Academic literature on the topic 'Production of bio fuel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Production of bio fuel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Production of bio fuel"
Onu, John Chigbo. "Production of Bio Fuel Using Green Algea." Journal of Clean Energy Technologies 3, no. 2 (2015): 135–39. http://dx.doi.org/10.7763/jocet.2015.v3.183.
Full textRajan, Pandiya, Abdul samad, Nivas E N, Keerthana ., and Ragi Divya shree. "ALTERNATE FUEL BIODIESEL." International Journal of Innovative Research in Information Security 09, no. 03 (June 23, 2023): 168–88. http://dx.doi.org/10.26562/ijiris.2023.v0903.23.
Full textBarman, Ananya, Sangita Bhattacharjee, Trina Dutta, Suparna Pal, Swastika Chatterjee, Prodyut Karmakar, and Sangita Mondal. "Biofuel from organic waste- a smart solution to conserve nonrenewable resources – A review." Journal of Physics: Conference Series 2286, no. 1 (July 1, 2022): 012028. http://dx.doi.org/10.1088/1742-6596/2286/1/012028.
Full textRatnaparkhe, Supriya, Milind B. Ratnaparkhe, Arun Kumar Jaiswal, and Anil Kumar. "Strain Engineering for Improved Bio-Fuel Production." Current Metabolomics 4, no. 1 (March 2, 2016): 38–48. http://dx.doi.org/10.2174/2213235x03666150818222343.
Full textBalat, Mustafa. "Global Bio-Fuel Processing and Production Trends." Energy Exploration & Exploitation 25, no. 3 (June 2007): 195–218. http://dx.doi.org/10.1260/014459807782009204.
Full textJency Joseph, J., and F. T. Josh. "Production of Bio-Fuel From Plastic Waste." Journal of Physics: Conference Series 1362 (November 2019): 012103. http://dx.doi.org/10.1088/1742-6596/1362/1/012103.
Full textKruse, Olaf, and Peter Lindblad. "Editorial - Photosynthetic microorganisms for bio-fuel production." Journal of Biotechnology 162, no. 1 (November 2012): 1–2. http://dx.doi.org/10.1016/j.jbiotec.2012.09.009.
Full textRamesh, S., and Balakrishna Gowda. "Feed stock crop options, crop research and development strategy for bioenergy production in India." Journal of Applied and Natural Science 1, no. 1 (June 1, 2009): 109–16. http://dx.doi.org/10.31018/jans.v1i1.47.
Full textBalat, Havva, and Cahide Öz. "Challenges and Opportunities for Bio-Diesel Production in Turkey." Energy Exploration & Exploitation 26, no. 5 (October 2008): 327–46. http://dx.doi.org/10.1260/014459808787945371.
Full textAhmad, Syed A. R., Mritunjai Singh, and Archana Tiwari. "Review on Bio-hydrogen Production Methods." International Journal for Research in Applied Science and Engineering Technology 10, no. 3 (March 31, 2022): 610–14. http://dx.doi.org/10.22214/ijraset.2022.40679.
Full textDissertations / Theses on the topic "Production of bio fuel"
Liu, Hong, and 劉紅. "Bio-hydrogen production from carbohydrate-containing wastewater." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31244518.
Full textFradler, Katrin. "Improving bio-electricity production and waste stabilization in Microbial Fuel Cells." Thesis, University of South Wales, 2015. https://pure.southwales.ac.uk/en/studentthesis/improving-bioelectricity-production-and-waste-stabilization-in-microbial-fuel-cells(91c2db18-126b-4610-9bdb-42d7e42ae5e9).html.
Full textDE, PORCELLINIS DIANA. "Materials for energy production and storage: fuel cells and redox flow batteries." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2016. http://hdl.handle.net/2108/201863.
Full textVidlund, Anna. "Sustainable production of bio-energy products in the sawmill industry." Licentiate thesis, KTH, Chemical Engineering and Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1734.
Full textOne of the great challenges facing society is to convert theglobal energy system to a sustainable process. Currently, 80%of the world´s energy is supplied through the combustionof fossil fuels. Not only are the fossil resources limited, theutilisation also increases the level of greenhouse gases in theatmosphere. The convertion to a sustainable energy system isproblematic since the technology needed to exploit mostnon-fossil energy sources is not yet fully developed, e.g.solar energy. Biofuel is an available renewable energy sourcewhich is already widely used in many countries. If an effectiveswitch-over from fossil fuels to biofuels is to be realised,biofuels must be viewed as a limited resource. Consequently, itis important that the handling, upgrading and utilisationprocesses involving biofuels are efficient so that itspotential can be fully exploited.
This thesis considers efficient biofuel utilisation andupgrading within the sawmill industry. The goal has been toanalyse not only the technical opportunities for energy savingsin the sawmill industry, but also to analyse the costeffectiveness and environmental impact of studied measures. Theheat demand of the sawmill industry is almost completelycovered by its own by-products; primarily bark, sawdust andwood chips. The increased demand and improved economic value ofwoody biofuels on the market is thus an incentive for thesawmill industry to place more focus on energy issues. Thesawmill industry also has a more or less constant heat loadover the year, which is a beneficial factor for integrationwith district heating networks, biofuel upgrading plants andcombined heat and power plants.
The conclusion of the study is that a variety of energyproducts such as heat, unrefined biofuel, pellets andelectricity can be efficiently produced in the sawmill industryand sold for profit to external customers. The payback periodsfor the proposed investments are moderate and both theemissions of volatile organic compounds and global CO2 aredecreased. Should the proposed measures be fully implemented atSwedish sawmills, about 2.8 TWh of biofuel could be savedannually, 0.5 TWh of waste heat could be sold as districtheating and 0.8 TWh of green electricity could be produced.Language: English
Keywords:Sawmill industry, energy efficiency, heatrecovery, integration, biofuel, upgrading, district heating,fuel pellets, CHP, VOC, CO2
Parsamehr, Mohammad. "Heat generation by cow dung incineration in the north of Iran." Thesis, Mittuniversitetet, Institutionen för teknik och hållbar utveckling, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-20013.
Full textTorella, Joseph Peter. "Synthetic biology approaches to bio-based chemical production." Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13088835.
Full textSchafer, Guy M. "Identifying Bio-Diesel Production Facility Locations for Home Heating Fuel Applications Within the Midwest Region of the United States." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1302263583.
Full textGuo, Yan, and 郭芃. "Alkaline-catalyzed production of biodiesel fuel from virgin canola oiland recycled waste oils." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B36584927.
Full textGuadagnin, Matteo. "Nutritional value of canola expellers produced "on farm" by cold extraction of oil used as bio fuel." Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3422576.
Full textObiettivo generale di questa tesi è stato quello di studiare e valutare il panello di colza (CE) estratto a freddo in impianti aziendali di piccole dimensioni per un potenziale utilizzo nell'alimentazione dei ruminanti. Nella tesi sono riportati i risultati di quattro prove sperimentali: nel primo contributo è stata valutata la stabilità della frazione lipidica del CE a temperature diverse e per diversi periodi di tempo al fine di valutare se la conservazione in condizioni anche particolari (durante la stagione estiva) in azienda, possa modificare il profilo degli acidi grassi e alcuni parametri di ossidazione lipidica. I risultati hanno evidenziato che a diverse temperature (12, 24, e 36°C) e tempi di stoccaggio (10, 20, e 30 d), CE ha mantenuto una buona stabilità ossidativa, come evidenziato dai bassi valori del numero di perossidi (<10 mEqO2/kg grasso), dal test di Kreis sempre negativo, e dalle scarse variazioni del contenuto di acidi grassi. Da questi risultati preliminari si può ipotizzare che lo stoccaggio aziendale per i panelli sottoprodotti ottenuti dal colza in azienda, non determina grosse variazioni della componente lipidica. Nel secondo contributo sono state valutate, in vitro, le produzioni di gas prodotti da campioni di CE e da semi di soia integrale incubando i questi alimenti con due differenti media: uno ricco in a N e uno senza N in modo da confrontare lâandamento delle fermentazioni quando lâunica fonte di N risulta lâalimento. I risultati hanno evidenziato che CE è una fonte proteica rapidamente degradabile; in caso di diete ipoproteiche come quelle suggerite per ridurre lâescrezione azotata, la sua inclusione potrebbe favorire l'attività microbica ruminale. Non sono sati rilevati effetti tossici sulla microflora ruminale durante la fermentazione dei due alimenti. Nel terzo contributo sono state confrontate in vitro quattro diete per bovini da carne a base di silomais con 2 livelli di inclusione di CE e WSS, in modo da ottenere un livello di proteina grezza paria al 15% e allâ11% PG sulla sostanza secca. In questa prova è stato utilizzato il sistema semicontinuo di fermentazione Rusitec. Le diete contenenti CE hanno mostrato una maggior (P <0.01) degradabilità dell'NDF, e prodotto meno (P <0.01) acetato e propionato ma più butirrato e acidi grassi ramificati. La produzione totale di AGV non è risultato diversa tra le due fonti proteiche. Il bilancio dellâN ha mostrato un maggior quantità (P <0.01) di arricchimento in15N nellâazoto non ammoniacale e valori tendenzialmente (P = 0.06) inferiori di N microbico derivato dall'uso di ammoniaca rispetto alle diete con inclusione di WSS. Nelle diete ad alto livello di inclusione i valori di arricchimento in 15N delle varie frazioni azotate sono risultati, come atteso, più alti (P <0.01) rispetto a quelle a basso livello di inclusione. In conclusione i due supplementi hanno mostrato andamenti fermentativi molto diversi. I due diversi livelli di inclusione hanno influito principalmente sulla disponibilità di proteina by pass senza effetti sulla sintesi microbica. Nel quarto contributo sono state testate, con la tecnica della gas production, le stesse quattro diete usate nel precedente esperimento. Eâ stato utilizzato il sistema RF Ankom® per testare la cinetica della produzione di gas nel corso della fermentazione. I risultati hanno mostrato che sia i valori di degradabilità dell'NDF che della SS sono stati maggiori (P < 0.05) per le diete contenenti CE rispetto a quelle con WSS e, come atteso, sono risultati inferiori nella diete a basso livello di inclusione delle due fonti proteiche. Le diete CE sono state caratterizzate da una produzione oraria di gas superiore (P < 0.05) in, ma non è variata la quantità totale di gas prodotto. La riduzione del livello di CP da 15 all'11% SS ha diminuito il tasso di produzione di gas ma non la quantità totale. Il contenuto di ammoniaca nel liquido ruminale al termine dellâincubazione è risultato più alto (P < 0.001) nelle diete ad alto livello di inclusione. Concludendo possiamo affermare che con diete a basso livello di proteina, l'uso di CE in sostituzione alla soia, può migliorare la velocità di degradazione durante le prime ore di fermentazione. In generale, il panello di colza ottenuto per estrazione a freddo in azienda potrebbe essere un alimento interessante nell'alimentazione dei ruminanti con effetti favorevoli sia dal punto di vista economico che ambientale
Tsupko, Yuriy Vadimovich. "Investigation into the suitability of spring triticale (×Triticosecale Wittmack) for bio-ethanol production in the Western Cape." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/1926.
Full textThesis (MSc (Genetics))--University of Stellenbosch, 2009.
ENGLISH ABSTRACT: In the Western Cape small grain cereals, triticale (×Triticosecale Wittmack ex A. Camus) in particular, appear to be among the most promising starch-carrying raw materials for the production of bio-ethanol. A core group of cultivars and lines from the Stellenbosch University Plant Breeding Laboratory spring triticale breeding programme were subjected to initial testing for the purpose of ethanol production. They underwent multi-location field-testing across six (season 2006–2007) and nine (season 2007–2008) locations representing the Western Cape cereal production area. Climatic conditions during the study were characterised as generally favourable, especially in the 2007 season. During the season, trials were visited in order to make in situ observations. Disease susceptibility was given specific attention. After harvesting, grain yield (kg.ha-1), test weight (kg.HL-1), total starch content in whole grain (%), amylose/amylopectin ratio, protein content (%), ethanol output (L.tonne-1) and ethanol yield (L.ha-1) were analysed. Near infra-red reflectance spectroscopy calibration models were developed for moisture and starch contents. The best calibration based on whole grain spectra for moisture content had RPD = 1.691, R2 = 0.657 and SEP = 0.271%, and for starch content RPD = 1.646, R2 = 0.634 and SEP = 1.356%. Calibrations developed from milled grain showed better results for moisture content RPD = 2.526, R2 = 0.843, SEP = 0.182%, and for starch content RPD = 1.741, R2 = 0.673, SEP = 1.277%. These calibrations are suitable for rough screening of samples. In the 2006 season, starch yield was highly positively correlated with grain yield (R2 = 0.988, P <0.001). Both starch yield and grain yield were positively correlated with days to heading (R2 = 0.533 and R2 = 0.556, respectively; P <0.001). The 2007 season was characterised by a generally higher starch yield (2952– 3142kg.ha-1, 95%CI) compared to the 2006 season (2077–2315kg.ha-1, 95%CI). Starch yield was strongly positively correlated with grain yield (R2 = 0.975, P <0.001). Test weight demonstrated weak positive correlation with ethanol yield (R2 = 0.238, P <0.01) and grain yield (R2 = 0.279, P <0.001). Mean ethanol output ranged between 466–477L.tonne-1 at the 95%CI. Ethanol output was demonstrated to be more dependent on starch and other polysaccharides accessibility to enzymatic digestion than on the total starch content as such. The best lines for ethanol output in the 2007 season were G2, D3 and H2 for the Swartland region, and D3, G2 and D1 for the Overberg region. The best triticale lines under investigation showed their potential from a biological point of view to be a suitable crop for ethanol production in the Western Cape, with the achieved ethanol yield ranging between 2446–2625L.ha-1 at the 95%CI. For the Swartland region the best genotypes for ethanol yield were D1, H1 and D2, and for the Overberg H1 and G2. The 23 best lines were selected from the elite and senior blocks, and then used for the establishment of a recurrent massselection pre-breeding block.
AFRIKAANSE OPSOMMING: In die Wes-Kaap is kleingrane, meer spesifiek korog (×Triticosecale Wittmack ex A. Camus), van die mees belowende styseldraende rou-materiale vir die produksie van bio-etanol. ‘n Kern versameling van kultivars en telerslyne van die Universiteit van Stellenbosch se Planteteeltlaboratorium se lente korogteeltprogram is blootgestel aan aanvanklike toetsing met die doel om etanol produksie te meet. Die materiaal het veldtoetsing ondergaan oor verskeie lokaliteite gedurende die 2006–2007 (ses lokaliteite) en 2007–2008 (nege lokaliteite) seisoene wat verteenwoordigend was van die Wes-Kaapse produksie gebied. Klimaatstoestande gedurende die studie kan beskryf word as gunstig, veral gedurende die 2007 seisoen. Gedurende die groeiseisoen is proeflokaliteite gereeld besoek ten einde in situ observasies te kon maak, siektevatbaarheid het veral aandag geniet. Na die oes van proewe was graanopbrengs (kg.ha-1), hektolitermassa (kg.HL-1), totale-styselinhoud in heelgraan (%), amilose/amilopektien-verhouding, proteïeninhoud (%), etanolopbrengs (L.ton-1) en etanolopbrengs per hektaar (L.ha-1) gemeet. Naby-infrarooispektroskopie kalibrasies was ontwikkel vir vog- en styselinhoud. Die beste kalibrasies vir heelgraan voginhoud het ‘n RDP = 1.691, R2 = 0.657 en SEP = 0.271% en vir styselinhoud RPD = 1.646, R2 = 0.634 en SEP = 1.356% opgelewer. Die kalibrasies gebaseer op meel was aansienlik beter vir voginhoud RPD = 2.526, R2 = 0.843 en SEP = 0.182%, sowel as vir styselinhoud RPD = 1.741, R2 = 0.673 en SEP = 1.277%. Die kalibrasies is bruikbaar vir aanvanklike sifting van monsters. 5 Gedurende die 2006 seisoen het styselinhoud en graanopbrangs ‘n baie hoë korrelasie (R2 = 0.988, P <0.001) getoon. Beide stysel- en graanopbrengs was positief gekorreleerd met dae tot aar (R2 = 0.533 en R2 = 0.556; P <0.001). Die 2007 seisoen is gekenmerk deur ‘n hoër styselopbrengs (2952– 3142kg.ha-1, 95%VI) teenoor die 2006 seisoen (2077–2315kg.ha-1, 95%VI). Styselopbrengs was positief gekorreleerd met graanopbrengs (R2 = 0.975, P <0.001). Hektolitermassa het swak korrelasie getoon met etanolopbrengs (R2 = 0.238, P <0.01) en graanopbrengs (R2 = 0.279, P <0.01). Gemiddelde etanolopbrengs het gewissel tussen 466–477L.ton-1 by 95%VI. Data het aangedui dat etanolopbrengs meer aangewese is op stysel en ander polisakkariedverbindings se ensiematiese toeganklikheid eerder as totale stysel aanwesig. Die beste lyne wat etanolopbrangs betref in 2007 was G2, D3 en H2 vir die Swartland en D3, G2 en D1 vir die Overberg. Van die koroglyne wat deel was van die ondersoek het goeie potensiaal getoon, uit ‘n suiwer biologiese oogpunt, as gewas vir die produksie van etanol in die Wes-Kaap met ‘n gerealiseerde etanolopbrengs in die omgewing van 2446-2625L.ha-1 by 95%VI. In die Swartland was die beste genotipes D1, H1 en D2 en in die Overberg H1 en G2. Die beste 23 lyne is geselekteer uit die elite en senior telingsblokke en aangewend in die vestiging van ‘n herhalende-seleksie voortelingsblok.
Books on the topic "Production of bio fuel"
Sustainable Energy Production from Jatropha Bio-Diesel: Second Generation Bio Fuel. Saarbrücken: LAP LAMBERT Academic Publishing, 2012.
Find full textShumba, Enos M. Assessment of sugarcane outgrower schemes for bio-fuel production in Zambia and Zimbabwe. Harare, Zimbabwe: WWWF-World Wide Fund for Nature, 2011.
Find full textInc, Xenergy, Energetic Management Associates, and Northeast Regional Biomass Program, eds. Toward a renewable power supply: The use of bio-based fuels in stationary fuel cells. Burlington, MA: Xenergy, 2002.
Find full textK, Dadhich Pradeep, and Energy and Resources Institute, eds. Production and technology of bio-diesel: Seeding a change. New Delhi: The Energy and Resources Institute, 2008.
Find full textThe role of catalysis for the sustainable production of bio-fuels and bio-chemicals. Amsterdam: Elsevier, 2013.
Find full textAltawell, Najib, ed. The Selection Process of Biomass Materials for the Production of Bio-fuels and Co-firing. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118852606.
Full textKang, Tal-sun. Kyŏngnam chiyŏk paio tijel wŏllyoyong yuchʻae silchŭng chaebae yŏnʼgu =: Studies on empirical culture of rape (Brassica campestris M.) for production of bio-diesel fuel in Kyeongnam province. [Seoul]: Nongchʻon Chinhŭngchʻŏng, 2008.
Find full textKang, Tal-sun. Kyŏngnam chiyŏk paio tijel wŏllyoyong yuchʻae silchŭng chaebae yŏnʼgu =: Studies on empirical culture of rape (Brassica campestris M.) for production of bio-diesel fuel in Kyeongnam province. [Seoul]: Nongchʻon Chinhŭngchʻŏng, 2008.
Find full textBio-Diesel: Bio-degradable alternative fuel for diesel engines. New Delhi: Readworthy Publications, 2008.
Find full textGiménez, Sixto, and Juan Bisquert, eds. Photoelectrochemical Solar Fuel Production. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29641-8.
Full textBook chapters on the topic "Production of bio fuel"
Yadav, Asheesh Kumar, Sanak Ray, Pratiksha Srivastava, and Naresh Kumar. "6 Solar Bio-Hydrogen Production: An Overview." In Solar Fuel Generation, 121–40. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315370538-7.
Full textJadhav, Swapnaja K., Anil K. Dubey, Mayuri Gupta, Sachin Gajendra, and Panna Lal Singh. "Micro Algae Production for Bio Fuel Generation." In Bioenergy Engineering, 153–72. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003230878-8.
Full textShadangi, Krushna Prasad, and Kaustubha Mohanty. "Effect of Upgrading Techniques on Fuel Properties and Composition of Bio-Oil." In Liquid Biofuel Production, 373–85. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119459866.ch12.
Full textHombach, Laura Elisabeth, and Grit Walther. "Evaluation of CO2 Abatement Measures for (Bio-) Fuel Production." In Logistics Management, 39–51. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13177-1_4.
Full textJogi, Ramakrishna, Päivi Mäki-Arvela, Pasi Virtanen, and Jyri-Pekka Mikkola. "A Sustainable Bio-Jet Fuel: An Alternative Energy Source for Aviation Sector." In Clean Energy Production Technologies, 465–96. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9593-6_18.
Full textGranda-Marulanda, Nelson Andrés, Mingzhou Jin, and Fei Yu. "Life-Cycle Assessment of Bio-Fuel Production Using Syngas from Biomass." In Handbook of Bioenergy, 279–97. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20092-7_12.
Full textKatryniok, Benjamin, Thomas Bonnotte, Franck Dumeignil, and Sébastien Paul. "Production of Bioacrylic Acid." In Chemicals and Fuels from Bio-Based Building Blocks, 217–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527698202.ch9.
Full textAkubude, V. C., E. O. Ajala, and C. Nzediegwu. "Co-functional Activity of Microalgae: Biological Wastewater Treatment and Bio-fuel Production." In Environmental and Microbial Biotechnology, 401–24. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-2225-0_13.
Full textCarlson, Alfred, Bill Coggio, Kit Lau, Christopher Mercogliano, and Jim Millis. "Industrial Production of Succinic Acid." In Chemicals and Fuels from Bio-Based Building Blocks, 173–90. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527698202.ch7.
Full textChakraborty, Sudip, Ranjana Das Mondal, Debolina Mukherjee, and Chiranjib Bhattacharjee. "Production of Bio-Based Fuels: Bioethanol and Biodiesel." In Sustainable Development in Chemical Engineering Innovative Technologies, 153–80. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118629703.ch7.
Full textConference papers on the topic "Production of bio fuel"
Zheng, Chaocheng. "Three generation production biotechnology of biomass into bio-fuel." In GREEN ENERGY AND SUSTAINABLE DEVELOPMENT I: Proceedings of the International Conference on Green Energy and Sustainable Development (GESD 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4992924.
Full textCiocci, R. C., I. Abu-Mahfouz, and S. S. E. H. Elnashaie. "Analysis to Develop Hydrogen Production From Bio-Oils." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43225.
Full textBarelli, L., G. Bidini, E. Calzoni, A. Cesaretti, A. Di Michele, C. Emiliani, L. Gammaitoni, and E. Sisani. "Enzymatic fuel cell technology for energy production from bio-sources." In SECOND INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE, SMART STRUCTURES AND APPLICATIONS: ICMSS-2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5138747.
Full textMansur, Dieni, Ruliana, and Cecep E. Rustana. "Hydroprocessed Calophyllum inophyllum Oil for Linear Bio-alkane Fuel Production." In 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE). IEEE, 2018. http://dx.doi.org/10.23919/icue-gesd.2018.8635732.
Full textMrad, Nadia, Maria Paraschiv, Fethi Aloui, Mohand Tazerout, and Sassi Ben Nasrallah. "Production of Liquid Hydrocarbon Fuel by Catalytic Cracking of Waste Fish Fat in Continuous Pilot System." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-17012.
Full textYadav, Anil Kumar, Malleboina Purushotham, Nikita Indrapalsingh Gour, Gaurav Gulab Gurnule, Vikas C. Choudhary, and Karm Raj Yadav. "Brief Review on Nanotechnology as an Effective Tool for Production of Biofuels." In International Conference on Recent Advancements in Biomedical Engineering. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/p-bdzjch.
Full textMaeda, Tsuyoshi, Toshio Shinoki, Jiro Funaki, and Katsuya Hirata. "Hydrogen Production by Bio-Fuel Steam Reforming at Low Reaction Temperature." In ASME 2011 Power Conference collocated with JSME ICOPE 2011. ASMEDC, 2011. http://dx.doi.org/10.1115/power2011-55383.
Full textSamir Kumar Khanal, Melissa Montalbo, J (Hans) van Leeuwen, Gowrishankar Srinivasan, and David Grewell. "Ultrasonic Enhanced Liquefaction and Saccharification of Corn for Bio-Fuel Production." In 2007 Minneapolis, Minnesota, June 17-20, 2007. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2007. http://dx.doi.org/10.13031/2013.23391.
Full textAhmed, Mukhtar, Md Nasre Alam, Anas Abdullah, and Zainal Ahmad. "Bio-jet fuel: An overview of various feedstock and production routes." In ADVANCES IN FRACTURE AND DAMAGE MECHANICS XX. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0147982.
Full textPinkard, Brian R., Elizabeth G. Rasmussen, John C. Kramlich, Per G. Reinhall, and Igor V. Novosselov. "Supercritical Water Gasification of Ethanol for Fuel Gas Production." In ASME 2019 13th International Conference on Energy Sustainability collocated with the ASME 2019 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/es2019-3950.
Full textReports on the topic "Production of bio fuel"
Capareda, Sergio, Mahmoud El-Halwagi, Kenneth R. Hall, Mark Holtzapple, Royce Searcy, Wayne H. Thompson, David Baltensperger, Robert Myatt, and Jurg Blumenthal. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1330450.
Full textGhosh, Arup, Jitendra Chikara, and Candace Wheeler. Determination of the Economic Viability & Technical Feasibility of Commercial Jatropha Curcas Production for Generation of Jatropha oil as Bio-Fuel Feedstock from Wasteland: Final Technical Report on Life Cycle Impact Assessment of Jatropha Cultivation. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1320736.
Full textJezierski, Kelly. National Bio-fuel Energy Laboratory. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1000783.
Full textTaheripour, Farzad, and Wally Tyner. Introducing First and Second Generation Biofuels into GTAP Data Base version 7*. GTAP Research Memoranda, February 2011. http://dx.doi.org/10.21642/gtap.rm21.
Full textLetsche, Nicholas, Peter J. Lammers, and Mark S. Honeyman. Bulk Density of Bio-Fuel Byproducts. Ames (Iowa): Iowa State University, January 2009. http://dx.doi.org/10.31274/ans_air-180814-777.
Full textShihwu Sung. Bio-hydrogen production from renewable organic wastes. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/828223.
Full textFujimoto, Cy H., Christopher James Cornelius, Daniel Harvey Doughty, Randy John Shul, Andrew William Walker, ), Swapnil Chhabra, et al. Bio micro fuel cell grand challenge final report. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/876287.
Full textAnthony Terrinoni and Sean Gifford. A Bio-Based Fuel Cell for Distributed Energy Generation. Office of Scientific and Technical Information (OSTI), June 2008. http://dx.doi.org/10.2172/933041.
Full textMiller, Dennis J. Ediesel: Diesel Additive production from ethanol and bio-diesel coproducts. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1494140.
Full textPosewitz, Matthew C. Renewable Bio-Solar Hydrogen Production: The Second Generation (Part C). Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada614265.
Full text