Contents
Academic literature on the topic 'Processus non-gaussien'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Processus non-gaussien.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Processus non-gaussien"
Dufour, Jean-Marie, and Malika Neifar. "Méthodes d’inférence exactes pour des processus autorégressifs : une approche fondée sur des tests induits." Articles 78, no. 1 (March 11, 2004): 19–40. http://dx.doi.org/10.7202/007243ar.
Full textMéliot, Pierre-Loïc. "Kerov's central limit theorem for Schur-Weyl and Gelfand measures (extended abstract)." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AO,..., Proceedings (January 1, 2011). http://dx.doi.org/10.46298/dmtcs.2943.
Full textDissertations / Theses on the topic "Processus non-gaussien"
Puig, Bénédicte. "Modélisation et simulation de processus stochastiques non gaussiens." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00003526.
Full textJay, Emmanuelle. "Détection en Environnement non Gaussien." Phd thesis, Université de Cergy Pontoise, 2002. http://tel.archives-ouvertes.fr/tel-00174276.
Full textAvec l'évolution technologique des systèmes radar, la nature réelle du fouillis s'est révélée ne plus être Gaussienne. Bien que l'optimalité du filtre adapté soit mise en défaut dans pareils cas, des techniques TFAC (Taux de Fausses Alarmes Constant) ont été proposées pour ce détecteur, dans le but d'adapter la valeur du seuil de détection aux multiples variations locales du fouillis. Malgré leur diversité, ces techniques se sont avérées n'être ni robustes ni optimales dans ces situations.
A partir de la modélisation du fouillis par des processus complexes non-Gaussiens, tels les SIRP (Spherically Invariant Random Process), des structures optimales de détection cohérente ont pu être déterminées. Ces modèles englobent de nombreuses lois non-Gaussiennes, comme la K-distribution ou la loi de Weibull, et sont reconnus dans la littérature pour modéliser de manière pertinente de nombreuses situations expérimentales. Dans le but d'identifier la loi de leur composante caractéristique qu'est la texture, sans a priori statistique sur le modèle, nous proposons, dans cette thèse, d'aborder le problème par une approche bayésienne.
Deux nouvelles méthodes d'estimation de la loi de la texture en découlent : la première est une méthode paramétrique, basée sur une approximation de Padé de la fonction génératrice de moments, et la seconde résulte d'une estimation Monte Carlo. Ces estimations sont réalisées sur des données de fouillis de référence et donnent lieu à deux nouvelles stratégies de détection optimales, respectivement nommées PEOD (Padé Estimated Optimum Detector) et BORD (Bayesian Optimum Radar Detector). L'expression asymptotique du BORD (convergence en loi), appelée le "BORD Asymptotique", est établie ainsi que sa loi. Ce dernier résultat permet d'accéder aux performances théoriques optimales du BORD Asymptotique qui s'appliquent également au BORD dans le cas où la matrice de corrélation des données est non singulière.
Les performances de détection du BORD et du BORD Asymptotique sont évaluées sur des données expérimentales de fouillis de sol. Les résultats obtenus valident aussi bien la pertinence du modèle SIRP pour le fouillis que l'optimalité et la capacité d'adaptation du BORD à tout type d'environnement.
Sahmoudi, Mohamed. "Processus alpha-stables pour la séparation et l'estimation robustes des signaux non-gaussiens et/ou non-stationnaires." Paris 11, 2004. http://www.theses.fr/2004PA112283.
Full textIn this thesis, we introduce some new blind source separation approches for heavy-tailed and/or nonstationary signals. The impulsive, or heavy-tailed signals are modeled as real-valued symmetric alpha-stable processes characterized by infinite second and higher order moments. For the heavy-tailed signals separation, the proposed approaches uses the minimum dispersion criterion, the normalized statistics, some contrast function and a semi-parametric version of the maximum likelihood principle respectively. For the nonstationary FM signals in heavy-tailed noise, we propose some parametric and non-parametric methodes. Parametric methodes are based on the polynomial phase transform and the subspace method MUSIC. The non-parametric methodes are based on the use of the time-frequency representation of the signals. In a first appraoch, we use a preprocessing stage to mitigate the impulsive noise effect, while in the second one we design a new robust time-frequency distribution
Petitjean, Julien. "Contributions au traitement spatio-temporel fondé sur un modèle autorégressif vectoriel des interférences pour améliorer la détection de petites cibles lentes dans un environnement de fouillis hétérogène Gaussien et non Gaussien." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14157/document.
Full textThis dissertation deals with space-time adaptive processing in the radar’s field. To improve the detection’s performances, this approach consists in maximizing the ratio between the target’s power and the interference’s one, i.e. the thermal noise and the clutter. Several variants of its algorithm exist, one of them is based on multichannel autoregressive modelling of interferences. Its main problem lies in the estimation of autoregressive matrices with training data and guides our research’s work. Especially, our contribution is twofold.On the one hand, when thermal noise is considered negligible, autoregressive matrices are estimated with fixed point method. Thus, the algorithm is robust against non-gaussian clutter.On the other hand, a new modelling of interferences is proposed. The clutter and thermal noise are separated : the clutter is considered as a multichannel autoregressive process which is Gaussian and disturbed by the white thermal noise. Thus, new estimation’s algorithms are developed. The first one is a blind estimation based on errors in variable methods. Then, recursive approaches are proposed and used extension of Kalman filter : the extended Kalman filter and the Sigma Point Kalman filter (UKF and CDKF), and the H∞ filter. A comparative study on synthetic and real data with Gausian and non Gaussian clutter is carried out to show the relevance of the different algorithms about detection’s probability
Millan, Elodie. "Simulations numériques du mouvement brownien confiné." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0058.
Full textBrownian motion is the erratic movement of microscopic particles immersed in a fluid due to the thermal agitation of the surrounding fluid molecules. It is possible to describe the Brownian motion using Langevin’s equation. However, close to a wall, a particle moves more slowly because of the hydrodynamic no-slip condition at the wall. As a result, the particle’s mobilities and diffusion coefficients, both parallel and perpendicular to the wall, are locally impacted by the confinement and lead to the emergence of a so-called multiplicative noise. Consequently, when confined, Brownian motion is no longer Gaussian. Besides, the latter effect is difficult to observe at all time. During my thesis, I developed numerical simulations, optimized to study efficiently, on broad spatial and temporal windows, Brownian motion confined between rigid walls. In this manuscript, I present in detail the algorithm and the set of optimisation methods for reducing the computation time. I also present the methods for analysing Brownian motion and apply them to the confined case in order to characterize qualitatively and quantitatively the non-Gaussian features of the displacements of a Brownian particle. This work has rendered possible to confirm the theoretical predictions, in particular at long times, which are inaccessible experimentally
De, lozzo Matthias. "Modèles de substitution spatio-temporels et multifidélité : Application à l'ingénierie thermique." Thesis, Toulouse, INSA, 2013. http://www.theses.fr/2013ISAT0027/document.
Full textThis PhD thesis deals with the construction of surrogate models in transient and steady states in the context of thermal simulation, with a few observations and many outputs.First, we design a robust construction of recurrent multilayer perceptron so as to approach a spatio-temporal dynamic. We use an average of neural networks resulting from a cross-validation procedure, whose associated data splitting allows to adjust the parameters of these models thanks to a test set without any information loss. Moreover, the construction of this perceptron can be distributed according to its outputs. This construction is applied to the modelling of the temporal evolution of the temperature at different points of an aeronautical equipment.Then, we proposed a mixture of Gaussian process models in a multifidelity framework where we have a high-fidelity observation model completed by many observation models with lower and no comparable fidelities. A particular attention is paid to the specifications of trends and adjustement coefficients present in these models. Different kriging and co-krigings models are put together according to a partition or a weighted aggregation based on a robustness measure associated to the most reliable design points. This approach is used in order to model the temperature at different points of the equipment in steady state.Finally, we propose a penalized criterion for the problem of heteroscedastic regression. This tool is build in the case of projection estimators and applied with the Haar wavelet. We also give some numerical results for different noise specifications and possible dependencies in the observations
Julien, Jérôme. "Application des trajectoires quantiques Bohmiennes à la dynamique de processus dissociatifs non-adiabatiques." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2005. http://tel.archives-ouvertes.fr/tel-00011432.
Full texten jeu dans les équations. Dans cette thèse nous présentons des approximations permettant de propager les trajectoires quantiques sans instabilités numériques. Nous nous intéressons particulièrement aux systèmes constitués de plusieurs états électroniques couplés. D'une part, nous développons une approximation semi-classique qui découple partiellement la propagation des trajectoires des transitions
inter-états. D'autre part, nous appliquons aux systèmes à plusieurs états une reformulation des équations hydrodynamiques en termes de dérivées spatiales. Dans les deux cas, le formalisme est établi puis appliqué numériquement à des processus modèles.
Boukili, Makhoukhi Mohammed. "Puissance asymptotique des tests non paramétriques d'ajustement de type Cramér-von Mises." Paris 6, 2007. https://tel.archives-ouvertes.fr/tel-00464161.
Full textWe consider in this paper goodness-of-fit tests of the nullhypothesis that the underlying d. F. Of a sample F(. ), belongs toa given family of distribution functions. We proposea method for deriving approximate values of the power of aweighted Cramér-von Mises type test of goodness of fit. Ourmethod relies on Karhunen-Loève [K. L] expansions on (0,1] forWeighted Brownian bridges
Boukili, Makhoukhi Mohammed. "Puissance asymptotique des tests non paramétriques d'ajustement du type Cramer-Von Mises." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00464161.
Full textEsstafa, Youssef. "Modèles de séries temporelles à mémoire longue avec innovations dépendantes." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCD021.
Full textWe first consider, in this thesis, the problem of statistical analysis of FARIMA (Fractionally AutoRegressive Integrated Moving-Average) models endowed with uncorrelated but non-independent error terms. These models are called weak FARIMA and can be used to fit long-memory processes with general nonlinear dynamics. Relaxing the independence assumption on the noise, which is a standard assumption usually imposed in the literature, allows weak FARIMA models to cover a large class of nonlinear long-memory processes. The weak FARIMA models are dense in the set of purely non-deterministic stationary processes, the class of these models encompasses that of FARIMA processes with an independent and identically distributed noise (iid). We call thereafter strong FARIMA models the models in which the error term is assumed to be an iid innovations.We establish procedures for estimating and validating weak FARIMA models. We show, under weak assumptions on the noise, that the least squares estimator of the parameters of weak FARIMA(p,d,q) models is strongly consistent and asymptotically normal. The asymptotic variance matrix of the least squares estimator of weak FARIMA(p,d,q) models has the "sandwich" form. This matrix can be very different from the asymptotic variance obtained in the strong case (i.e. in the case where the noise is assumed to be iid). We propose, by two different methods, a convergent estimator of this matrix. An alternative method based on a self-normalization approach is also proposed to construct confidence intervals for the parameters of weak FARIMA(p,d,q) models.We then pay particular attention to the problem of validation of weak FARIMA(p,d,q) models. We show that the residual autocorrelations have a normal asymptotic distribution with a covariance matrix different from that one obtained in the strong FARIMA case. This allows us to deduce the exact asymptotic distribution of portmanteau statistics and thus to propose modified versions of portmanteau tests. It is well known that the asymptotic distribution of portmanteau tests is correctly approximated by a chi-squared distribution when the error term is assumed to be iid. In the general case, we show that this asymptotic distribution is a mixture of chi-squared distributions. It can be very different from the usual chi-squared approximation of the strong case. We adopt the same self-normalization approach used for constructing the confidence intervals of weak FARIMA model parameters to test the adequacy of weak FARIMA(p,d,q) models. This method has the advantage of avoiding the problem of estimating the asymptotic variance matrix of the joint vector of the least squares estimator and the empirical autocovariances of the noise.Secondly, we deal in this thesis with the problem of estimating autoregressive models of order 1 endowed with fractional Gaussian noise when the Hurst parameter H is assumed to be known. We study, more precisely, the convergence and the asymptotic normality of the generalized least squares estimator of the autoregressive parameter of these models