Journal articles on the topic 'Production function (dual and primal)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Production function (dual and primal).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Paris, Quirino. "Certezze e novitŕ in economia della produzione." QA Rivista dell'Associazione Rossi-Doria, no. 3 (August 2009): 7–22. http://dx.doi.org/10.3280/qu2009-003001.
Full textSugianto, Welly. "OPTIMASI KAPASITAS PRODUKSI UKM DENGAN GOAL PROGRAMMING." JURNAL REKAYASA SISTEM INDUSTRI 5, no. 2 (May 30, 2020): 146. http://dx.doi.org/10.33884/jrsi.v5i2.1911.
Full textXing, Yumei, and Dong Qiu. "Solving Triangular Intuitionistic Fuzzy Matrix Game by Applying the Accuracy Function Method." Symmetry 11, no. 10 (October 9, 2019): 1258. http://dx.doi.org/10.3390/sym11101258.
Full textSheu, Ruey-Lin, and Shu-Cherng Fang. "On the relationship of interior-point methods." International Journal of Mathematics and Mathematical Sciences 16, no. 3 (1993): 565–72. http://dx.doi.org/10.1155/s0161171293000699.
Full textMundlak, Yair. "Production Function Estimation: Reviving the Primal." Econometrica 64, no. 2 (March 1996): 431. http://dx.doi.org/10.2307/2171790.
Full textTanikawa, A., and H. Mukai. "New Lagrangian function for nonconvex primal-dual decomposition." Computers & Mathematics with Applications 13, no. 8 (1987): 661–76. http://dx.doi.org/10.1016/0898-1221(87)90039-3.
Full textHuang, Zhiyi, and Anthony Kim. "Welfare maximization with production costs: A primal dual approach." Games and Economic Behavior 118 (November 2019): 648–67. http://dx.doi.org/10.1016/j.geb.2018.03.003.
Full textKumbhakar, Subal C., and Efthymios G. Tsionas. "Stochastic error specification in primal and dual production systems." Journal of Applied Econometrics 26, no. 2 (June 16, 2009): 270–97. http://dx.doi.org/10.1002/jae.1100.
Full textXing, Wenxun, Shu-Cherng Fang, Ruey-Lin Sheu, and Liping Zhang. "Canonical Dual Solutions to Quadratic Optimization over One Quadratic Constraint." Asia-Pacific Journal of Operational Research 32, no. 01 (February 2015): 1540007. http://dx.doi.org/10.1142/s0217595915400072.
Full textYe, Xugang, Shih-Ping Han, and Anhua Lin. "A Note on the Connection Between the Primal-Dual and the A* Algorithm." International Journal of Operations Research and Information Systems 1, no. 1 (January 2010): 73–85. http://dx.doi.org/10.4018/joris.2010101305.
Full textIftimie, Bogdan, Monique Jeanblanc, and Thomas Lim. "Optimization problem under change of regime of interest rate." Stochastics and Dynamics 16, no. 05 (July 15, 2016): 1650015. http://dx.doi.org/10.1142/s0219493716500155.
Full textHasan, M. Babul, and Md Toha. "An Improved Subgradiend Optimization Technique for Solving IPs with Lagrangean Relaxation." Dhaka University Journal of Science 61, no. 2 (November 18, 2013): 135–40. http://dx.doi.org/10.3329/dujs.v61i2.17059.
Full textLiang, Dong, and Wilbert E. Wilhelm. "Dual-ascent and primal heuristics for production-assembly-distribution system design." Naval Research Logistics (NRL) 60, no. 1 (December 20, 2012): 1–18. http://dx.doi.org/10.1002/nav.21515.
Full textEL Ghami, M., and T. Steihaug. "Kernel-function Based Primal-Dual Algorithms forP*(κ) Linear Complementarity Problems." RAIRO - Operations Research 44, no. 3 (July 2010): 185–205. http://dx.doi.org/10.1051/ro/2010014.
Full textChan, T. H. Hubert, Kevin L. Chang, and Rajiv Raman. "An SDP Primal-Dual Algorithm for Approximating the Lovász-Theta Function." Algorithmica 69, no. 3 (February 13, 2013): 605–18. http://dx.doi.org/10.1007/s00453-013-9756-5.
Full textHuang, Ming, Li-Ping Pang, Xi-Jun Liang, and Zun-Quan Xia. "The Space Decomposition Theory for a Class of Semi-Infinite Maximum Eigenvalue Optimizations." Abstract and Applied Analysis 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/845017.
Full textLu, Fang, and Chun-Rong Chen. "Notes on Lipschitz Properties of Nonlinear Scalarization Functions with Applications." Abstract and Applied Analysis 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/792364.
Full textCho, Gyeong-Mi, Y. Y. Cho, and Y. H. Lee. "A primal-dual interior-point algorithm based on a new kernel function." ANZIAM Journal 51 (May 3, 2011): 476. http://dx.doi.org/10.21914/anziamj.v51i0.1724.
Full textCHO, G. M., Y. Y. CHO, and Y. H. LEE. "A PRIMAL-DUAL INTERIOR-POINT ALGORITHM BASED ON A NEW KERNEL FUNCTION." ANZIAM Journal 51, no. 4 (April 2010): 476–91. http://dx.doi.org/10.1017/s1446181110000908.
Full textBai, Yan-Qin, Jing Zhang, Peng-Fei Ma, and Lian-Sheng Zhang. "A self-concordant exponential kernel function for primal–dual interior-point algorithm." Optimization 63, no. 6 (October 18, 2013): 931–53. http://dx.doi.org/10.1080/02331934.2013.845777.
Full textEL Ghami, M., and C. Roos. "Generic Primal-dual Interior Point Methods Based on a New Kernel Function." RAIRO - Operations Research 42, no. 2 (April 2008): 199–213. http://dx.doi.org/10.1051/ro:2008009.
Full textZhao, Dequan, and Mingwang Zhang. "Kernel function-based primal-dual interior-point methods for symmetric cones optimization." Wuhan University Journal of Natural Sciences 19, no. 6 (November 12, 2014): 461–68. http://dx.doi.org/10.1007/s11859-014-1040-2.
Full textIto, S., C. T. Kelley, and E. W. Sachs. "Inexact primal-dual interior point iteration for linear programs in function spaces." Computational Optimization and Applications 4, no. 3 (July 1995): 189–201. http://dx.doi.org/10.1007/bf01300870.
Full textNesterov, Yu. "Complexity bounds for primal-dual methods minimizing the model of objective function." Mathematical Programming 171, no. 1-2 (August 21, 2017): 311–30. http://dx.doi.org/10.1007/s10107-017-1188-6.
Full textKaur, Arshpreet, and MaheshKumar Sharma. "Higher order symmetric duality for multiobjective fractional programming problems over cones." Yugoslav Journal of Operations Research, no. 00 (2021): 12. http://dx.doi.org/10.2298/yjor200615012k.
Full textPostolache, Mihai. "Duality for Multitime Multiobjective Ratio Variational Problems on First Order Jet Bundle." Abstract and Applied Analysis 2012 (2012): 1–18. http://dx.doi.org/10.1155/2012/589694.
Full textHong, Mingyi, Tsung-Hui Chang, Xiangfeng Wang, Meisam Razaviyayn, Shiqian Ma, and Zhi-Quan Luo. "A Block Successive Upper-Bound Minimization Method of Multipliers for Linearly Constrained Convex Optimization." Mathematics of Operations Research 45, no. 3 (August 2020): 833–61. http://dx.doi.org/10.1287/moor.2019.1010.
Full textOrea Sánchez, Luis, and Antonio Álvarez Pinilla. "Eficiencia técnica en pesquerias multiespecie: Una aproximación primal." Economía Agraria y Recursos Naturales 2, no. 1 (October 23, 2011): 5. http://dx.doi.org/10.7201/earn.2002.01.01.
Full textIzmailov, A. F., M. V. Solodov, and E. I. Uskov. "Globalizing Stabilized Sequential Quadratic Programming Method by Smooth Primal-Dual Exact Penalty Function." Journal of Optimization Theory and Applications 169, no. 1 (February 11, 2016): 148–78. http://dx.doi.org/10.1007/s10957-016-0889-y.
Full textDuffin, R. J., D. F. Karney, and E. Z. Prisman. "Apex duality for constrained optimization." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 28, no. 1 (July 1986): 134–46. http://dx.doi.org/10.1017/s0334270000005233.
Full textYuan, Jing, Juan Shi, and Xue-Cheng Tai. "A Convex and Exact Approach to Discrete Constrained TV-L1 Image Approximation." East Asian Journal on Applied Mathematics 1, no. 2 (May 2011): 172–86. http://dx.doi.org/10.4208/eajam.220310.181110a.
Full textScott, C. H., T. R. Jefferson, and E. Sirri. "On duality for convex minimization with nested maxima." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 26, no. 4 (April 1985): 517–22. http://dx.doi.org/10.1017/s0334270000004690.
Full textKermani, Ali A., Christian B. Macdonald, Roja Gundepudi, and Randy B. Stockbridge. "Guanidinium export is the primal function of SMR family transporters." Proceedings of the National Academy of Sciences 115, no. 12 (March 5, 2018): 3060–65. http://dx.doi.org/10.1073/pnas.1719187115.
Full textDe Marchi, Alberto. "On a primal-dual Newton proximal method for convex quadratic programs." Computational Optimization and Applications 81, no. 2 (January 6, 2022): 369–95. http://dx.doi.org/10.1007/s10589-021-00342-y.
Full textBreslaw, J. A., and J. B. Smith. "Des observations empiriques encourageantes pour la théorie dualiste." Articles 59, no. 2 (July 21, 2009): 230–39. http://dx.doi.org/10.7202/601214ar.
Full textTchelepi, Hamdi A., Patrick Jenny, Seong Hee Lee, and Christian Wolfsteiner. "Adaptive Multiscale Finite-Volume Framework for Reservoir Simulation." SPE Journal 12, no. 02 (June 1, 2007): 188–95. http://dx.doi.org/10.2118/93395-pa.
Full textAlain, Guinet. "A primal-dual approach for capacity-constrained production planning with variable and fixed costs." Computers & Industrial Engineering 37, no. 1-2 (October 1999): 93–96. http://dx.doi.org/10.1016/s0360-8352(99)00030-3.
Full textWang, G. Q., Y. Q. Bai, and C. Roos. "Primal-Dual Interior-Point Algorithms for Semidefinite Optimization Based on a Simple Kernel Function." Journal of Mathematical Modelling and Algorithms 4, no. 4 (October 26, 2005): 409–33. http://dx.doi.org/10.1007/s10852-005-3561-3.
Full textChai, Yanfei. "Robust strong duality for nonconvex optimization problem under data uncertainty in constraint." AIMS Mathematics 6, no. 11 (2021): 12321–38. http://dx.doi.org/10.3934/math.2021713.
Full textPopov, Sergei P., and Darya V. Maksakova. "One approach to the study of gas pricing based on gas supply systems modelling (the case of Northeast Asia)." E3S Web of Conferences 114 (2019): 02004. http://dx.doi.org/10.1051/e3sconf/201911402004.
Full textJiang, Xin, and Lieven Vandenberghe. "Bregman primal–dual first-order method and application to sparse semidefinite programming." Computational Optimization and Applications 81, no. 1 (December 4, 2021): 127–59. http://dx.doi.org/10.1007/s10589-021-00339-7.
Full textCai, Xinzhong, Lin Wu, Yujing Yue, Minmin Li, and Guoqiang Wang. "Kernel-function-based primal-dual interior-point methods for convex quadratic optimization over symmetric cone." Journal of Inequalities and Applications 2014, no. 1 (2014): 308. http://dx.doi.org/10.1186/1029-242x-2014-308.
Full textBai, Y. Q., C. Roos, and M. El Ghami. "A primal‐dual interior-point method for linear optimization based on a new proximity function." Optimization Methods and Software 17, no. 6 (January 2002): 985–1008. http://dx.doi.org/10.1080/1055678021000090024.
Full textYamashita, Hiroshi, and Hiroshi Yabe. "An Interior Point Method with a Primal-Dual Quadratic Barrier Penalty Function for Nonlinear Optimization." SIAM Journal on Optimization 14, no. 2 (January 2003): 479–99. http://dx.doi.org/10.1137/s1052623499355533.
Full textBaptista, E. C., E. A. Belati, V. A. Sousa, and G. R. M. Da Costa. "Primal-Dual Logarithmic Barrier and Augmented Lagrangian Function to the Loss Minimization in Power Systems." Electric Power Components and Systems 34, no. 7 (June 2006): 775–84. http://dx.doi.org/10.1080/15325000500488602.
Full textWang, Guoqiang, and Detong Zhu. "A unified kernel function approach to primal-dual interior-point algorithms for convex quadratic SDO." Numerical Algorithms 57, no. 4 (January 6, 2011): 537–58. http://dx.doi.org/10.1007/s11075-010-9444-3.
Full textCheng, Z. Y., and J. E. Mitchell. "A primal-dual interior-point method for linear programming based on a weighted barrier function." Journal of Optimization Theory and Applications 87, no. 2 (November 1995): 301–21. http://dx.doi.org/10.1007/bf02192566.
Full textGuminov, S. V., Yu E. Nesterov, P. E. Dvurechensky, and A. V. Gasnikov. "Primal-dual accelerated gradient descent with line search for convex and nonconvex optimization problems." Доклады Академии наук 485, no. 1 (May 22, 2019): 15–18. http://dx.doi.org/10.31857/s0869-5652485115-18.
Full textLoubna, Guerra, and Achache Mohamed. "A Parametric Kernel Function Generating the best Known Iteration Bound for Large-Update Methods for CQSDO." Statistics, Optimization & Information Computing 8, no. 4 (September 24, 2020): 876–89. http://dx.doi.org/10.19139/soic-2310-5070-842.
Full textBoudjellal, Nawel, Hayet Roumili, and Djamel Benterki. "Complexity analysis of interior point methods for convex quadratic programming based on a parameterized Kernel function." Boletim da Sociedade Paranaense de Matemática 40 (February 2, 2022): 1–16. http://dx.doi.org/10.5269/bspm.47772.
Full text