Journal articles on the topic 'Processus gaussiens latents'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Processus gaussiens latents.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chaudhary, Neha, and Priti Dimri. "LATENT FINGERPRINT IMAGE ENHANCEMENT BASED ON OPTIMIZED BENT IDENTITY BASED CONVOLUTIONAL NEURAL NETWORK." Indian Journal of Computer Science and Engineering 12, no. 5 (October 20, 2021): 1477–93. http://dx.doi.org/10.21817/indjcse/2021/v12i5/211205124.
Full textAlvarez, M. A., D. Luengo, and N. D. Lawrence. "Linear Latent Force Models Using Gaussian Processes." IEEE Transactions on Pattern Analysis and Machine Intelligence 35, no. 11 (November 2013): 2693–705. http://dx.doi.org/10.1109/tpami.2013.86.
Full textOune, Nicholas, and Ramin Bostanabad. "Latent map Gaussian processes for mixed variable metamodeling." Computer Methods in Applied Mechanics and Engineering 387 (December 2021): 114128. http://dx.doi.org/10.1016/j.cma.2021.114128.
Full textPanos, Aristeidis, Petros Dellaportas, and Michalis K. Titsias. "Large scale multi-label learning using Gaussian processes." Machine Learning 110, no. 5 (April 14, 2021): 965–87. http://dx.doi.org/10.1007/s10994-021-05952-5.
Full textHall, Peter, Hans-Georg Mller, and Fang Yao. "Modelling sparse generalized longitudinal observations with latent Gaussian processes." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70, no. 4 (September 2008): 703–23. http://dx.doi.org/10.1111/j.1467-9868.2008.00656.x.
Full textMattos, César Lincoln C., Andreas Damianou, Guilherme A. Barreto, and Neil D. Lawrence. "Latent Autoregressive Gaussian Processes Models for Robust System Identification." IFAC-PapersOnLine 49, no. 7 (2016): 1121–26. http://dx.doi.org/10.1016/j.ifacol.2016.07.353.
Full textGammelli, Daniele, Inon Peled, Filipe Rodrigues, Dario Pacino, Haci A. Kurtaran, and Francisco C. Pereira. "Estimating latent demand of shared mobility through censored Gaussian Processes." Transportation Research Part C: Emerging Technologies 120 (November 2020): 102775. http://dx.doi.org/10.1016/j.trc.2020.102775.
Full textDew, Ryan, Asim Ansari, and Yang Li. "Modeling Dynamic Heterogeneity Using Gaussian Processes." Journal of Marketing Research 57, no. 1 (October 14, 2019): 55–77. http://dx.doi.org/10.1177/0022243719874047.
Full textZhang, Dongmei, Yuyang Zhang, Bohou Jiang, Xinwei Jiang, and Zhijiang Kang. "Gaussian Processes Proxy Model with Latent Variable Models and Variogram-Based Sensitivity Analysis for Assisted History Matching." Energies 13, no. 17 (August 19, 2020): 4290. http://dx.doi.org/10.3390/en13174290.
Full textLu, Chi-Ken, and Patrick Shafto. "Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning." Entropy 23, no. 11 (November 20, 2021): 1545. http://dx.doi.org/10.3390/e23111545.
Full textHubin, Aliaksandr, Geir O. Storvik, Paul E. Grini, and Melinka A. Butenko. "A Bayesian Binomial Regression Model with Latent Gaussian Processes for Modelling DNA Methylation." Austrian Journal of Statistics 49, no. 4 (April 13, 2020): 46–56. http://dx.doi.org/10.17713/ajs.v49i4.1124.
Full textShi, Fan, Bin Li, and Xiangyang Xue. "Raven's Progressive Matrices Completion with Latent Gaussian Process Priors." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 11 (May 18, 2021): 9612–20. http://dx.doi.org/10.1609/aaai.v35i11.17157.
Full textPayne, R. D., N. Guha, Y. Ding, and B. K. Mallick. "A conditional density estimation partition model using logistic Gaussian processes." Biometrika 107, no. 1 (December 5, 2019): 173–90. http://dx.doi.org/10.1093/biomet/asz064.
Full textLu, Chi-Ken, and Patrick Shafto. "Conditional Deep Gaussian Processes: Empirical Bayes Hyperdata Learning." Entropy 23, no. 11 (October 23, 2021): 1387. http://dx.doi.org/10.3390/e23111387.
Full textKrese, Blaž, and Erik Štrumbelj. "A Bayesian approach to time-varying latent strengths in pairwise comparisons." PLOS ONE 16, no. 5 (May 20, 2021): e0251945. http://dx.doi.org/10.1371/journal.pone.0251945.
Full textZhang, Wenbo, and Wei Gu. "Parameter Estimation for Several Types of Linear Partial Differential Equations Based on Gaussian Processes." Fractal and Fractional 6, no. 8 (August 8, 2022): 433. http://dx.doi.org/10.3390/fractalfract6080433.
Full textSerradilla, J., J. Q. Shi, and A. J. Morris. "Fault detection based on Gaussian process latent variable models." Chemometrics and Intelligent Laboratory Systems 109, no. 1 (November 2011): 9–21. http://dx.doi.org/10.1016/j.chemolab.2011.07.003.
Full textZhao, Yuan, and Il Memming Park. "Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains." Neural Computation 29, no. 5 (May 2017): 1293–316. http://dx.doi.org/10.1162/neco_a_00953.
Full textMahdi, Esam, Sana Alshamari, Maryam Khashabi, and Alya Alkorbi. "Hierarchical Bayesian Spatio-Temporal Modeling for PM10 Prediction." Journal of Applied Mathematics 2021 (September 11, 2021): 1–11. http://dx.doi.org/10.1155/2021/8003952.
Full textXu, Jingyun, and Zhiduan Cai. "Gaussian mixture deep dynamic latent variable model with application to soft sensing for multimode industrial processes." Applied Soft Computing 114 (January 2022): 108092. http://dx.doi.org/10.1016/j.asoc.2021.108092.
Full textWöber, Wilfried, Lars Mehnen, Manuel Curto, Papius Dias Tibihika, Genanaw Tesfaye, and Harald Meimberg. "Investigating Shape Variation Using Generalized Procrustes Analysis and Machine Learning." Applied Sciences 12, no. 6 (March 20, 2022): 3158. http://dx.doi.org/10.3390/app12063158.
Full textPeng, Kaixiang, Bingzheng Wang, and Jie Dong. "An Efficient Quality-Related Fault Diagnosis Method for Real-Time Multimode Industrial Process." Journal of Control Science and Engineering 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/9560206.
Full textNightingale, Glenna, Megan Laxton, and Janine B. Illian. "How does the community COVID-19 level of risk impact on that of a care home?" PLOS ONE 16, no. 12 (December 31, 2021): e0260051. http://dx.doi.org/10.1371/journal.pone.0260051.
Full textAbdel-Aziz, Hamzah, and Xenofon Koutsoukos. "Online Model Learning of Buildings Using Stochastic Hybrid Systems Based on Gaussian Processes." Journal of Control Science and Engineering 2017 (2017): 1–18. http://dx.doi.org/10.1155/2017/3035892.
Full textLončarević, Zvezdan, Rok Pahič, Aleš Ude, and Andrej Gams. "Generalization-Based Acquisition of Training Data for Motor Primitive Learning by Neural Networks." Applied Sciences 11, no. 3 (January 23, 2021): 1013. http://dx.doi.org/10.3390/app11031013.
Full textLiang, Junjie, Yanting Wu, Dongkuan Xu, and Vasant G. Honavar. "Longitudinal Deep Kernel Gaussian Process Regression." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 10 (May 18, 2021): 8556–64. http://dx.doi.org/10.1609/aaai.v35i10.17038.
Full textBattaglin, Paulo David, and Gilmar Barreto. "Kalman Filtering Solution Converges on a Personal Computer." Journal of Circuits, Systems and Computers 26, no. 01 (October 4, 2016): 1750005. http://dx.doi.org/10.1142/s0218126617500050.
Full textZhao, Qibin, Liqing Zhang, and Andrzej Cichocki. "A Tensor-Variate Gaussian Process for Classification of Multidimensional Structured Data." Proceedings of the AAAI Conference on Artificial Intelligence 27, no. 1 (June 30, 2013): 1041–47. http://dx.doi.org/10.1609/aaai.v27i1.8568.
Full textLu, Rong, Jennifer L. Miskimins, and Mikhail Zhizhin. "Learning from Nighttime Observations of Gas Flaring in North Dakota for Better Decision and Policy Making." Remote Sensing 13, no. 5 (March 3, 2021): 941. http://dx.doi.org/10.3390/rs13050941.
Full textXie, Luodi, Huimin Huang, and Qing Du. "A Co-Embedding Model with Variational Auto-Encoder for Knowledge Graphs." Applied Sciences 12, no. 2 (January 12, 2022): 715. http://dx.doi.org/10.3390/app12020715.
Full textZhang, Yan, Huaiping Jin, Haipeng Liu, Biao Yang, and Shoulong Dong. "Deep Semi-Supervised Just-in-Time Learning Based Soft Sensor for Mooney Viscosity Estimation in Industrial Rubber Mixing Process." Polymers 14, no. 5 (March 3, 2022): 1018. http://dx.doi.org/10.3390/polym14051018.
Full textChen, Dongming, Mingshuo Nie, Hupo Zhang, Zhen Wang, and Dongqi Wang. "Network Embedding Algorithm Taking in Variational Graph AutoEncoder." Mathematics 10, no. 3 (February 2, 2022): 485. http://dx.doi.org/10.3390/math10030485.
Full textIstodor, Alin Viorel, Laura-Cristina Rusu, Gratiela Georgiana Noja, Alexandra Roi, Ciprian Roi, Emanuel Bratu, Georgiana Moise, Maria Puiu, Simona Sorina Farcas, and Nicoleta Ioana Andreescu. "An Observational Study on Cephalometric Characteristics and Patterns Associated with the Prader–Willi Syndrome: A Structural Equation Modelling and Network Approach." Applied Sciences 11, no. 7 (April 2, 2021): 3177. http://dx.doi.org/10.3390/app11073177.
Full textLenkoski, Alex, and Fredrik L. Aanes. "Sovereign Risk Indices and Bayesian Theory Averaging." Econometrics 8, no. 2 (May 29, 2020): 22. http://dx.doi.org/10.3390/econometrics8020022.
Full textYamagishi, Noriko, Stephen J. Anderson, and Mitsuo Kawato. "The observant mind: self-awareness of attentional status." Proceedings of the Royal Society B: Biological Sciences 277, no. 1699 (June 9, 2010): 3421–26. http://dx.doi.org/10.1098/rspb.2010.0891.
Full textFoon, See Lee, Nazira Anisa Rahim, Ahmad Zainal, and Zhang Jie. "Selective combination in multiple neural networks prediction using independent component regression approach." Chemical Engineering Research Bulletin 19 (September 10, 2017): 12. http://dx.doi.org/10.3329/cerb.v19i0.33772.
Full textWang, Chuanmeizhi, Bijan Pesaran, and Maryam M. Shanechi. "Modeling multiscale causal interactions between spiking and field potential signals during behavior." Journal of Neural Engineering 19, no. 2 (March 7, 2022): 026001. http://dx.doi.org/10.1088/1741-2552/ac4e1c.
Full textFific, Mario. "Dynamics of serial position change in probe-recognition task." Psihologija 35, no. 3-4 (2002): 261–85. http://dx.doi.org/10.2298/psi0203261f.
Full textAitken, F., F. M. J. Mccluskey, and A. Denat. "An energy model for artificially generated bubbles in liquids." Journal of Fluid Mechanics 327 (November 25, 1996): 373–92. http://dx.doi.org/10.1017/s0022112096008580.
Full textVasilyev, V. I., M. V. Vasilyeva, S. P. Stepanov, N. I. Sidnyaev, O. I. Matveeva, and A. N. Tseeva. "Numerical Solution of the Two-Phase Stefan Problem in the Enthalpy Formulation with Smoothing the Coefficients." Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no. 4 (97) (August 2021): 4–23. http://dx.doi.org/10.18698/1812-3368-2021-4-4-23.
Full textEweis-Labolle, Jonathan, Nicholas Oune, and Ramin Bostanabad. "Data Fusion with Latent Map Gaussian Processes." Journal of Mechanical Design, May 9, 2022, 1–41. http://dx.doi.org/10.1115/1.4054520.
Full textKleiber, William, Richard W. Katz, and Balaji Rajagopalan. "Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes." Water Resources Research 48, no. 1 (January 2012). http://dx.doi.org/10.1029/2011wr011105.
Full textWang, Liwei, Suraj Yerramilli, Akshay Iyer, Daniel Apley, Ping Zhu, and Wei Chen. "Scalable Gaussian Processes for Data-Driven Design Using Big Data With Categorical Factors." Journal of Mechanical Design 144, no. 2 (September 15, 2021). http://dx.doi.org/10.1115/1.4052221.
Full textCoveney, Sam, Caroline H. Roney, Cesare Corrado, Richard D. Wilkinson, Jeremy E. Oakley, Steven A. Niederer, and Richard H. Clayton. "Calibrating cardiac electrophysiology models using latent Gaussian processes on atrial manifolds." Scientific Reports 12, no. 1 (October 4, 2022). http://dx.doi.org/10.1038/s41598-022-20745-z.
Full textGu, Mengyang, and Hanmo Li. "Gaussian Orthogonal Latent Factor Processes for Large Incomplete Matrices of Correlated Data." Bayesian Analysis -1, no. -1 (January 1, 2022). http://dx.doi.org/10.1214/21-ba1295.
Full textLi, Yikuan, Shishir Rao, Abdelaali Hassaine, Rema Ramakrishnan, Dexter Canoy, Gholamreza Salimi-Khorshidi, Mohammad Mamouei, Thomas Lukasiewicz, and Kazem Rahimi. "Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records." Scientific Reports 11, no. 1 (October 19, 2021). http://dx.doi.org/10.1038/s41598-021-00144-6.
Full textDeng, Shiguang, Carlos Mora, Diran Apelian, and Ramin Bostanabad. "Data-Driven Calibration of Multi-Fidelity Multiscale Fracture Models via Latent Map Gaussian Process." Journal of Mechanical Design, October 12, 2022, 1–15. http://dx.doi.org/10.1115/1.4055951.
Full textSemenova, Elizaveta, Yidan Xu, Adam Howes, Theo Rashid, Samir Bhatt, Swapnil Mishra, and Seth Flaxman. "PriorVAE: encoding spatial priors with variational autoencoders for small-area estimation." Journal of The Royal Society Interface 19, no. 191 (June 2022). http://dx.doi.org/10.1098/rsif.2022.0094.
Full textBotsas, Themistoklis, Indranil Pan, Lachlan R. Mason, and Omar K. Matar. "Multiphase flow applications of nonintrusive reduced-order models with Gaussian process emulation." Data-Centric Engineering 3 (2022). http://dx.doi.org/10.1017/dce.2022.19.
Full textGu, Mengyang, Xubo Liu, Xinyi Fang, and Sui Tang. "Scalable Marginalization of Correlated Latent Variables with Applications to Learning Particle Interaction Kernels." New England Journal of Statistics in Data Science, 2022, 1–15. http://dx.doi.org/10.51387/22-nejsds13.
Full text