Academic literature on the topic 'Processus gaussiens latents'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Processus gaussiens latents.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Processus gaussiens latents"
Chaudhary, Neha, and Priti Dimri. "LATENT FINGERPRINT IMAGE ENHANCEMENT BASED ON OPTIMIZED BENT IDENTITY BASED CONVOLUTIONAL NEURAL NETWORK." Indian Journal of Computer Science and Engineering 12, no. 5 (October 20, 2021): 1477–93. http://dx.doi.org/10.21817/indjcse/2021/v12i5/211205124.
Full textAlvarez, M. A., D. Luengo, and N. D. Lawrence. "Linear Latent Force Models Using Gaussian Processes." IEEE Transactions on Pattern Analysis and Machine Intelligence 35, no. 11 (November 2013): 2693–705. http://dx.doi.org/10.1109/tpami.2013.86.
Full textOune, Nicholas, and Ramin Bostanabad. "Latent map Gaussian processes for mixed variable metamodeling." Computer Methods in Applied Mechanics and Engineering 387 (December 2021): 114128. http://dx.doi.org/10.1016/j.cma.2021.114128.
Full textPanos, Aristeidis, Petros Dellaportas, and Michalis K. Titsias. "Large scale multi-label learning using Gaussian processes." Machine Learning 110, no. 5 (April 14, 2021): 965–87. http://dx.doi.org/10.1007/s10994-021-05952-5.
Full textHall, Peter, Hans-Georg Mller, and Fang Yao. "Modelling sparse generalized longitudinal observations with latent Gaussian processes." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70, no. 4 (September 2008): 703–23. http://dx.doi.org/10.1111/j.1467-9868.2008.00656.x.
Full textMattos, César Lincoln C., Andreas Damianou, Guilherme A. Barreto, and Neil D. Lawrence. "Latent Autoregressive Gaussian Processes Models for Robust System Identification." IFAC-PapersOnLine 49, no. 7 (2016): 1121–26. http://dx.doi.org/10.1016/j.ifacol.2016.07.353.
Full textGammelli, Daniele, Inon Peled, Filipe Rodrigues, Dario Pacino, Haci A. Kurtaran, and Francisco C. Pereira. "Estimating latent demand of shared mobility through censored Gaussian Processes." Transportation Research Part C: Emerging Technologies 120 (November 2020): 102775. http://dx.doi.org/10.1016/j.trc.2020.102775.
Full textDew, Ryan, Asim Ansari, and Yang Li. "Modeling Dynamic Heterogeneity Using Gaussian Processes." Journal of Marketing Research 57, no. 1 (October 14, 2019): 55–77. http://dx.doi.org/10.1177/0022243719874047.
Full textZhang, Dongmei, Yuyang Zhang, Bohou Jiang, Xinwei Jiang, and Zhijiang Kang. "Gaussian Processes Proxy Model with Latent Variable Models and Variogram-Based Sensitivity Analysis for Assisted History Matching." Energies 13, no. 17 (August 19, 2020): 4290. http://dx.doi.org/10.3390/en13174290.
Full textLu, Chi-Ken, and Patrick Shafto. "Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning." Entropy 23, no. 11 (November 20, 2021): 1545. http://dx.doi.org/10.3390/e23111545.
Full textDissertations / Theses on the topic "Processus gaussiens latents"
Cuesta, Ramirez Jhouben Janyk. "Optimization of a computationally expensive simulator with quantitative and qualitative inputs." Thesis, Lyon, 2022. http://www.theses.fr/2022LYSEM010.
Full textIn this thesis, costly mixed problems are approached through gaussian processes where the discrete variables are relaxed into continuous latent variables. the continuous space is more easily harvested by classical bayesian optimization techniques than a mixed space would. discrete variables are recovered either subsequently to the continuous optimization, or simultaneously with an additional continuous-discrete compatibility constraint that is handled with augmented lagrangians. several possible implementations of such bayesian mixed optimizers are compared. in particular, the reformulation of the problem with continuous latent variables is put in competition with searches working directly in the mixed space. among the algorithms involving latent variables and an augmented lagrangian, a particular attention is devoted to the lagrange multipliers for which a local and a global estimation techniques are studied. the comparisons are based on the repeated optimization of three analytical functions and a mechanical application regarding a beam design. an additional study for applying a proposed mixed optimization strategy in the field of mixed self-calibration is made. this analysis was inspired in an application in radionuclide quantification, which defined an specific inverse function that required the study of its multiple properties in the continuous scenario. a proposition of different deterministic and bayesian strategies was made towards a complete definition in a mixed variable setup
Wenzel, Florian. "Scalable Inference in Latent Gaussian Process Models." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/20926.
Full textLatent Gaussian process (GP) models help scientists to uncover hidden structure in data, express domain knowledge and form predictions about the future. These models have been successfully applied in many domains including robotics, geology, genetics and medicine. A GP defines a distribution over functions and can be used as a flexible building block to develop expressive probabilistic models. The main computational challenge of these models is to make inference about the unobserved latent random variables, that is, computing the posterior distribution given the data. Currently, most interesting Gaussian process models have limited applicability to big data. This thesis develops a new efficient inference approach for latent GP models. Our new inference framework, which we call augmented variational inference, is based on the idea of considering an augmented version of the intractable GP model that renders the model conditionally conjugate. We show that inference in the augmented model is more efficient and, unlike in previous approaches, all updates can be computed in closed form. The ideas around our inference framework facilitate novel latent GP models that lead to new results in language modeling, genetic association studies and uncertainty quantification in classification tasks.
Hartmann, Marcelo. "Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/4601.
Full textIn this work we propose a Bayesian nonparametric approach for modeling extreme value data. We treat the location parameter _ of the generalized extreme value distribution as a random function following a Gaussian process model (Rasmussem & Williams 2006). This configuration leads to no closed-form expressions for the highdimensional posterior distribution. To tackle this problem we use the Riemannian Manifold Hamiltonian Monte Carlo algorithm which allows samples from the posterior distribution with complex form and non-usual correlation structure (Calderhead & Girolami 2011). Moreover, we propose an autoregressive time series model assuming the generalized extreme value distribution for the noise and obtained its Fisher information matrix. Throughout this work we employ some computational simulation studies to assess the performance of the algorithm in its variants and show many examples with simulated and real data-sets.
Neste trabalho propomos uma abordagem Bayesiana não-paramétrica para a modelagem de dados com comportamento extremo. Tratamos o parâmetro de locação _ da distribuição generalizada de valor extremo como uma função aleatória e assumimos um processo Gaussiano para tal função (Rasmussem & Williams 2006). Esta situação leva à intratabilidade analítica da distribuição a posteriori de alta dimensão. Para lidar com este problema fazemos uso do método Hamiltoniano de Monte Carlo em variedade Riemanniana que permite a simulação de valores da distribuição a posteriori com forma complexa e estrutura de correlação incomum (Calderhead & Girolami 2011). Além disso, propomos um modelo de série temporal autoregressivo de ordem p, assumindo a distribuição generalizada de valor extremo para o ruído e determinamos a respectiva matriz de informação de Fisher. No decorrer de todo o trabalho, estudamos a qualidade do algoritmo em suas variantes através de simulações computacionais e apresentamos vários exemplos com dados reais e simulados.
Karipidou, Kelly. "Modelling the body language of a musical conductor using Gaussian Process Latent Variable Models." Thesis, KTH, Datorseende och robotik, CVAP, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176101.
Full textMendes, Armando Praça. "A gestão da estratégia mercadologica sob uma nova perspectiva: existe relação entre a física e a administração?" reponame:Repositório Institucional do FGV, 2004. http://hdl.handle.net/10438/3884.
Full textA Física e a Administração concentram suas pesquisas sobre fenômenos que, de certa forma, se assemelham, fazendo com que nos questionemos a respeito da grande integral do universo a que estamos submetidos. Em uma exploração por analogias, aproxima-se aqui o mundo organizacional ao dos sistemas UnIVerSaIS, instáveis e não-integráveis, onde a flecha do tempo é quem determina a evolução dos mesmos. Mostra-se que na Administração, como na Física, tudo parece convergir na direção de um inesgotável repertório de bifurcações e possibilidades para o destino mercadológico de produtos, serviços e marcas ao longo de um continuum. Para amenizar os efeitos dessas incertezas, é buscada uma simplificação desses complexos sistemas sociais através de uma proposta de modelo baseado em fatores consagrados pela literatura da gestão empresarial como norteadores das escolhas dos consumidores; um processo gaussiano da 'percepção do valor', que pode servir de ferramenta nas decisões estratégicas e gerenciais dentro das empresas.
The physical and the administration sciences focus their researches on phenomenum wich, in some ways, can have similarities, making us to question and ask about the great convergence ofthe systems in the Universe under which we are submitted. Exploring by analogues, this research tries to make sense to put together the organizational and physical systems, unstables and not integratable, moving forward by the time's arrow, that determines the evolution ofthose. In the Administration, as in the Physics, everything seems to converge at the direction of an inexhaustible collection of forks and possibilities, if considering the destiny of products, services and labels during the human history. To soften the effects of those uncertanties, it is fetched a simplification of these complex social systems across a proposal of a model to be constructed and tested, based in some factors established by business management's literature as the guiders of the consumers's choices; a gaussian process of the 'insight value', that can be useful as a tool for the strategic and business managing decisions beyond the companies.
Sauer, Patrick Martin. "Model-based understanding of facial expressions." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/modelbased-understanding-of-facial-expressions(e88bff4f-d72e-4d11-b964-fc20f009609b).html.
Full textHall, Otto. "Inference of buffer queue times in data processing systems using Gaussian Processes : An introduction to latency prediction for dynamic software optimization in high-end trading systems." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214791.
Full textDenna studie undersöker huruvida Gaussian Process Regression kan appliceras för att utvärdera buffer-kötider i storskaliga dataprocesseringssystem. Dessutom utforskas ifall dataströmsfrekvenser kan generaliseras till en liten delmängd av utfallsrymden. Medmålet att erhålla en grund för dynamisk mjukvaruoptimering introduceras en lovandestartpunkt för fortsatt forskning. Studien riktas mot Direct Market Access system för handel på finansiella marknader, somprocesserar enorma mängder marknadsdata dagligen. På grund av vissa begränsningar axlas ett naivt tillvägagångssätt och väntetider modelleras som en funktion av enbartdatagenomströmning i åtta små historiska tidsinterval. Tränings- och testdataset representeras från ren marknadsdata och pruning-tekniker används för att krympa dataseten med en ungefärlig faktor om 0.0005, för att uppnå beräkningsmässig genomförbarhet. Vidare tas fyra olika implementationer av Gaussian Process Regression i beaktning. De resulterande algorithmerna presterar bra på krympta dataset, med en medel R2 statisticpå 0.8399 över sex testdataset, alla av ungefär samma storlek som träningsdatasetet. Tester på icke krympta dataset indikerar vissa brister från pruning, där input vektorermotsvararande låga latenstider är associerade med mindre exakthet. Slutsatsen dras att beroende på applikation kan dessa brister göra modellen obrukbar. För studiens syftefinnes emellertid att latenstider kan sannerligen modelleras av regressionsalgoritmer. Slutligen diskuteras metoder för förbättrning med hänsyn till både pruning och GaussianProcess Regression, och det öppnas upp för lovande vidare forskning.
Qian, Zhiguang. "Computer experiments [electronic resource] : design, modeling and integration /." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11480.
Full textAncelet, Sophie. "Exploiter l'approche hiérarchique bayésienne pour la modélisation statistique de structures spatiales: application en écologie des populations." Phd thesis, AgroParisTech, 2008. http://pastel.archives-ouvertes.fr/pastel-00004396.
Full textWang, Xiaojing. "Bayesian Modeling Using Latent Structures." Diss., 2012. http://hdl.handle.net/10161/5848.
Full textThis dissertation is devoted to modeling complex data from the
Bayesian perspective via constructing priors with latent structures.
There are three major contexts in which this is done -- strategies for
the analysis of dynamic longitudinal data, estimating
shape-constrained functions, and identifying subgroups. The
methodology is illustrated in three different
interdisciplinary contexts: (1) adaptive measurement testing in
education; (2) emulation of computer models for vehicle crashworthiness; and (3) subgroup analyses based on biomarkers.
Chapter 1 presents an overview of the utilized latent structured
priors and an overview of the remainder of the thesis. Chapter 2 is
motivated by the problem of analyzing dichotomous longitudinal data
observed at variable and irregular time points for adaptive
measurement testing in education. One of its main contributions lies
in developing a new class of Dynamic Item Response (DIR) models via
specifying a novel dynamic structure on the prior of the latent
trait. The Bayesian inference for DIR models is undertaken, which
permits borrowing strength from different individuals, allows the
retrospective analysis of an individual's changing ability, and
allows for online prediction of one's ability changes. Proof of
posterior propriety is presented, ensuring that the objective
Bayesian analysis is rigorous.
Chapter 3 deals with nonparametric function estimation under
shape constraints, such as monotonicity, convexity or concavity. A
motivating illustration is to generate an emulator to approximate a computer
model for vehicle crashworthiness. Although Gaussian processes are
very flexible and widely used in function estimation, they are not
naturally amenable to incorporation of such constraints. Gaussian
processes with the squared exponential correlation function have the
interesting property that their derivative processes are also
Gaussian processes and are jointly Gaussian processes with the
original Gaussian process. This allows one to impose shape constraints
through the derivative process. Two alternative ways of incorporating derivative
information into Gaussian processes priors are proposed, with one
focusing on scenarios (important in emulation of computer
models) in which the function may have flat regions.
Chapter 4 introduces a Bayesian method to control for multiplicity
in subgroup analyses through tree-based models that limit the
subgroups under consideration to those that are a priori plausible.
Once the prior modeling of the tree is accomplished, each tree will
yield a statistical model; Bayesian model selection analyses then
complete the statistical computation for any quantity of interest,
resulting in multiplicity-controlled inferences. This research is
motivated by a problem of biomarker and subgroup identification to
develop tailored therapeutics. Chapter 5 presents conclusions and
some directions for future research.
Dissertation
Book chapters on the topic "Processus gaussiens latents"
Fantinato, Denis G., Leonardo T. Duarte, Bertrand Rivet, Bahram Ehsandoust, Romis Attux, and Christian Jutten. "Gaussian Processes for Source Separation in Overdetermined Bilinear Mixtures." In Latent Variable Analysis and Signal Separation, 300–309. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53547-0_29.
Full textNickisch, Hannes, and Carl Edward Rasmussen. "Gaussian Mixture Modeling with Gaussian Process Latent Variable Models." In Lecture Notes in Computer Science, 272–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15986-2_28.
Full textXiao, Zedong, Junli Zhao, Xuejun Qiao, and Fuqing Duan. "Craniofacial Reconstruction Using Gaussian Process Latent Variable Models." In Computer Analysis of Images and Patterns, 456–64. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23192-1_38.
Full textNirwan, Rajbir S., and Nils Bertschinger. "Applications of Gaussian Process Latent Variable Models in Finance." In Advances in Intelligent Systems and Computing, 1209–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29513-4_87.
Full textLv, Fengmao, Guowu Yang, Jinzhao Wu, Chuan Liu, and Yuhong Yang. "Anomaly Detection for Categorical Observations Using Latent Gaussian Process." In Neural Information Processing, 285–96. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70139-4_29.
Full textBütepage, Judith, Lucas Maystre, and Mounia Lalmas. "Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty." In Machine Learning and Knowledge Discovery in Databases. Research Track, 84–99. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86520-7_6.
Full textLi, Jinxing, Bob Zhang, and David Zhang. "Information Fusion Based on Gaussian Process Latent Variable Model." In Information Fusion, 51–99. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8976-5_3.
Full textTaubert, Nick, and Martin A. Giese. "Hierarchical Deep Gaussian Processes Latent Variable Model via Expectation Propagation." In Lecture Notes in Computer Science, 317–29. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86365-4_26.
Full textSouriau, Rémi, Vincent Vigneron, Jean Lerbet, and Hsin Chen. "Probit Latent Variables Estimation for a Gaussian Process Classifier: Application to the Detection of High-Voltage Spindles." In Latent Variable Analysis and Signal Separation, 514–23. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93764-9_47.
Full textEleftheriadis, Stefanos, Ognjen Rudovic, and Maja Pantic. "Shared Gaussian Process Latent Variable Model for Multi-view Facial Expression Recognition." In Advances in Visual Computing, 527–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41914-0_52.
Full textConference papers on the topic "Processus gaussiens latents"
Yang, Liu, Cassandra Heiselman, J. Gerald Quirk, and Petar M. Djuric. "Class-Imbalanced Classifiers Using Ensembles of Gaussian Processes And Gaussian Process Latent Variable Models." In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021. http://dx.doi.org/10.1109/icassp39728.2021.9414754.
Full textLawrence, Neil D., and Andrew J. Moore. "Hierarchical Gaussian process latent variable models." In the 24th international conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1273496.1273557.
Full textChen, Kai, Twan van Laarhoven, Elena Marchiori, Feng Yin, and Shuguang Cui. "Multitask Gaussian Process With Hierarchical Latent Interactions." In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022. http://dx.doi.org/10.1109/icassp43922.2022.9746570.
Full textPFINGSTL, SIMON, CHRISTIAN BRAUN, and MARKUS ZIMMERMANN. "WARPED GAUSSIAN PROCESSES FOR PROGNOSTIC HEALTH MONITORING." In Structural Health Monitoring 2021. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/shm2021/36358.
Full textSu, Chang, and Sargur Srihari. "Latent Fingerprint Core Point Prediction Based on Gaussian Processes." In 2010 20th International Conference on Pattern Recognition (ICPR). IEEE, 2010. http://dx.doi.org/10.1109/icpr.2010.404.
Full textLi, Shibo, Wei Xing, Robert M. Kirby, and Shandian Zhe. "Scalable Gaussian Process Regression Networks." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/340.
Full textZhang, Jiayuan, Ziqi Zhu, and Jixin Zou. "Supervised Gaussian process latent variable model based on Gaussian mixture model." In 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC). IEEE, 2017. http://dx.doi.org/10.1109/spac.2017.8304262.
Full textLiu, Yuhao, and Petar M. Djuric. "Tracking the Dimensions of Latent Spaces of Gaussian Process Latent Variable Models." In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022. http://dx.doi.org/10.1109/icassp43922.2022.9746538.
Full textSong, Guoli, Shuhui Wang, Qingming Huang, and Qi Tian. "Multimodal Gaussian Process Latent Variable Models with Harmonization." In 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017. http://dx.doi.org/10.1109/iccv.2017.538.
Full textEciolaza, Luka, M. Alkarouri, N. D. Lawrence, V. Kadirkamanathan, and P. J. Fleming. "Gaussian Process Latent Variable Models for Fault Detection." In 2007 IEEE Symposium on Computational Intelligence and Data Mining. IEEE, 2007. http://dx.doi.org/10.1109/cidm.2007.368886.
Full text