontier for the resolution of the scheduling problem of handling operations in a warehouse of Crossdocking. The excellent results obtained, which had strengthened our questions about the non-proved complexity of this problem, have contributed to establish later that this problem is of polynomial complexity
Nduwayo, Placide. "Formulations mathématiques et algorithmes pour le problème d'affectation des quais du cross-dock." Thesis, Valenciennes, Université Polytechnique Hauts-de-France, 2020. http://www.theses.fr/2020UPHF0013.
Full textCross-docking is a strategy originally introduced to optimize operations inside a warehouseas part of the optimization of the Supply Chain. Like traditional warehouses, productsare collected from numerous freight yards such that suppliers, factories, manufactures,etc., usingtrucks, and are moved towards processing centers named cross-docks. At cross-dock yard, productsfirst get unloaded on inbound dock doors. Afterwards, they are sorted according to theirdestinations and are immediately transferred, using handling devices, to appropriate outbounddock doors to be sometimes consolidated with other products of the same destination and arereloaded into shipping trucks. Unlike traditional warehouse where storage period of productsis indefinite, for cross-dock, goods are unloaded and reloaded the same day without waiting intemporary storage area or can wait less than one day. In this PhD thesis, we study an NP-hardoptimization problem raised by cross-dock referred to “Cross-dock Door Assignment Problem(CDAP)”. The CDAP consists in assignment of incoming and outgoing trucks to inbound andoutbound dock doors of cross-dock, respectively. The goal is to minimize the total transportationcost inside the cross-dock. The standard quadratic formulation of the CDAP includes theGeneralized Assignment Problem as subproblem. In this dissertation, we perform an extensivecross-docking literature review. Then, we carry out a broad analysis of the standard quadraticformulation as well as the standard linearization of the CDAP. From this in-deph study, wepropose several new non standard Mixed Integer Linear Programming models for the CDAP. Todetect the best linear model among those we propose and those existing, we compare the performanceof these models on instances proposed in the literature. We next propose a LagrangianRelaxation approach to produce the best new lower bounds to optimal solution value. This LagrangianRelaxation is applied to the model that produces the best LP relaxation bounds. TheLagrangian dual is solved using a subgradient algorithm. According to the experiments it seemsthat large-scale instances cannot be solved with an exact method in reasonable running times andmemory requirements. Thus, we propose and implement two heuristics based on “ProbabilisticTabu Search” to operate efficiently with larger instances of the CDAP. To assess the effectivenessof these proposed heuristics, we compare their performance, first between them and thenwith recent heuristics in the literature. The results demonstrate the efficiency of the proposedapproaches on data sets from the literature
Boulos, Karen. "BBU-RRH Association Optimization in Cloud-Radio Access Networks." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS209/document.
Full textThe demand on mobile traffic has been largely increasing nowadays. Facing such growth, several propositions are being studied to cope with this challenge. Cloud-Radio Access Networks Architecture (C-RAN) is one of the proposed solutions to address the increased demand, and is a potential candidate for future 5G networks. The C-RAN architecture dissociates two main elements composing the base station: The Baseband Unit (BBU), consisting in an intelligent element to perform baseband tasks functionalities, and the Remote Radio Head (RRH), that consists in a passive antenna element to provide access for serviced User Equipments (UEs). In C-RAN architecture, the BBUs migrate to a Cloud data center, while RRHs remain distributed across multiple sites. Several advantages are derived, such as statistical multiplexing gain, efficiency in resource utilization and power saving. Contrarily to conventional architecture, where each RRH is associated to one BBU, in C-RAN architecture, multiple RRHs can be embraced by one single BBU when network load conditions are low, bringing along several benefits, such as enhanced energy efficiency, and power consumption minimization. In this thesis, the BBU-RRH association optimization problem is addressed. Our aim is to optimize the BBU-RRH association schemes, taking into consideration several criteria. The problem presents many constraints: For example, achieving minimized power consumption while guaranteeing a minimum level of Quality of Service (QoS) is a challenging task. Further, taking into account the interference level variation while turning ON/OFF BBUs is paramount to achieve enhanced spectral efficiency. Moreover, deciding how to re-associate RRHs to BBUs under dynamic load conditions is also a challenge, since connected UEs face handovers (HOs) when RRHs change their associations
Pelletier, Christine. "Application des techniques d'aide à la décision à la planification sanitaire régionale." Phd thesis, Université Joseph Fourier (Grenoble), 1999. http://tel.archives-ouvertes.fr/tel-00004845.
Full textNour, Karim. "Programmation en lambda-calcul pur et typé." Habilitation à diriger des recherches, 2000. http://tel.archives-ouvertes.fr/tel-00415534.
Full textDans ma thèse de doctorat, j'ai étudié les opérateurs de mise en mémoire pour les types de données. Ces notions, qui sont introduites par Krivine, permettent de programmer en appel par valeur tout en utilisant la stratégie de la réduction de tête pour exécuter les $\lambda$-termes. Pour cette étude, j'ai introduit avec David une extension du $\lambda$-calcul avec substitutions explicites appelée $\lambda$-calcul dirigé. Nous en avons déduit une nouvelle caractérisation des termes de mise en mémoire et obtenu des nombreux résultats très fins à leur sujet. En ce qui concerne le typage des opérateurs de mise en mémoire, Krivine a trouvé une formule du second ordre, utilisant la non-non traduction de Gödel de la logique classique dans la logique intuitionniste, qui caractérise ces opérateurs. Je me suis attaché à diverses généralisations du résultat de Krivine pour les types à quantificateur positif dans des extensions de la logique des prédicats du second ordre.
J'ai poursuivi, après ma thèse, une activité de recherche sur l'extension de la correspondance de Curry-Howard à la logique classique, au moyen des instructions de contrôle. J'ai étudié des problèmes liés aux types de données dans deux de ces systèmes : le $\lambda \mu$-calcul de Parigot et le $\lambda C$-calcul de Krivine. J'ai donné des algorithmes très simples permettant de calculer la valeur d'un entier classique dans ces deux systèmes. J'ai également caractérisé les termes dont le type est l'une des règles de l'absurde. J'ai étendu le système de Parigot pour en obtenir une version non déterministe mais où les entiers se réduisent toujours en entiers de Church. Curieusement, ce système permet de programmer la fonction ``ou parallèle''.
Je me suis intéressé aux systèmes numériques qui servent à représenter les entiers naturels au sein du $\lambda$-calcul. J'ai montré que pour un tel système, la possession d'un successeur, d'un prédécesseur et d'un test à zéro sont des propriétés indépendantes, puis qu'un système ayant ces trois fonctions possède toujours un opérateur de mise en mémoire. Dans un cadre typé, j'ai apporté une réponse négative à une conjecture de Tronci qui énonçait une réciproque du résultat précédent.
La notion de mise en mémoire ne s'applique qu'à des types de données. Une définition syntaxique a été donné par Böhm et Berarducci, et Krivine a proposé une définition sémantique de ces types. J'ai obtenu avec Farkh des résultats reliant la syntaxe et la sémantique des types de données. Nous avons proposé également des définitions des types entrée et des types sortie pour lesquelles nous avons montré diverses propriétés syntaxiques et sémantiques.
J'ai réussi à combiner la logique intuitionniste et la logique classique en une logique mixte. Dans cette logique, on distingue deux genres de variables du second ordre, suivant que l'on peut, ou non, leur appliquer le raisonnement par l'absurde. Ce cadre m'a permi de donner le type le plus général pour les opérateurs de mise en mémoire. Vu le rôle important que cette logique semble devoir jouer dans la théorie de ces opérateurs, j'en ai mené avec A. Nour une étude théorique approfondie. Le système de logique mixte propositionnelle auquelle nous avons abouti évoque les sytèmes $LC$ de Girard et $LK^{tq}$ de Danos, Joinet et Schellinx.
Je me suis intéressé avec David à l'équivalence induite par l'égalité entre les arbres de Böhm infiniment $\eta$-expansés. Avec Raffalli, je me suis également intéressé à la sémantique de la logique du second ordre.
Dan, Teodora. "Algorithmic contributions to bilevel location problems with queueing and user equilibrium : exact and semi-exact approaches." Thèse, 2018. http://hdl.handle.net/1866/21587.
Full textSaadaoui, Yousra. "The berth allocation problem at port terminals : a column generation framework." Thèse, 2015. http://hdl.handle.net/1866/13410.
Full textThe berth allocation problem (BAP) is one of the key decision problems at port terminals and it has been widely studied. In previous research, the BAP has been formulated as a generalized set partitioning problem (GSPP) and solved using standard solver. The assignments (columns) were generated a priori in a static manner and provided as an input to the optimization model. The GSPP approach is able to solve to optimality relatively large size problems. However, a main drawback of this approach is the explosion in the number of feasible assignments of vessels with increase in problem size which leads in turn to the optimization solver to run out of memory. In this research, we address the limitation of the GSPP approach and present a column generation framework where assignments are generated dynamically to solve large problem instances of the berth allocation problem at port terminals. We propose a column generation based algorithm to address the problem that can be easily adapted to solve any variant of the BAP based on different spatial and temporal attributes. We test and validate the proposed approach on a discrete berth allocation model with dynamic vessel arrivals and berth dependent handling times. Computational experiments on a set of artificial instances indicate that the proposed methodology can solve even very large problem sizes to optimality or near optimality in computational time of only a few minutes.
Mathlouthi, Ines. "Méthodes de résolution exactes et heuristiques pour un problème de tournées de techniciens." Thèse, 2017. http://hdl.handle.net/1866/20484.
Full text