Dissertations / Theses on the topic 'Processus Markovien à sauts'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Processus Markovien à sauts.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mariton, Michel. "Les systèmes linéaires à sauts markoviens." Paris 11, 1986. http://www.theses.fr/1986PA112288.
Full textLANEUVILLE, DANN. "Processus a sauts markoviens : apport des capteurs imageurs au pistage de cibles manuvrantes." Paris 11, 1998. http://www.theses.fr/1998PA112409.
Full textAit, Rami Mustapha. "Approche LMI pour l'analyse et la commande des systèmes à sauts markoviens." Paris 9, 1997. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1997PA090026.
Full textCauchemez, Simon. "Estimation des paramètres de transmission dans les modèles épidémiques par échantillonnage de Monte Carlo par chaine de Markov." Paris 6, 2005. http://www.theses.fr/2005PA066572.
Full textAbbassi, Noufel. "Chaînes de Markov triplets et filtrage optimal dans les systemes à sauts." Phd thesis, Institut National des Télécommunications, 2012. http://tel.archives-ouvertes.fr/tel-00873630.
Full textParoissin, Christian. "Résultats asymptotiques pour des grands systèmes réparables monotones." Phd thesis, Université Paris-Diderot - Paris VII, 2002. http://tel.archives-ouvertes.fr/tel-00002101.
Full textTordeux, Antoine. "Étude de processus en temps continu modélisant l'écoulement de flux de trafic routier." Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00596941.
Full textNguyen, Thi Thu Huong. "Estimation de processus de sauts." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1124/document.
Full textIn this thesis, we consider a stochastic differential equation driven by a truncated pure jump Lévy process with index α ∈(0,2) and observe high frequency data of the process on a fixed observation time. We first study the behavior of the density of the process in small time. Next, we prove the Local Asymptotic Mixed Normality (LAMN) property for the drift and scaling parameters from high frequency observations. Finally, we propose some estimators of the index parameter of the process.The first part deals with the asymptotic behavior of the density in small time of the process. The process is assumed to depend on a parameter β = (θ,σ) and we study, in this part, the sensitivity of the density with respect to this parameter. This extends the results of [17] which were restricted to the index α ∈ (1,2) and considered only the sensitivity with respect to the drift coefficient. By using Malliavin calculus, we obtain the representation of the density, its derivative and its logarithm derivative as an expectation and a conditional expectation. These representation formulas involve some Malliavin weights whose expressions are given explicitly and this permits to analyze the asymptotic behavior in small time of the density, using the self-similarity property of the stable process.The second part of this thesis concerns the Local Asymptotic Mixed Normality property for the parameters. Both the drift coefficient and scale coefficient depend on the unknown parameters. Extending the results of [17], we compute the asymptotic Fisher information and find that the rate in the Local Asymptotic Mixed Normality property depends on the index α.The third part proposes some estimators of the jump activity index α ∈ (0,2) based on the method of moments as in Masuda [53]. We prove the consistency and asymptotic normality of the estimators and give some simulations to illustrate the finite-sample behaviors of the estimators
Blanchet-Scalliet, Christophette. "Processus à sauts et risque de défaut." Phd thesis, Université d'Evry-Val d'Essonne, 2001. http://tel.archives-ouvertes.fr/tel-00192209.
Full textLa seconde est consacrée à une modélisation du risque de défaut. Nous insistons sur la différence entre l'information liée au défaut de celle du marché sans défaut. Nous établissons des théorèmes de représentation prévisibles pour les martingales dans la filtration élargie.
Dinetan, Lee. "Ruine et investissement en environnement markovien." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30141/document.
Full textThis thesis aims at modelling and optimize an agent's (called "he") investment strategies when subjected to a Markovian environment, and to a liquidity risk happening when he runs out of liquid assets during an expense. Throughout this work, we deem that he aims at avoiding default; for this purpose, investment opportunities are available to him, allowing to increase his future expected incomes at the price of an immediate expense, therefore risking premature bankruptcy since investment is deemed illiquid: our goal is to find conditions under which incurring such liquidity risks is more advisable than declining a permanent income
Joulin, Aldéric. "Concentration et fluctuations de processus stochastiques avec sauts." Phd thesis, Université de La Rochelle, 2006. http://tel.archives-ouvertes.fr/tel-00115724.
Full textDans la première partie de la thèse, nous explorons le
phénomène de concentration des processus de naissance et de mort. Les différentes approches considérées sont d'une part les inégalités fonctionnelles ainsi que la méthode de
Herbst, et d'autre part l'étude des propriétés du semigroupe associé et des techniques de martingales. En particulier, nous
sommes amenés à introduire diverses notions de courbures de ces processus, analogues discrets du critère de courbure de Bakry-Emery dans le cadre des processus de diffusion.
Dans la deuxième partie de la thèse, nous étudions le
comportement du processus supremum d'une intégrale stable stochastique en établissant des inégalités maximales que nous appliquons à des problèmes de temps de passage de
processus symétriques stables. Enfin, nous démontrons un principe de domination convexe pour des intégrales stochastiques brownienne et stable corrélées.
Joulin, Aldéric Privault Nicolas. "Concentration et fluctuations de processus stochastiques avec sauts." [S. l.] : [s. n.], 2006. http://tel.archives-ouvertes.fr.
Full textNicaise, Florent. "Calcul stochastique anticipant pour des processus avec sauts." Clermont-Ferrand 2, 2001. http://www.theses.fr/2001CLF2A003.
Full textProfeta, Christophe. "Pénalisations, pseudo-inverses et peacocks dans un cadre markovien." Thesis, Nancy 1, 2010. http://www.theses.fr/2010NAN10088/document.
Full textAs suggested by the title, this thesis comprises three parts.- The first part is dedicated to the penalization of regular recurrent linear diffusions. More precisely, we start by examining null recurrent diffusions, and we exhibit a large class of functionals for which the penalization principle is satisfied. This study relies on the construction of a sigma-finite measure W similar to that of Najnudel-Roynette-Yor. We then deal with the case of the penalization of a positively recurrent diffusion (reflected on an interval) with an exponential function of its local time at 0. The results we obtain in this set-up are quite different from the null recurrent framework, and we see a new phenomena of composition of penalizations.- In the second part, we extend the notion of pseudo-inverses (a notion recently introduced by Madan-Roynette-Yor in the framework of Bessel processes) to more general diffusions. We show in particular that we may realize the family of pseudo-inverses associated to a diffusion started from 0 and taking positive values as the last passage times of another diffusion, constructed thanks to Biane's transform.- The last part of this thesis deals with peacocks, i.e. with processes which are increasing in the convex order. A theorem due to Kellerer states that to every peacock, one can associate a martingale which has the same one-dimensional marginals. Guided by this theorem, we first exhibit large families of peacocks, essentially constructed from "conditionally monotone" processes, and we then associate martingales to some of these peacocks thanks to the Skorokhod embeddings of Hall-Breiman, Bass and Azéma-Yor
Barbot, Nelly. "Files d'attente fluides en environnement markovien." Rennes 1, 2002. http://www.theses.fr/2002REN10094.
Full textAzaïs, Romain. "Estimation non paramétrique pour les processus markoviens déterministes par morceaux." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00844395.
Full textSaint, Pierre Philippe. "Modèles multi-états de type Markovien et application à l'asthme." Phd thesis, Université Montpellier I, 2005. http://tel.archives-ouvertes.fr/tel-00010146.
Full textBilodeau, Jean-François. "Analyse de processus de sauts dans le prix du pétrole brut." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0019/MQ47169.pdf.
Full textMourragui, Mustapha. "Comportement hydrodynamique des processus de sauts, de naissances et de morts." Rouen, 1993. http://www.theses.fr/1993ROUES002.
Full textYang, Xiaochuan. "Etude dimensionnelle de la régularité de processus de diffusion à sauts." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1073/document.
Full textIn this dissertation, we study various dimension properties of the regularity of jump di usion processes, solution of a class of stochastic di erential equations with jumps. In particular, we de- scribe the uctuation of the Hölder regularity of these processes and that of the local dimensions of the associated occupation measure by computing their multifractal spepctra. e Hausdor dimension of the range and the graph of these processes are also calculated.In the last chapter, we use a new notion of “large scale” dimension in order to describe the asymptotics of the sojourn set of a Brownian motion under moving boundaries
Jiménez, Oviedo Byron. "Processus d’exclusion avec des sauts longs en contact avec des réservoirs." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4000/document.
Full textSimon, Thomas. "Subordination au sens faible de processus de levy petites deviations et support de processus a sauts." Evry-Val d'Essonne, 1999. http://www.theses.fr/1999EVRY0012.
Full textBouhlel, Nizar. "Caractérisation de texture d'écographie RF par champ markovien." Paris 5, 2006. http://www.theses.fr/2006PA05S014.
Full textThe ultrasound is a medical imaging tool that imposes itself for the diagnosis of numerous pathologies. As a consequence, many image filed studies are concerned with these images to provide tools of analysis and tissue characterization. The objective of this thesis is to exploit spatial markovien models representing the ultrasound texture that exist in the image to extract susceptible interactions that would describe the organization of these textures. In the first part, we evaluate the efficiency of the distributions proposed in the previous study modeling the RF envelope amplitude. We illustrate, through texture simulations, the links between the parameters of these distributions and the parameters of the scatterers, namely the density, the amplitude and the spacing. In the second part, we elaborate our texture spatial models inspired by the probability modeling RF envelope amplitude. So we obtain in every pixel of the image a local distribution of type K or Nakagami. Simulation and parameter estimation were developed. The third part is dedicated to the application of the spatial models on RF simulated images. We show here the adequate models for the description of the spatial arrangement of the scatterers constituting the tissue, and the connection of the model parameters with the intrinsic properties of the scatterers. Finally, the future development of this approach are to be discussed
Bavouzet, Marie-Pierre. "Minoration de densité pour les diffusions à sauts : calcul de Malliavin pour processus de sauts purs, applications à la finance." Paris 9, 2006. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2006PA090041.
Full textThis thesis gives applications of Malliavin calculus for jump processes. In the first part, we compute lower bounds for densities of jump diffusions with a continuous part driven by a Brownian motion. For that, we use a Malliavin conditional integration by parts formula based on Brownian increments only. We then deal with the computation of financial options, when the asset price follows a pure jump process. In the second part, we develop an abstract calculus of the Malliavin type based on random variables which are not independent and have discontinuous conditional densities. We settle an integration by parts formula that we apply then to the jump times and amplitudes of pure jump processes. In the third part, we use this integration by parts formula for the computation of the Delta of European and Asian options, and we derive representation formulas for conditional expectations and their gradients in order to compute the price and the Delta of American options
Ye, Yinna. "PROBABILITÉ DE SURVIE D'UN PROCESSUS DE BRANCHEMENT DANS UN ENVIRONNEMENT ALÉATOIRE MARKOVIEN." Phd thesis, Université François Rabelais - Tours, 2011. http://tel.archives-ouvertes.fr/tel-00605751.
Full textDao, Thi Thanh Binh. "Approche structurelle du risque de crédit avec des processus mixtes diffusion-sauts." Paris 9, 2005. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2005PA090006.
Full textThis thesis proposes three essays in the modelling of the firm's asset value as a jump diffusion process within the structural approach of credit risk with endogenous default barrier. The first deals with the modelling of a perpetual coupon debt structure using two different jump diffusion processes: double exponential and uniform. The second essay models a debt structure of perpetual roll-over of coupon and principal, where the firm's asset value follows a double exponential jump diffusion process. The third essay develops a structural model with zero-coupon debt structure, and takes into account a stopping time marked by a significant downward jump following important bad news of the firm. In our three essays, we obtain a level of credit spreads closer to the market data and confirm the existence of an optimal capital structure, which takes into account the risk-free rate, the firm risk, the tax rate, the default costs and the jump sizes
Cloez, Bertrand. "Comportement asymptotique de processus avec sauts et applications pour des modèles avec branchement." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00862913.
Full textFAR, HADDA. "Proprietes asymptotiques de modeles parametriques associes a l'observation discretisee de processus de sauts." Paris 6, 2001. http://www.theses.fr/2001PA066299.
Full textBailey, Ian. "Planification heuristique avec les processus de décision markovien et création d'un environnement de programmation." Mémoire, Université de Sherbrooke, 2005. http://savoirs.usherbrooke.ca/handle/11143/4630.
Full textSamuélidès, Yann. "Estimations par macrotiles et modele de marche a sauts." Palaiseau, Ecole polytechnique, 2001. http://www.theses.fr/2001EPXX0014.
Full textBastide, Paul. "Modèles de processus stochastiques avec sauts sur arbres : application à l'évolution adaptative sur des phylogénies." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS370/document.
Full textThis project is aiming at taking a step further in the process of systematic statistical modeling that is occurring in the field of comparative ecology. A way to account for correlations between quantitative traits of a set of sampled species due to common evolutionary histories is to see the current state as the result of a stochastic process running on a phylogenetic tree. Due to environmental changes, some ecological niches can shift in time, inducing a shift in the parameters values of the stochastic process modeling trait evolution. Because we only measure the value of the process at a single time point, for extant species, some evolutionary scenarios cannot be reconstructed, or have some identifiability issues, that we carefully study. We construct an incomplete-data model for statistical inference, along with an efficient implementation. We perform an automatic shift detection, and choose the number of shifts thanks to a model selection procedure, specifically crafted to handle the special structure of the problem. Theoretical guaranties are derived in some special cases. A phylogenetic tree cannot take into account hybridization or horizontal gene transfer events, that are widely spread in some groups of species, such as plants or bacterial organisms. A phylogenetic network can be used to deal with these events. We develop a new model of trait evolution on this kind of structure, that takes non-linear effects such as heterosis into account. Heterosis, or hybrid vigor or depression, is a well studied effect, that happens when a hybrid species has a trait value that is outside of the range of its two parents
Rabiet, Victor. "Une équation stochastique avec sauts censurés liée à des PDMP à plusieurs régimes." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1031/document.
Full textThis work is dedicated to the study of some properties concerning the d-dimensional jump type diffusion X = (Xt) with infinitesimal generator given by Lψ(x) = 1/2 ∑ aᵤᵥ(x)∂²ψ(x)/∂xᵤ∂xᵥ + g(x)∇ψ(x) + ∫ (ψ(x + c(z, x)) − ψ(x))γ(z, x)µ(dz) where µ is of infinite total mass. If γ did not depend on x, we would be in a classical situation where the process X could be represented as the solution of a stochastic equation driven by a Poisson point measure with intensity measure γ(z)µ(dz) ; when γ depends on x, we may have the heuristic idea that, if we were to imagine the process as a trajectory of a particle, the law of the jumps may depend on the position of the particle. In the first part, we give some conditions to obtain existence and uniqueness of such processes. Then, we consider this type of processes as a generalization of Piecewise Deterministic Markov Processes (PDMP) ; we show that they can be seen as a limit of a sequence (Xᵣ(t)) of standard PDMP's for which the intensity of the jumps tends to infinity as r tends to infinity, following two regimes: a slow one, which leads to a jump component with finite variation, and a rapid one which, supposing that the processes at hand are centered and renormalized in a convenient way, produces the diffusion component in the limit. Finally, we prove Harris recurrence of X using a regeneration scheme which is entirely based on the jumps of the process. Moreover we state explicit conditions in terms of the coefficients of the process allowing to control the speed of convergence to equilibrium in terms of deviation inequalities for integrable additive functionals. In the second part, we consider again the same type of process X = (Xt(x)) starting from x. Using an approach based on a finite dimensional Malliavin Calculus, we study the joint regularity of this process in the following sense : we fix b≥1 and p>1, K a compact set of Rᵈ, and we give sufficient conditions in order to have P(Xt(x)∈dy)=pt(x,y)dy with (x,y)↦pt(x,y) in Wᵇᵖ(K×Rᵈ)
Guerrero, Guillaume. "Implications des changements de régime markovien dans des modèles à anticipations rationnelles : une exploration empirique." Paris 1, 2004. http://www.theses.fr/2004PA010038.
Full textPanloup, Fabien. "Approximation récursive du régime stationnaire d'une équation différentielle stochastique avec sauts." Paris 6, 2006. http://www.theses.fr/2006PA066397.
Full textCrudu, Alina. "Approximations hybrides de processus de Markov à sauts multi-échelles : applications aux modèles de réseaux de gènes en biologie moléculaire." Phd thesis, Université Rennes 1, 2009. http://tel.archives-ouvertes.fr/tel-00454886.
Full textPanloup, Fabien. "Approximation récursive du régime stationnaire d'une Equation Differentielle Stochastique avec sauts." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2006. http://tel.archives-ouvertes.fr/tel-00120508.
Full textd'Euler à pas décroissant, « exacts » ou « approchés », permettent de simuler efficacement la probabilité invariante mais également la loi globale d'un tel processus en régime stationnaire.
Ce travail possède des applications théoriques et pratiques diverses dont certaines
sont développées ici (TCL p.s. pour les lois stables, théorème limite relatif aux valeurs extrêmes, pricing d'options pour des modèles à volatilité stochastique stationnaire...).
Chancelier, Jean-Philippe. "Identification de processus de diffusion avec sauts et mise en œuvre dans le cadre d'un système expert." Paris 9, 1989. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1989PA090029.
Full textTran, Ngoc Khue. "Propriété LAN pour des processus de diffusion avec sauts avec observations discrètes via le calcul de Malliavin." Thesis, Paris 13, 2014. http://www.theses.fr/2014PA132008/document.
Full textIn this thesis we apply the Malliavin calculus in order to obtain the local asymptotic normality (LAN) property from discrete observations for certain uniformly elliptic diffusion processes with jumps. In Chapter 2 we review the proof of the local asymptotic mixed normality (LAMN) property for diffusion processes with jumps from continuous observations, and as a consequence, we derive the LAN property when supposing the ergodicity of the process. In Chapter 3 we establish the LAN property for a simple Lévy process whose drift and diffusion parameters as well as its intensity are unknown. In Chapter 4, using techniques of the Malliavin calculus and the estimates of the transition density, we prove that the LAN property is satisfied for a jump-diffusion process whose drift coefficient depends on an unknown parameter. Finally, in the same direction we obtain in Chapter 5 the LAN property for a jump-diffusion process where two unknown parameters determine the drift and diffusion coefficients of the jump-diffusion process
Chiquet, Julien. "Modélisation et estimation des processus de dégradation avec application en fiabilité des structures." Phd thesis, Université de Technologie de Compiègne, 2007. http://tel.archives-ouvertes.fr/tel-00165782.
Full textNous étudions la fiabilité du système en considérant la défaillance de la structure lorsque le processus de dégradation dépasse un seuil fixe. Nous obtenons la fiabilité théorique à l'aide de la théorie du renouvellement markovien.
Puis, nous proposons une procédure d'estimation des paramètres des processus aléatoires du système différentiel. Les méthodes d'estimation et les résultats théoriques de la fiabilité, ainsi que les algorithmes de calcul associés, sont validés sur des données simulés.
Notre méthode est appliquée à la modélisation d'un mécanisme réel de dégradation, la propagation des fissures, pour lequel nous disposons d'un jeu de données expérimental.
Poisson, Émilie. "Architecture et apprentissage d'un système hybride neuro-markovien pour la reconnaissance de l'écriture manuscrite en-ligne." Nantes, 2005. http://www.theses.fr/2005NANT2082.
Full textThis thesis deals with the study, the conception, the development and the test of an online unconstrained handwriting word recognition system for an omni-writer application. The proposed system is based on a hybrid architecture including on the one hand, a neural convolutional network (TDNN and/or SDNN), and on the other hand Hidden Markov Models (HMM). The neural network has a global vision and works at the character level, while the HMM works on a more local description and allows the extension from the character level to the word level. The system was first dedicated for processing isolated characters (digits, lowercase letters, uppercase letters). This architecture has been optimized in terms of performances and size. The second part of this work concerns the extension to the word level. In this case, we have defined a global training scheme directly at the word level. It allows to insure the global convergence of the system. It relies on an objective function that combines two main criteria: one based on generative models (typically by maximum likelihood estimation) and the second one based on discriminant criteria (maximum mutual information). Several results are presented on MNIST, IRONOFF and UNIPEN databases. They show the influence of the main parameters of the system, either in terms of topologies, information sources, and training models (number of states, criteria weighting, duration)
Pchelintsev, Evgeny. "Estimation paramétrique améliorée pour des modèles régressifs observés sous un bruit avec sauts." Rouen, 2012. http://www.theses.fr/2012ROUES041.
Full textThis thesis is devoted to parametric estimation for discret and continuous time regression models which are conditionally Gaussian with respect to a non-observable process. We consider the problem of estimating the unknown parameter using data governed by regression models. We develop improved methods for parameter estimation of regression models compared to least squares estimates. For regression models with Levy noise and Ornstein -- Uhlenbeck noise, we obtain explicit formulas for the minimal gain in mean square accuracy when using shrinkage estimates instead of the least squares estimates. For continuous models, are built improved estimates of the parameters on discrete data. For the model with noise and with jumps, we establish the asymptotic minimaxity of the least squares estimates and of the proposed shrinkage estimates in the sense of robust risk. We also carry on a simulation study of the proposed estimation procedures
Degris, Thomas. "Apprentissage par renforcement dans les processus de décision Markoviens factorisés." Paris 6, 2007. http://www.theses.fr/2007PA066594.
Full textBavouzet, Marie-Pierre. "Minoration de densité pour les diffusions à sauts.Calcul de Malliavin pour processus de sauts purs, applications à la finance." Phd thesis, Université Paris Dauphine - Paris IX, 2006. http://tel.archives-ouvertes.fr/tel-00144486.
Full textDans la première partie, nous traitons la minoration de la densité des diffusions à sauts dont la partie continue est dirigée par un mouvement Brownien. Pour cela, nous utilisons une formule d'intégration par parties conditionnelle basée sur le mouvement Brownien uniquement.
Nous traitons ensuite le calcul d'options financières dont le prix du sous-jacent est un processus à sauts pur.
Dans la deuxième partie, nous développons un calcul abstrait du type Malliavin basé sur des variables aléatoires non indépendantes, de densité conditionnelle discontinue. Nous établissons une formule d'intégration par parties que nous appliquons aux amplitudes et temps de sauts des processus à sauts considérés. Dans la troisième partie, nous utilisons cette intégration par parties pour calculer le Delta d'options européennes et asiatiques, et pour calculer le prix et le Delta d'options américaines via des formules de représentation pour les espérances conditionnelles et leur gradient.
Boussarsar, Riadh. "Contribution des mesures floues et d'un modèle markovien à la segmentation d'images couleur." Rouen, 1997. http://www.theses.fr/1997ROUES036.
Full textBrandejsky, Adrien. "Méthodes numériques pour les processus markoviens déterministes par morceaux." Phd thesis, Bordeaux 1, 2012. http://tel.archives-ouvertes.fr/tel-00733731.
Full textCorsi, Marco. "Evaluation et optimisation de portefeuille dans un modèle de diffusion avec sauts en observations partielles : aspects théoriques et numériques." Paris 7, 2007. http://www.theses.fr/2007PA077038.
Full textThis thesis investigates some aspects of the portfolio optimization under incomplete observation. The work is organized in three parts that analyze the following topics: Part 1. Portfolio optimization under partial observation in a jump-diffusion model. Part 2 Indifference price under partial observations in a jump-diffusion model. Part 3 Numerical approximation by quantization of discrete time control problems under partial observations and applications in finance. In the first two parts we consider the case of continuous time observation while in the third one we analyze the case of discrete time observation
Bandini, Elena. "Représentation probabiliste d'équations HJB pour le contrôle optimal de processus à sauts, EDSR (équations différentielles stochastiques rétrogrades) et calcul stochastique." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLY005/document.
Full textIn the present document we treat three different topics related to stochastic optimal control and stochastic calculus, pivoting on thenotion of backward stochastic differential equation (BSDE) driven by a random measure.After a general introduction, the three first chapters of the thesis deal with optimal control for different classes of non-diffusiveMarkov processes, in finite or infinite horizon. In each case, the value function, which is the unique solution to anintegro-differential Hamilton-Jacobi-Bellman (HJB) equation, is probabilistically represented as the unique solution of asuitable BSDE. In the first chapter we control a class of semi-Markov processes on finite horizon; the second chapter isdevoted to the optimal control of pure jump Markov processes, while in the third chapter we consider the case of controlled piecewisedeterministic Markov processes (PDMPs) on infinite horizon. In the second and third chapters the HJB equations associatedto the optimal control problems are fully nonlinear. Those situations arise when the laws of the controlled processes arenot absolutely continuous with respect to the law of a given, uncontrolled, process. Since the corresponding HJB equationsare fully nonlinear, they cannot be represented by classical BSDEs. In these cases we have obtained nonlinear Feynman-Kacrepresentation formulae by generalizing the control randomization method introduced in Kharroubi and Pham (2015)for classical diffusions. This approach allows us to relate the value function with a BSDE driven by a random measure,whose solution hasa sign constraint on one of its components.Moreover, the value function of the original non-dominated control problem turns out to coincide withthe value function of an auxiliary dominated control problem, expressed in terms of equivalent changes of probability measures.In the fourth chapter we study a backward stochastic differential equation on finite horizon driven by an integer-valued randommeasure $mu$ on $R_+times E$, where $E$ is a Lusin space, with compensator $nu(dt,dx)=dA_t,phi_t(dx)$. The generator of thisequation satisfies a uniform Lipschitz condition with respect to the unknown processes.In the literature, well-posedness results for BSDEs in this general setting have only been established when$A$ is continuous or deterministic. We provide an existence and uniqueness theorem for the general case, i.e.when $A$ is a right-continuous nondecreasing predictable process. Those results are relevant, for example,in the frameworkof control problems related to PDMPs. Indeed, when $mu$ is the jump measure of a PDMP on a bounded domain, then $A$ is predictable and discontinuous.Finally, in the two last chapters of the thesis we deal with stochastic calculus for general discontinuous processes.In the fifth chapter we systematically develop stochastic calculus via regularization in the case of jump processes,and we carry on the investigations of the so-called weak Dirichlet processes in the discontinuous case.Such a process $X$ is the sum of a local martingale and an adapted process $A$ such that $[N,A] = 0$, for any continuouslocal martingale $N$.Given a function $u:[0,T] times R rightarrow R$, which is of class $C^{0,1}$ (or sometimes less), we provide a chain rule typeexpansion for $u(t,X_t)$, which constitutes a generalization of It^o's lemma being valid when $u$ is of class $C^{1,2}$.This calculus is applied in the sixth chapter to the theory of BSDEs driven by random measures.In several situations, when the underlying forward process $X$ is a special semimartingale, or, even more generally,a special weak Dirichlet process,we identify the solutions $(Y,Z,U)$ of the considered BSDEs via the process $X$ and the solution $u$ to an associatedintegro PDE
Levernier, Nicolas. "Temps de premier passage de processus non-markoviens." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066118/document.
Full textThe aim of this thesis is the evaluation of the first-passage time (FPT) of a non-markovian walker over a target. The first part is devoted to the computation of the mean first-passage time (MFPT) for different non-markovien confined processes, for which hidden variables are explicitly known. Our methodology, which adapts an existing formalism, relies on the determination of the distribution of the hidden variables at the instant of FPT. Then, we extend these ideas to the case of general non-markovian confined processes, without introducing the -often unkown- hidden variables. We show that the MFPT is entirely determined by the position of the walker in the future of the FPT. For gaussian walks with stationary increments, this position can be accurately described by a gaussian process, which enable to determine it self-consistently, and thus to find the MFPT. We apply this theory on many examples, in various dimensions. We show moreover that this theory is exact perturbatively around markovian processes. In the third part, we explore the influence of aging properties on the the FPT in confinement, and we predict the dependence of its statistic on geometric parameters. We verify these predictions on many examples. We show in particular that the non-linearity of the MFPT with the confinement is a hallmark of aging. Finally, we study some links between confined and unconfined problems. Our work suggests a promising way to evaluate the persistence exponent of non-markovian gaussian aging processes
Jraifi, Abdelilah. "Analyse numérique de modèles de diffusion-sauts à volatilité stochastique : cas de l'évaluation des options." Thesis, Valenciennes, 2014. http://www.theses.fr/2014VALE0002.
Full textIn the modern economic world, the options contracts are used because they allow to hedge against the vagaries and risks refers to fluctuations in the prices of the underlying assets. The determination of the price of these contracts is of great importance for investors.We are interested in problems of options pricing, actually the European and Quanto options on a financial asset. The price of that asset is modeled by a multi-dimentional jump diffusion with stochastic volatility. Otherwise, the first model considers the volatility as a continuous process and the second model considers it as a jump process. Finally in the 3rd model, the underlying asset is without jump and volatility follows a model CEV without jump. This model allow better to take into account some phenomena observed in the markets. We develop numerical methods that determine the values of prices for these options. We first write the model as an integro-differential stochastic equations system "EIDS", of which we study existence and unicity of solutions. Then we relate the resolution of PIDE to the computation of the option value. This link, which is based on the notion of infinitesimal generators, allows us to use different numerical methods. We therefore introduce the variational equation associated with the PIDE, and drawing on the work of Zhang [106], we show that it admits a unique solution in a weights Sobolev space We focus on the numerical approximation of the price of the option, by treating the problem in a bounded domain. We use the finite elements method of type (P1), and the scheme of Euler-Maruyama, for this serve, on the one hand the finite differences method in time, and on the other hand the method of Monte Carlo and the Quasi Monte Carlo method. For this last method we use of Halton sequences to improve the speed of convergence.We present a comparative study of the different numerical results in many different cases in order to investigate the performance and effectiveness of the used methods
Brunetti, Ilaria. "Nouvelles approches aux jeux évolutionnaires et processus de décision." Thesis, Avignon, 2015. http://www.theses.fr/2015AVIG0204/document.
Full textEvolutionary Game Theory (EGT) constitutes a simple framework to study the behavior of large populations whose individuals are repeatedly engaged in pairwise strategic interactions. While in standard EGT, the interacting individual is the player, choosing the actions to play in order to maximize its own fitness, in the first part of this dissertation we propose, in the first part of this work, a new approach to model evolution, where the player is supposed to be a whole group. We still consider pairwise interactions among individuals but we assume that they maximize the fitness of the group they belong to, which is thus the actual player of the game. In the second part of this dissertation, we present our new dynamical approach to Markov Decision Evolutionary Games. In contrast with the standard static approach, we study here the local dynamics of individual states and the dynamics intrinsically related to the distribution of policies in the population, describing them by interdependent differential equations. In the third part of the manuscript we pursue the study of stochastic dynamics in a different context, that of control theory. We define a hybrid stochastic dynamical system jointly controlled by two players involved in a non-zero sum game and we prove that the problem can be approximated by an averaged deterministic differential game