Academic literature on the topic 'Processus de solidification'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Processus de solidification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Processus de solidification"

1

Saleil, Jean, and Jean Le Coze. "La coulée continue des aciers. Un exemple de développement technique où l’étroite coopération entre métallurgistes, constructeurs et exploitants a été d’une grande fécondité." Matériaux & Techniques 106, no. 5 (2018): 505. http://dx.doi.org/10.1051/mattech/2018046.

Full text
Abstract:
Les processus de solidification à l’œuvre dans les diverses zones de la machine de coulée sont décrits avec leurs conséquences sur la qualité interne du produit. Les principaux moyens additionnels pour améliorer cette qualité sont passés en revue : brassage électromagnétique, réduction en ligne. Les problèmes posés par la coulée des produits de forte section sont examinés. Les comportements spécifiques à la solidification de certaines familles d’acier sont décrits : acier bas carbone pour produits plats minces, aciers inoxydables, aciers à haut carbone pour roulements.
APA, Harvard, Vancouver, ISO, and other styles
2

Deville, Sylvain, and Cécile Monteux. "Congélation d’émulsions : de la mayonnaise à la métallurgie." Reflets de la physique, no. 66 (July 2020): 22–27. http://dx.doi.org/10.1051/refdp/202066022.

Full text
Abstract:
Si congeler de la mayonnaise n’est pas recommandé, cela pourrait toutefois nous aider à comprendre la fabrication d’alliages métalliques, la cryopréservation des cellules ou encore la congélation des sols en hiver. Nous nous intéressons ici au cas des gouttes d’huile dans une émulsion, observées par microscopie confocale au cours de la congélation. De nombreux phénomènes physiques (transport, diffusion, solidification, instabilités) prennent place lors de ce processus, offrant aux physicien.ne.s un problème inédit aux multiples ramifications. Ces études pourraient améliorer notre compréhension de plusieurs phénomènes de solidification, naturels comme technologiques.
APA, Harvard, Vancouver, ISO, and other styles
3

Madjoudj, Nadera, and Khaled Imessad. "Matériau à changement de phase au service de la bioclimatique." Journal of Renewable Energies 19, no. 4 (October 17, 2023): 647–62. http://dx.doi.org/10.54966/jreen.v19i4.601.

Full text
Abstract:
Le matériau à changement de phase (MCP) représente une alternative durable pour réduire la consommation énergétique. Il permet d'augmenter le confort thermique des occupants. L'incorporation du MCP pour le chauffage et le refroidissement des bâtiments a suscité un intérêt particulier de nombreux scientifiques, car il permet de stocker et de libérer de grandes quantités d'énergie sous forme de chaleur lors du processus de fusion et de solidification du matériau. Cet article constitue une première étape de l’étude menée au sein de l’équipe bioclimatique, sur l’intégration des MCP dans l’enveloppe du bâtiment. L’exploitation d’une centaine d’articles et de rapports a permis de dresser une synthèse sur les MCP ainsi que sur les travaux effectués sur le stockage de la chaleur latente. Ce dernier constitue un défi à relever pour des bâtiments énergétiquement plus efficaces.
APA, Harvard, Vancouver, ISO, and other styles
4

IHARA, I., D. BURHAN, and Y. SEDA. "NTM-02: In-Situ Observation of Solidification and Melting Processes of Aluminum Alloy by Ultrasound(NTM-I: NON TRADITIONAL MANUFACTURING PROCESS)." Proceedings of the JSME Materials and Processing Conference (M&P) 2005 (2005): 44. http://dx.doi.org/10.1299/jsmeintmp.2005.44_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mitchell, A. "Solidification in remelting processes." Materials Science and Engineering: A 413-414 (December 2005): 10–18. http://dx.doi.org/10.1016/j.msea.2005.08.157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Viskanta, R., M. V. A. Bianchi, J. K. Critser, and D. Gao. "Solidification Processes of Solutions." Cryobiology 34, no. 4 (June 1997): 348–62. http://dx.doi.org/10.1006/cryo.1997.2015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rettenmayr, Markus. "Benefits of Modeling of Melting for the Understanding of Solidification Processes." Materials Science Forum 649 (May 2010): 53–59. http://dx.doi.org/10.4028/www.scientific.net/msf.649.53.

Full text
Abstract:
Melting and solidification are both phase transformations involving a liquid and a solid phase. In a simplifying procedure melting could be treated as the inverse process of solidification. However, there are substantial differences in the thermodynamics and kinetics of melting and solidification. The elaboration of a model for melting of binary alloys has lead to the possibility to also describe solidification processes more consistently. Input parameters in the model are the Gibbs Free Energy curves and the diffusion coefficients in the liquid and solid phase, respectively. Assumptions about the thermodynamic state of the interface like local equilibrium are not necessary, recently developed interface thermodynamics is coupled with the kinetic equations. Simulations results for steady-state melting and solidification are compared. The treatment of both solidification and melting yields some insight in the proper¬ties of the liquid/solid interface and its role during the phase transformation.
APA, Harvard, Vancouver, ISO, and other styles
8

Bianchi, Marcus V. A., and Raymond Viskanta. "Gas segregation during solidification processes." International Journal of Heat and Mass Transfer 40, no. 9 (June 1997): 2035–43. http://dx.doi.org/10.1016/s0017-9310(96)00283-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dantzig, J. A. "Modeling Solidification Processes using FIDAP." Crystal Research and Technology 34, no. 4 (April 1999): 417–24. http://dx.doi.org/10.1002/(sici)1521-4079(199904)34:4<417::aid-crat417>3.0.co;2-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eshraghi, Mohsen. "Numerical Simulation of Solidification Processes." Metals 13, no. 7 (July 21, 2023): 1303. http://dx.doi.org/10.3390/met13071303.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Processus de solidification"

1

Droux, Jean-Jacques. "Simulation numérique bidimensionnelle et tridimensionnelle de processus de solidification /." [S.l.] : [s.n.], 1991. http://library.epfl.ch/theses/?nr=901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lamazouade, André. "Modélisation du processus de croissance cristalline de Bridgman par une méthode enthalpique." Aix-Marseille 2, 2000. http://www.theses.fr/2000AIX22049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dalmazzone-Jolivet, Christine. "Impact de la surfusion sur le processus de solidification dans une opération de prilling." Compiègne, 1992. http://www.theses.fr/1992COMPD551.

Full text
Abstract:
L'objet de cette étude était de mettre en évidence l'influence des paramètres liés à la surfusion sur la solidification des produits organiques. Le procédé industriel de solidification auquel nous nous sommes intéressés est le prilling, dont le dimensionnement est très dépendant de la surfusion des produits que l'on souhaite mettre en forme par cette opération. Notre travail a comporté trois étapes principales : - Une étude préliminaire des conditions de solidification de différents produits organiques par Analyse Enthalpique Différentielle ; - Une étude plus approfondie de la surfusion d'un produit organique particulier présentant un important degré de surfusion. Ce travail a porté notamment sur l'influence de différents paramètres tels que volumes de l'échantillon, vitesse de refroidissement, surchauffe, temps, cycles de fusion / solidification, sur le degré de surfusion. Cette étude a été complétée par la détermination de la vitesse linéaire de solidification du produit en fonction du degré de surfusion ; - Une modélisation du processus de solidification, dans le cadre de l'opération de prilling, prenant en compte le paramètre surfusion. L'ensemble de ces travaux a permis de montrer l'extrême complexité du processus de solidification et l'importance de la prise en compte du paramètre surfusion pour le dimensionnement des procédés de solidification.
APA, Harvard, Vancouver, ISO, and other styles
4

Hachani, Lakhdar. "Etude de l'influence de la convection naturelle et forcée sur le processus de la solidification : cas d'un alliage métallique binaire." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00949060.

Full text
Abstract:
Ce travail se situé dans la perspective d'un contrôle de la structure de solidification des alliages métalliques sous l'effet de la convection naturelle et forcée afin d'améliorer à terme la maîtrise des microstructures de solidification grâce à un brassage électromagnétique efficace permettant d'avoir une homogénéisation du bain liquide qui par la suite peut améliorer la microstructure finale de l'alliage. La possibilité retenue dans ce travail est de réaliser ce brassage sans contact avec la solution liquide (alliage sous fusion) et sans pollution par d'autres éléments en utilisant un brassage par la force de Lorentz. L'objet de la thèse comporte une étude théorique à la fois expérimentale basée sur une installation expérimentale particulièrement documentée et instrumentée, développée au laboratoire SIMAP/EPM à Grenoble, nommée AFRODITE. Ce dispositif expérimental permet de fournir des données de quantitatives et qualitatives sur le processus de solidification des alliages métalliques. Ces données sont nécessaires à la contribution aux études menées sur la solidification des alliages métallique et enrichir la base des donnée des modèles numériques développés pour prédire les défauts liés à la solidification. L'alliage choisi dans notre travail est l'étain-plomb, vue sa basse température de fusion. Les expériences envisagées visent à étudier l'effet de deux modes de configuration dynamique sur la solidification de l'alliage Sn-Pb: la convection thermosolutale avec la variation de deux paramètres essentiels (la vitesse de refroidissement et la différence de température expérimentale) et la convection forcée par l'utilisation de plusieurs modes de brassage électromagnétique. Cette étude s'intéresse en particulier à la caractérisation des macrostructures et les défauts liés à la macroségrégation. L'originalité de l'étude vise à mesurer in situ les températures instantanées. Ceci nous a permis d'évaluer l'évolution du transfert thermique due à la convection naturelle/forcée, ainsi que leurs influence sur le processus de la solidification sous différents aspects. L'analyse post-mortem de l'alliage métallique, fournit la structure de solidification et la distribution des ségrégations à différentes échelles (mésoscopique et macroscopique).
APA, Harvard, Vancouver, ISO, and other styles
5

Yaghi, Mohammed. "Phase Field Modeling of Water Solidification : A Port-Hamiltonian Approach." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10198.

Full text
Abstract:
Cette thèse présente une étude sur la modélisation, la formulation par le formalisme des Systèmes Hamiltoniens à ports et la discrétisation des processus de solidification dont l'interface est supposée diffuse et est modélisée par l'approche des champs de phase. Ses travaux traitent en détail de la solidification de l'eau dans le contexte de fournir des modèles numériques adaptés à la simulation, à la conception et au contrôle de procédés de purification de l'eau. Le premier chapitre rappelle d'abord de manière synthétique les modèles physiques de systèmes biphasique et de leur interface. Il présente ensuite en détail l'approche des champs de phase pour la modélisation des interfaces diffuses ainsi que le modèle thermodynamique du système biphasique. Puis il rappelle le modèle dynamique de la solidification d'une espèce, en particulier de l'eau, comme un système de deux équations d'évolution, l'équation d'Allen-Cahn et l'équation de bilan d'énergie. Ces modèles sont basés sur les propriétés thermodynamiques employant l'entropie totale comme potentiel thermodynamique. Dans le deuxième chapitre, après le rappel de la définition de systèmes hamiltoniens dissipatifs à port frontière, on rappelle que l'on peut formuler l'équation d'Allen-Cahn ainsi que le modèle de solidification complet sous cette forme, en augmentant les variables d'état avec le gradient de la variable de champ de phase. Puis l'on montre que les relations thermodynamiques issues des données sont exprimées en termes de variables intensives et mènent à une formulation hamiltonienne à port implicite. Le dernier chapitre se concentre sur la discrétisation préservant la structure du processus de solidification en utilisant la Méthode des Éléments Finis Partitionnés. Cela garantit que le modèle discrétisé conserve des propriétés clés telles que la conservation de l'énergie et la passivité. Le chapitre développe les formulations faibles, les projections et les hamiltoniens discrets pour l'équation de la chaleur et l'équation d'Allen-Cahn, puis développe la discrétisation du modèle de solidification complet. La principale contribution de ce chapitre réside dans la méthodologie de discrétisation appliquée au modèle Port Hamiltonien implicite du processus de solidification en utilisant l'entropie comme fonction génératrice. Globalement, cette thèse propose une approche pour la modélisation, la simulation et le contrôle des processus de solidification en utilisant le cadre Hamiltoniens à ports. Les résultats posent une base complète pour de futures recherches et développements dans les systèmes à paramètres distribués avec interfaces mobiles, en particulier pour les applications en ingénierie environnementale et chimique
This thesis presents a study on modeling, formulating, and discretizing solidification processes using the Port Hamiltonian framework combined with the phase field approach. The goal is to provide numerical models suitable for simulating, designing, and controlling such processes. It addresses the challenges of representing and controlling phase change phenomena in distributed parameter models with moving interfaces, with a particular focus on the solidification of pure water. The work has been motivated by the development of green processes for water purification technologies such as cyclic melt and crystallization of water, which offer a low-energy solution while minimizing the use of hazardous materials. The first chapter recalls briefly the physical models of multiphase systems and the description of the interface between the phases, in terms of thin or diffuse interfaces. It presents the phase field theory and the associated thermodynamical models of the multiphase systems. Finally, it expresses the dynamics of solidification processes as a coupled system of evolution equations consisting of the Allen-Cahn equation and energy balance equations. A main contribution of this chapter consists in a comprehensive presentation of solidification using the entropy functional approach within the phase field framework. In the second chapter, the Port Hamiltonian formulation of the dynamics of solidification processes using the phase field approach is developed. This chapter introduces Boundary Port Hamiltonian Systems and shows how an extension of the state space to the gradient of the phase field variable leads to a Port Hamiltonian formulation of the solidification model. The model is written in such a way that it utilizes the available thermodynamic data for liquid water and ice, allowing for a detailed and physically-based modeling, leading to an implicit Boundary Port Hamiltonian model. The final chapter focuses on the structure-preserving discretization of the solidification process using the Partitioned Finite Element Method. This ensures that the discretized model retains the Port Hamiltonian structure and, in turn, the key properties such as energy conservation and passivity. The chapter covers weak formulations, projections, and discrete Hamiltonians for the heat equation and the Allen-Cahn equation, leading to the spatial discretization of the solidification model. The principal contribution of this chapter lies in the discretization methodology applied to the implicit Port Hamiltonian model of the solidification process using entropy as the generating function. Overall, this thesis provides structured models of solidification processes using the Port Hamiltonian framework, providing a foundation for their physics-based simulation and control and for future research and development in distributed parameter systems with moving interfaces, particularly for environmental and chemical engineering applications
APA, Harvard, Vancouver, ISO, and other styles
6

Hassan, Hamdy Abo Ali. "Etude et optimisation des transferts de chaleur en injection moulage : analyse de leur influence sur les propriétés finales." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13956.

Full text
Abstract:
Les plastiques sont typiquement des polymères de grand poids moléculaire. Ils peuvent contenir des autres substances pour améliorer leurs performances et/ou pour réduire les prix. L'industrie plastique est l'une des industries qui a la croissance la plus rapide du monde : de nombreux produits de la vie quotidienne contiennent l'utilisation du produit plastique. Il y a différents procédés pour la mise en forme des polymères (soufflage, moulage par soufflage, moulage par compression, moulage par transfert, extrusion, moulage par injection) pour lesquels les matériaux utilisés, la qualité et la forme du produit fabriqué varient. En particulier, la demande des pièces moulées par injection augmente chaque année. Cela vient du fait que le moulage par injection est identifié comme une des techniques de fabrication les plus efficaces et économiques pour produire des pièces en plastique de formes précises et complexes. Il y a trois étapes significatives dans le processus : premièrement, on remplit la cavité avec le polymère fondu à une température et à une pression d'injection élévées (étape de remplissage et bien remplissage). Deuxièmement la chaleur de la pièce en polymère est évacuée par le système de refroidissement (étape de refroidissement). Troisièmement, après que la partie solidifiée a été éjectée, le moule est fermé et le prochain cycle d'injection commence (étape d'éjection)
Plastics are typically polymers of high molecular weight, and may contain other substances to improve performance and/or reduce costs. Plastic industry is one of the world?s fastest growing industries; almost every product that is used in daily life involves the usage of plastic. There are different methods for polymer processing (thermoforming, blow molding, compression molding of polymers, transfer molding of polymers, extrusion of polymers, injection molding of polymers, etc.) which differ by the method of fabrications, the used materials, the quality of the product and the form of the final product. Demand for injection molded parts continues to increase every year because plastic injection molding process is well known as the most efficient manufacturing techniques for economically producing precise plastic parts and complex geometry at low cost and a large quantity. The plastic injection molding process is a cyclic process where polymer is injected into a mold cavity, and solidifies to form a plastic part. There are three significant stages in each cycle. The first stage is filling the cavity with hot polymer melt at high injection pressure and temperature (filling and post-filling stage). It is followed by cooling the injected polymer material until the material is completely solidified (cooling stage), finally the solidified part is ejected (ejection stage)
APA, Harvard, Vancouver, ISO, and other styles
7

Mehrabi, M. Reza. "Modeling transport processes in directional solidification." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/11999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Leung, Winnie C. M. "Thermomechanical analyses of metal solidification processes." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/42561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gao, Fuquan. "Molten microdrop deposition and solidification processes." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/11622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chakraborty, Suman. "Studies On Momentum, Heat And Mass Transfer In Binary Alloy Solidification Processes." Thesis, Indian Institute of Science, 2001. https://etd.iisc.ac.in/handle/2005/287.

Full text
Abstract:
The primary focus of the present work is the development of macro-models for numerical simulation of binary alloy solidification processes, consistent with microscopic phase-change considerations, with a particular emphasis on capturing the effects of non-equilibrium species redistribution on overall macrosegregation behaviour. As a first step, a generalised macroscopic framework is developed for mathematical modelling of the process. The complete set of equivalent single-phase governing equations (mass, momentum, energy and species conservation) are solved following a pressure-based Finite Volume Method according to the SIMPLER algorithm. An algorithm is also developed for the prescription of the coupling between temperature and the melt-fraction. Based on the above unified approach of solidification modelling, a macroscopic numerical model is devised that is capable of capturing the interaction between the double-diffusive convective field and a localised fluid flow on account of solutal undercooling during non-equilibrium solidification of binary alloys. Numerical simulations are performed for the case of two-dimensional transient solidification of Pb-Sn alloys, and the simulation results are also compared with the corresponding experimental results quoted in the literature. It is observed that non-equilibrium effects on account of solutal undercooling result in an enhanced macrosegregation. Next, the model is extended to capture the effects of dendritic arm coarsening on the macroscopic transport phenomena occurring during a binary alloy solidification process. The numerical results are first tested against experimental results quoted in the literature, corresponding to the solidification of an Al-Cu alloy in a bottom-cooled cavity. It is concluded that dendritic arm coarsening leads to an increased effective permeability of the mushy region as well as an enhanced eutectic fraction of the solidified ingot. Consequently, an enhanced macrosegregation can be predicted as compared to that dictated by shrinkage-induced fluid flow alone. For an order-of-magnitude assessment of predictions from the numerical models, a systematic approach is subsequently developed for scaling analysis of momentum, heat and species conservation equations pertaining to the case of solidification of a binary mixture. A characteristic velocity scale inside the mushy region is derived, in terms of the morphological parameters of the two-phase region. A subsequent analysis of the energy equation results in an estimation of the solid layer thickness. It is also shown from scaling principles that non-equilibrium effects result in an enhanced macro-segregation compared to the case of an equilibrium model For the sake of assessment of the scaling analysis, the predictions are validated against computational results corresponding to the simulation of a full set of governing equations, thus confirming the trends suggested by the scale analysis. In order to analytically investigate certain limiting cases of unidirectional alloy solidification, a fully analytical solution technique is established for the solution of unidirectional, conduction-dominated, alloy solidification problems. The results are tested for the problem of solidification of an ammonium chloride-water solution, and are compared with those from existing analytical models as well as with the corresponding results from a fully numerical simulation. The effects of different microscopic models on solidification behaviour are illustrated, and transients in temperature and heat flux distribution are also analysed. An excellent agreement between the present solutions and results from the computational simulation can be observed. The generalised numerical model is subsequently utilised to investigate the effects of laminar double-diffusive Rayleigh-Benard convection on directional solidification of binary fluids, when cooled and solidified from the top. A series of experiments is also performed with ammonium chloride-water solutions of hypoeutectic and hypereutectic composition, so as to facilitate comparisons with numerical predictions. While excellent agreements can be obtained for the first case, the second case results in a peculiar situation, where crystals nucleated on the inner roof of the cavity start descending through the bulk fluid, and finally settle down at the bottom of the cavity in the form of a sedimented solid layer. An eutectic solidification front subsequently progresses from the top surface vertically downwards, and eventually meets the heap of solid crystals collected on the floor of the cavity. However, comparison of experimental observations with corresponding numerical results from the present model is not possible under this situation, since the associated transport process involves a complex combination of a number of closely interconnected physical mechanisms, many of which are yet to be resolved. Subsequent to the development of the mathematical model and experimental arrangements for macroscopic transport processes during an alloy solidification process, some of the important modes of double-diffusive instability are analytically investigated, as a binary alloy of any specified initial composition is directionally solidified from the top. By employing a close-formed solution technique, the critical liquid layer heights corresponding to the onset of direct mode of instability are identified, corresponding two a binary alloy with three different initial compositions. In order to simulate turbulent transport during non-equilibrium solidification processes of binary alloys, a modified k-8 model is subsequently developed. Particular emphasis is given for appropriate modelling of turbulence parameters, so that the model merges with single-phase turbulence closure equations in the pure liquid region in a smooth manner. Laboratory experiments are performed using an ammonium chloride-water solution that is solidified by cooling from the top of a rectangular cavity. A good agreement between numerical and experimental results is observed. Finally, in order to study the effects of three-dimensionality in fluid flow on overall macrosegregation behaviour, the interaction between double-diffusive convection and non-equilibrium solidification of a binary mixture in a cubic enclosure (cooled from a side) is numerically investigated using a three-dimensional transient mathematical model. Investigations are carried out for two separate model systems, one corresponding to a typical metal-ally analogue system and other corresponding to an actual metal-alloy system. As a result of three-dimensional convective flow-patterns, a significant solute macrosegregation is observed in the transverse sections of the cavity, which cannot be captured by two-dimensional simulations.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Processus de solidification"

1

Janssson, J. F., and U. W. Gedde, eds. Solidification Processes in Polymers. Darmstadt: Steinkopff, 1992. http://dx.doi.org/10.1007/bfb0115564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Symposium F on Advances in Solidification Processes (1993 Strasbourg, France). Advances in solidification processes. Amsterdam: North-Holland, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

P, Bárczy, ed. Solidification and microgravity. Zürich: Trans Tech Publications, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Risk Reduction Engineering Laboratory (U.S.), ed. Interference mechanisms in waste stabilization/solidification processes: Project summary. Cincinnati, OH: U.S. Environmental Protection Agency, Risk Reduction Engineering Laboratory, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jones, Larry W. Interference mechanisms in waste stabilization/solidification processes: Project summary. Cincinnati, OH: U.S. Environmental Protection Agency, Risk Reduction Engineering Laboratory, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

International Conference on Modeling of Casting and Welding Processes (4th 1988 Palm Coast, Fla.). Modeling and control of casting and welding processes IV: Proceedings of the Fourth International Conference on Modeling of Casting and Welding Processes. Warrendale, Pa: Minerals, Metals & Materials Society, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Symposium, F. on Advances in Solidification Processes (1993 Strasbourg France). Advances in solidification processes: Proceedings of the Symposium F on Advances in Solidification Processes of the 1993 E-MRS Spring Conference, Strasbourg, France, May 4-7, 1993. Amsterdam: North Holland, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

D, Solomon Alan, ed. Mathematical modeling of melting and freezing processes. Washington: Hemisphere Pub. Corp., 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

International Conference on Modeling of Casting and Welding Processes (8th 1998 San Diego, Calif.). Modeling of casting, welding, and advanced solidification processes VIII: Proceedings of the Eighth International Conference on Modeling of Casting and Welding Processes, held in San Diego, California on June 7-12, 1998. Warrendale, Pa: Minerals, Metals & Materials Society, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1942-, Stefanescu Doru Michael, Engineering Conferences International, and International Conference on Modeling of Casting, Welding and Advanced Solidification Processes (10th : 2003 : Destin, Fla.), eds. Modeling of casting, welding, and advanced solidification processes-X: Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes : held in Destin, Florida on May 25-30, 2003. Warrendale, Pa: Minerals, Metals & Materials Society, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Processus de solidification"

1

Minkoff, Isaac. "Solidification/Liquid State Processes." In Materials Processes, 1–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-95562-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Verdeja González, Luis Felipe, Daniel Fernández González, and José Ignacio Verdeja González. "Solidification of the Steel." In Operations and Basic Processes in Steelmaking, 233–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68000-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dantzig, Jonathan A., and Daniel A. Tortorelli. "Optimization Applied to Solidification Processes." In Interactive Dynamics of Convection and Solidification, 183–85. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2809-4_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pehlke, Robert D. "Formation of Porosity During Solidification of Cast Metals." In Foundry Processes, 427–45. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1013-6_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karkhin, Victor A. "Melting and Solidification of Base Metal." In Thermal Processes in Welding, 363–79. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5965-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dantzig, Jonathan A. "Solidification Processes: From Dendrites to Design." In Continuum Scale Simulation of Engineering Materials, 647–56. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603786.ch34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Crha, Jan, J. Havlíček, Jiri Molínek, and Petr Kozelský. "Acoustic Emission Monitoring during Solidification Processes." In Advanced Materials Research, 299–304. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-420-0.299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Suwas, Satyam, and Ranjit Kumar Ray. "Texture Evolution During Solidification and Solid-State Transformation." In Engineering Materials and Processes, 73–93. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6314-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Spim, J. A., M. C. F. Ierardi, and A. Garcia. "Mathematical Modelling of Fractional Solidification." In Microstructures, Mechanical Properties and Processes - Computer Simulation and Modelling, 398–403. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527606157.ch63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mahamood, R. M. "Laser Metal Deposition Process, Solidification Mechanism and Microstructure Formation." In Engineering Materials and Processes, 37–59. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64985-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Processus de solidification"

1

Okamoto, Kei, and Ben Q. Li. "Inverse Design of Solidification Processes." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59449.

Full text
Abstract:
An inverse algorithm is developed for the design of the solidification processing systems. The algorithm entails the use of the Tikhonov regularization method, along with an appropriately selected regularization parameter. Both the direct solution of moving boundary problems and the inverse design formulation are presented, along with the L-curve to select an optimal regularization parameter for inverse design calculations. The design algorithm is applied to determine the appropriate boundary heat flux distribution in order to obtain a unidirectional solidification front in a 2-D cavity by eliminating the effect of natural convection. Inverse calculation is also performed for the case in which the solid-liquid interface is prescribed to vary linearly. The L-curve based regularization method is found to be reasonably accurate for the purpose of designing solidification processing systems.
APA, Harvard, Vancouver, ISO, and other styles
2

Okamoto, Kei, and Ben Q. Li. "Inverse Design of Time Dependent Solidification Processes." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72556.

Full text
Abstract:
An inverse algorithm is developed for the design of the solidification processing systems. The algorithm entails the use of the Tikhonov regularization method, along with an appropriately selected regularization parameter. Both the direct solution of moving boundary problems and the inverse design formulation are presented, along with the L-curve method to select an optimal regularization parameter for inverse design calculations. The design algorithm is applied to determine the optimal boundary heat flux distribution in order to obtain a unidirectional solidification front moving at a constant velocity in a 2-D cavity by eliminating the effect of natural convection. The inverse calculation is also performed for the case in which the solid-liquid interface is prescribed to vary with sine functions. The L-curve based regularization method is found to be reasonably accurate for the purpose of designing time dependent solidification processing systems.
APA, Harvard, Vancouver, ISO, and other styles
3

Mitchell, A. "Melting Processes and Solidification in Alloys 718-625." In Superalloys. TMS, 1991. http://dx.doi.org/10.7449/1991/superalloys_1991_15_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pinto, P., L. Mazare, D. Soares, F. S. Silva, Glaucio H. Paulino, Marek-Jerzy Pindera, Robert H. Dodds, Fernando A. Rochinha, Eshan Dave, and Linfeng Chen. "Incremental Melting and Solidification Process—Metallurgical Characterization." In MULTISCALE AND FUNCTIONALLY GRADED MATERIALS 2006. AIP, 2008. http://dx.doi.org/10.1063/1.2896851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nouri, Sabrina, Ahmed Benzaoui, and Mohamed Benzeghiba. "Numerical Study of the Vertical Solidification Process." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASME, 2011. http://dx.doi.org/10.1115/ajtec2011-44099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hayashi, Yujiro, H. Yoshioka, and Yukio Tada. "MICRO-SOLIDIFICATION PROCESS IN MULTI-COMPONENT SYSTEM." In Heat Transfer and Transport Phenomena in Microscale. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/1-56700-150-5.390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Delplanque, J. P., E. J. Lavernia, and R. H. Rangel. "Simulation of Micro-Pore Formation in Spray Deposition Processes." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-1056.

Full text
Abstract:
Abstract The present work investigates porosity formation in spray deposition processes. The emphasis is on one possible mechanism of micro-pore formation during droplet spreading and solidification: liquid-jet overflow. To this end, the Navier-Stokes equations are solved numerically using finite differences and the free surface is tracked using the Volume Of Fluid method. A previously developed multi-directional solidification algorithm is adapted and implemented in the Navier-Stokes solver to perform numerical simulations of liquid-metal droplet impact, spreading, and solidification. The results obtained allow a detailed description of the liquid-jet overflow mechanism and of the resulting solidified disk morphology. The influence of the Weber and Reynolds numbers, the solidification constant, and the contact angle is investigated.
APA, Harvard, Vancouver, ISO, and other styles
8

LIAO, DUNMING, LILIANG CHEN, JIANXIN ZHOU, and RUIXIANG LIU. "MODELING OF THERMAL STRESS DURING CASTING SOLIDIFICATION PROCESS." In Proceedings of the 10th Asia-Pacific Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814324052_0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Matsunawa, A., and S. Katayama. "Fusion and solidification processes of pulsed YAG laser spot welds." In ICALEO® ‘86: The Changing Frontiers of Laser Materials Processing. Laser Institute of America, 1986. http://dx.doi.org/10.2351/1.5057872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pop, Octavian G., Cristina A. Iuga, Lucian Fechete Tutunaru, and Mugur C. Balan. "Experimental Investigation of the Solidification and Melting Processes of PCMs." In 2020 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). IEEE, 2020. http://dx.doi.org/10.1109/aqtr49680.2020.9129923.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Processus de solidification"

1

Allen, Jeffrey, Robert Moser, Zackery McClelland, Md Mohaiminul Islam, and Ling Liu. Phase-field modeling of nonequilibrium solidification processes in additive manufacturing. Engineer Research and Development Center (U.S.), December 2021. http://dx.doi.org/10.21079/11681/42605.

Full text
Abstract:
This project models dendrite growth during nonequilibrium solidification of binary alloys using the phase-field method (PFM). Understanding the dendrite formation processes is important because the microstructural features directly influence mechanical properties of the produced parts. An improved understanding of dendrite formation may inform design protocols to achieve optimized process parameters for controlled microstructures and enhanced properties of materials. To this end, this work implements a phase-field model to simulate directional solidification of binary alloys. For applications involving strong nonequilibrium effects, a modified antitrapping current model is incorporated to help eject solute into the liquid phase based on experimentally calibrated, velocity-dependent partitioning coefficient. Investigated allow systems include SCN, Si-As, and Ni-Nb. The SCN alloy is chosen to verify the computational method, and the other two are selected for a parametric study due to their different diffusion properties. The modified antitrapping current model is compared with the classical model in terms of predicted dendrite profiles, tip undercooling, and tip velocity. Solidification parameters—the cooling rate and the strength of anisotropy—are studied to reveal their influences on dendrite growth. Computational results demonstrate effectiveness of the PFM and the modified antitrapping current model in simulating rapid solidification with strong nonequilibrium at the interface.
APA, Harvard, Vancouver, ISO, and other styles
2

Johnson. L51924 Evaluation of Welding Consumables and Processes for X100 Steel. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), October 2003. http://dx.doi.org/10.55274/r0010348.

Full text
Abstract:
The primary objective of this study was to evaluate the mechanical properties of weld metals deposited using a number of commercially available welding consumables and welding processes. The secondary objectives of this work included characterizing weld metal microstructure, assessing hydrogen-assisted cracking susceptibility of the weld metal and X100 base metal, and solidification cracking susceptibility of selected welding consumables.
APA, Harvard, Vancouver, ISO, and other styles
3

Pearce, K. L. Solidification process for sludge residue. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/10148404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Strain, John A. Numerical Methods for Solidification Processes in Materials Science. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/ada384342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Morgan, Claire, Katherine Broadwater, and William Jolin. Solidification of SRPPF Aqueous Recovery Liquid: Process Disruptions. Office of Scientific and Technical Information (OSTI), October 2024. http://dx.doi.org/10.2172/2460428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

M. A. Ebadian, R. C. Xin, and Z. F. Dong. Characterization of Transport and Solidification in the Metal Recycling Processes. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/1298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Okuno, Tomokazu, Ikuo Ihara, and Tetsuya Yamaguchi. The Analysis of Solidification Process for Aluminum Die Casting. Warrendale, PA: SAE International, September 2005. http://dx.doi.org/10.4271/2005-08-0600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Allen, Jeffrey, Robert Moser, Zackery McClelland, Jacob Kallivayalil, and Arjun Tekalur. Phase-field simulations of solidification in support of additive manufacturing processes. Engineer Research and Development Center (U.S.), May 2020. http://dx.doi.org/10.21079/11681/36654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mazumder, Prantik. Transport processes in directional solidification and their effects on microstructure development. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/754777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Changping. Solidification process in melt spun Nd-Fe-B type magnets. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/654150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography