Academic literature on the topic 'Processing Science'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Processing Science.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Processing Science"
Choi, Charles Q. "Processing for Science." Scientific American 292, no. 5 (May 2005): 30. http://dx.doi.org/10.1038/scientificamerican0505-30.
Full textMessing, Gary L., Shin-ichi Hirano, and Ludwig Gauckler. "Ceramic Processing Science." Journal of the American Ceramic Society 89, no. 6 (June 2006): 1769–70. http://dx.doi.org/10.1111/j.1551-2916.2006.01125.x.
Full textMessing, Gary L., Shin-Ichi Hirano, and Ludwig Gauckler. "Ceramic Processing Science." Journal of the American Ceramic Society 92 (January 2009): S1. http://dx.doi.org/10.1111/j.1551-2916.2008.02799.x.
Full textSteiner, D. "Proteolytic processing." Science 234, no. 4774 (October 17, 1986): 369. http://dx.doi.org/10.1126/science.3532320.
Full textEwsuk, Kevin G., and Jose G. Argüello. "Science-Based Ceramic Powder Processing." Key Engineering Materials 247 (August 2003): 27–34. http://dx.doi.org/10.4028/www.scientific.net/kem.247.27.
Full textNicotra, Giuseppe, and Quentin M. Ramasse. "Material Science in Semiconductor Processing☆." Materials Science in Semiconductor Processing 65 (July 2017): 1. http://dx.doi.org/10.1016/j.mssp.2017.05.023.
Full textRomano, Lucia, and Joan Vila Comamala. "Material Science in Semiconductor Processing." Materials Science in Semiconductor Processing 92 (March 2019): 1. http://dx.doi.org/10.1016/j.mssp.2019.01.013.
Full textA.M.S. "Science of Ceramic Chemical Processing." Composite Structures 7, no. 3 (January 1987): 227. http://dx.doi.org/10.1016/0263-8223(87)90032-8.
Full textTurner, I. G. "Science of ceramic chemical processing." Composites Science and Technology 28, no. 1 (January 1987): 81–82. http://dx.doi.org/10.1016/0266-3538(87)90065-0.
Full textSoles, C. L., and Y. Ding. "MATERIALS SCIENCE: Nanoscale Polymer Processing." Science 322, no. 5902 (October 31, 2008): 689–90. http://dx.doi.org/10.1126/science.1165174.
Full textDissertations / Theses on the topic "Processing Science"
Goh, Siew Wei Chemistry Faculty of Science UNSW. "Application of surface science to sulfide mineral processing." Awarded by:University of New South Wales. School of Chemistry, 2006. http://handle.unsw.edu.au/1959.4/32912.
Full textChen, Siheng. "Data Science with Graphs: A Signal Processing Perspective." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/724.
Full textBaklar, Mohammed Adnan. "Processing organic semiconductors." Thesis, Queen Mary, University of London, 2010. http://qmro.qmul.ac.uk/xmlui/handle/123456789/1311.
Full textKagiri, T. (Thomas). "Designing strategic information systems in complexity science concepts." Master's thesis, University of Oulu, 2013. http://urn.fi/URN:NBN:fi:oulu-201306061561.
Full textNourian, Arash. "Approaches for privacy aware image processing in clouds." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119518.
Full textLe cloud computing est idéal pour le stockage d'image et le traitement parce qu'il fournit le stockage énormément évolutif et des ressources de traitement au bas prix. Un des inconvénients majeurs de cloud computing, cependant, est le manque de mécanismes robustes pour les utilisateurs pour contrôler la vie privée des données qu'ils mettent en gérance aux clouds comme des photos. Une façon d'améliorer la vie privée et la sécurité de photos stockées dans des clouds est de crypter les photos avant le stockage d'eux. Cependant, utilisant le chiffrage pour garantir les informations tenues dans les photos écarte appliquer n'importe quelles transformations d'image tandis qu'ils sont tenus dans les serveurs tiers. Pour aborder cette question, nous avons développé les régimes de codage d'image qui améliorent la vie privée des données d'image qui est externalisée aux clouds pour le traitement. Nous utilisons un modèle de hybrid cloud pour mettre en œuvre nos régimes proposés. Contrairement aux régimes de chiffrage d'image précédemment proposés, nos régimes de codage permettent aux formes différentes de niveau de pixel, le niveau de bloc et le traitement d'image binaire d'avoir lieu dans les clouds tandis que l'image réelle n'est pas révélée au fournisseur de cloud. Nos régimes de codage utilisent une carte de chat chaotique pour transformer l'image après qu'il est masqué avec une image ambiante arbitrairement choisie ou mixte avec d'autres images. Un prototype simplifié des systèmes de traitement d'image a été mis en œuvre et les résultats expérimentaux et l'analyse de sécurité détaillée pour chaque régime proposé sont présentés dans cette thèse. Nous utilisons l'image commune traitant des tâches de démontrer la capacité de notre régime d'exécuter des calculs sur la vie privée des images améliorées. Une variété de niveau de pixel, le niveau de bloc et des filtres binaires a été mise en œuvre pour supporter le traitement d'image sur des images codées dans le système. L'opérationnel des frais généraux supplémentaire selon nos régimes de refléter des filtres est environ 18% le en moyenne.
Lee, Li 1975. "Distributed signal processing." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/86436.
Full textMcCormick, Martin (Martin Steven). "Digital pulse processing." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78468.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 71-74).
This thesis develops an exact approach for processing pulse signals from an integrate-and-fire system directly in the time-domain. Processing is deterministic and built from simple asynchronous finite-state machines that can perform general piecewise-linear operations. The pulses can then be converted back into an analog or fixed-point digital representation through a filter-based reconstruction. Integrate-and-fire is shown to be equivalent to the first-order sigma-delta modulation used in oversampled noise-shaping converters. The encoder circuits are well known and have simple construction using both current and next-generation technologies. Processing in the pulse-domain provides many benefits including: lower area and power consumption, error tolerance, signal serialization and simple conversion for mixed-signal applications. To study these systems, discrete-event simulation software and an FPGA hardware platform are developed. Many applications of pulse-processing are explored including filtering and signal processing, solving differential equations, optimization, the minsum / Viterbi algorithm, and the decoding of low-density parity-check codes (LDPC). These applications often match the performance of ideal continuous-time analog systems but only require simple digital hardware. Keywords: time-encoding, spike processing, neuromorphic engineering, bit-stream, delta-sigma, sigma-delta converters, binary-valued continuous-time, relaxation-oscillators.
by Martin McCormick.
S.M.
Eldar, Yonina Chana 1973. "Quantum signal processing." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/16805.
Full textIncludes bibliographical references (p. 337-346).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Quantum signal processing (QSP) as formulated in this thesis, borrows from the formalism and principles of quantum mechanics and some of its interesting axioms and constraints, leading to a novel paradigm for signal processing with applications in areas ranging from frame theory, quantization and sampling methods to detection, parameter estimation, covariance shaping and multiuser wireless communication systems. The QSP framework is aimed at developing new or modifying existing signal processing algorithms by drawing a parallel between quantum mechanical measurements and signal processing algorithms, and by exploiting the rich mathematical structure of quantum mechanics, but not requiring a physical implementation based on quantum mechanics. This framework provides a unifying conceptual structure for a variety of traditional processing techniques, and a precise mathematical setting for developing generalizations and extensions of algorithms. Emulating the probabilistic nature of quantum mechanics in the QSP framework gives rise to probabilistic and randomized algorithms. As an example we introduce a probabilistic quantizer and derive its statistical properties. Exploiting the concept of generalized quantum measurements we develop frame-theoretical analogues of various quantum-mechanical concepts and results, as well as new classes of frames including oblique frame expansions, that are then applied to the development of a general framework for sampling in arbitrary spaces. Building upon the problem of optimal quantum measurement design, we develop and discuss applications of optimal methods that construct a set of vectors.
(cont.) We demonstrate that, even for problems without inherent inner product constraints, imposing such constraints in combination with least-squares inner product shaping leads to interesting processing techniques that often exhibit improved performance over traditional methods. In particular, we formulate a new viewpoint toward matched filter detection that leads to the notion of minimum mean-squared error covariance shaping. Using this concept we develop an effective linear estimator for the unknown parameters in a linear model, referred to as the covariance shaping least-squares estimator. Applying this estimator to a multiuser wireless setting, we derive an efficient covariance shaping multiuser receiver for suppressing interference in multiuser communication systems.
by Yonina Chana Eldar.
Ph.D.
Yang, Heechun. "Modeling the processing science of thermoplastic composite tow prepreg materials." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/17217.
Full textMcEwen, Gordon John. "Colour image processing for textile fibre matching in forensic science." Thesis, Queen's University Belfast, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336101.
Full textBooks on the topic "Processing Science"
International, Symposia on Advanced Materials and Technology for the 21st Century (1995 Honolulu Hawaii). Solidification science and processing. Warrendale, Pa: The Minerals, Metals & Materials Society, 1996.
Find full textInternational Symposia on Advanced Materials and Technology for the 21st Century (1995 Honolulu, Hawaii). Solidification science and processing. Warrendale, Pa: The Minerals, Metals & Materials Society, 1996.
Find full text1938-, Kumar A., and Dahotre Narendra B, eds. Materials processing and manufacturing science. Burlingtogn, MA: Elsevier Academic Press, 2005.
Find full textWang, Hua, and Hafeezullah Memon, eds. Cotton Science and Processing Technology. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9169-3.
Full textM, Barrett Diane, Somogyi Laszlo P, and Ramaswamy Hosahalli S, eds. Processing fruits: Science and technology. 2nd ed. Boca Raton: CRC Press, 2005.
Find full textP, Somogyi Laszlo, Ramaswamy Hosahalli S, and Hui Y. H. 1940-, eds. Processing fruits: Science and technology. Lancaster, Pa: Technomic Publishing Co., 1996.
Find full textHay, Cameron. Computer science and data processing. London: Longman, 1985.
Find full textL, Hench L., Ulrich Donald R, University of Florida. Department of Materials Science and Engineering., University of Florida. College of Engineering., and International Conference on Ultrastructure Processing of Ceramics, Glasses, and Composites (2nd : 1985 : Palm Coast, Fla.), eds. Science of ceramic chemical processing. New York: Wiley, 1986.
Find full textP, Somogyi Laszlo, ed. Processing fruits: Science and technology. Lancaster, Pa: Technomic Pub. Co., 1996.
Find full textSociety, American Ceramic, and Materials Science & Technology Conference (2010 : Houston, Tex.), eds. Biomaterials science: Processing, properties, and applications. Hoboken, N.J: Wiley, 2011.
Find full textBook chapters on the topic "Processing Science"
Osswald, Tim A., and Juan P. Hernández-Ortiz. "Polymer Materials Science." In Polymer Processing, 1–36. München: Carl Hanser Verlag GmbH & Co. KG, 2006. http://dx.doi.org/10.3139/9783446412866.001.
Full textAnderson, J. C., K. D. Leaver, R. D. Rawlings, and J. M. Alexander. "Semiconductor Processing." In Materials Science, 454–90. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-6826-5_15.
Full textRatner, Buddy D. "Biomaterials Science." In Plasma Processing of Polymers, 453–64. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8961-1_25.
Full textWeik, Martin H. "processing." In Computer Science and Communications Dictionary, 1341. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_14758.
Full textVieira, Ernest R. "Thermal Processing." In Elementary Food Science, 139–59. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-5112-3_10.
Full textLuo, M. Ronnier. "Colour science." In The Colour Image Processing Handbook, 26–66. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5779-1_3.
Full textEarnshaw, Rae. "Data Science." In Advanced Information and Knowledge Processing, 1–10. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24367-8_1.
Full textToledo, Romeo T., Rakesh K. Singh, and Fanbin Kong. "Aseptic Processing." In Food Science Text Series, 245–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90098-8_9.
Full textSzeliski, Richard. "Image processing." In Texts in Computer Science, 87–180. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-935-0_3.
Full textThomas, Merin Sara, Rekha Rose Koshy, Siji K. Mary, Sabu Thomas, and Laly A. Pothan. "Processing Techniques." In SpringerBriefs in Molecular Science, 9–17. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03158-9_2.
Full textConference papers on the topic "Processing Science"
Jaghoori, Mohammad Mahdi, Shayan Shahand, and Silvia D. Olabarriaga. "Processing Manager for Science Gateways." In 2015 7th International Workshop on Science Gateways (IWSG). IEEE, 2015. http://dx.doi.org/10.1109/iwsg.2015.9.
Full textMuller, T. O., T. Jejkal, R. Stotzka, M. Sutter, V. Hartmann, and H. Gemmeke. "Grid Services Toolkit for Process Data Processing." In 2006 Second IEEE International Conference on e-Science and Grid Computing (e-Science'06). IEEE, 2006. http://dx.doi.org/10.1109/e-science.2006.261046.
Full textKuntschke, Richard, Tobias Scholl, Sebastian Huber, Alfons Kemper, Angelika Reiser, Hans-martin Adorf, Gerard Lemson, and Wolfgang Voges. "Grid-Based Data Stream Processing in e-Science." In 2006 Second IEEE International Conference on e-Science and Grid Computing (e-Science'06). IEEE, 2006. http://dx.doi.org/10.1109/e-science.2006.261114.
Full textJenkins, Jon M., Joseph D. Twicken, Sean McCauliff, Jennifer Campbell, Dwight Sanderfer, David Lung, Masoud Mansouri-Samani, et al. "The TESS science processing operations center." In SPIE Astronomical Telescopes + Instrumentation, edited by Gianluca Chiozzi and Juan C. Guzman. SPIE, 2016. http://dx.doi.org/10.1117/12.2233418.
Full textBykov, Robert E., Ludmila A. Manilo, and Fengmei Cao. "Multispectral image processing in science investigations." In Photonics Asia 2002, edited by LiWei Zhou, Chung-Sheng Li, and Yoshiji Suzuki. SPIE, 2002. http://dx.doi.org/10.1117/12.481591.
Full textChernoskutov, Mikhail. "Graph Processing System for Network Science." In 2020 International Conference Engineering and Telecommunication (En&T). IEEE, 2020. http://dx.doi.org/10.1109/ent50437.2020.9431292.
Full text"Image science with photon-processing detectors." In 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC). IEEE, 2013. http://dx.doi.org/10.1109/nssmic.2013.6829331.
Full textDay, Nick, Jim Downing, Lezan Hawizy, Nico Adams, and Peter Murray-Rust. "Towards Lensfield - Data Management, Processing and Semantic Publication for Vernacular e-Science." In 2009 5th IEEE International Conference on e-Science (e-Science). IEEE, 2009. http://dx.doi.org/10.1109/e-science.2009.56.
Full textTarte, Ségolene M., David C. H. Wallom, Pin Hu, Kang Tang, and Tiejun Ma. "An Image Processing Portal and Web-Service for the Study of Ancient Documents." In 2009 5th IEEE International Conference on e-Science (e-Science). IEEE, 2009. http://dx.doi.org/10.1109/e-science.2009.10.
Full textLiu, Ying, Nithya Vijayakumar, and Beth Plale. "Stream processing in data-driven computational science." In 2006 7th IEEE/ACM International Conference on Grid Computing. IEEE, 2006. http://dx.doi.org/10.1109/icgrid.2006.311011.
Full textReports on the topic "Processing Science"
Raj, Rishi. High Temperature Materials Processing Science. Fort Belvoir, VA: Defense Technical Information Center, June 1987. http://dx.doi.org/10.21236/ada182904.
Full textSemiatin, S. L. Metals Processing/Processing Science. Work Order Directive (WUD) 49. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada406788.
Full textCesarano, III, Joseph, Robert Allen Roach, Alice C. Kilgo, Donald Francis Susan, David J. Van Ornum, John N. Stuecker, and Kimberly A. Shollenberger. A Science-Based Understanding of Cermet Processing. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/1126942.
Full textRaj, R. (Interface science in deformation processing of ceramics). Office of Scientific and Technical Information (OSTI), December 1989. http://dx.doi.org/10.2172/7152579.
Full textThomas, Jr, and Joseph F. Processing Science: Characterizing Flow Behavior of High Temperature Structural Materials. Fort Belvoir, VA: Defense Technical Information Center, June 1986. http://dx.doi.org/10.21236/ada224898.
Full textAksay, I. A., G. L. McVay, and D. R. Ulrich. Processing Science of Advanced Ceramics. Materials Research Society Symposium Proceedings. Volume 155. Fort Belvoir, VA: Defense Technical Information Center, September 1990. http://dx.doi.org/10.21236/ada229587.
Full textBolintineanu, Dan, Jeremy Lechman, Daniel Bufford, Joel Clemmer, Marcia Cooper, William Erikson, Stewart Silling, et al. Enabling Particulate Materials Processing Science for High-Consequence, Small-Lot Precision Manufacturing. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1832288.
Full textCollins, Leslie M., Peter A. Torrione, and Kenneth D. Morton. Statistical Signal Processing for Remote Sensing of Targets: Proposal for Terrestrial Science Program. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada614713.
Full textWatkins, Thomas R., Gary Cola, Suresh S. Babu, Thomas R. Muth, Benjamin Shassere, Hsin Wang, and Ralph Dinwiddie. Fundamental Science and Technology of Flash Processing Robustness for Advanced High Strength Steels (AHSS). Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1606795.
Full textVolkova, Nataliia P., Nina O. Rizun, and Maryna V. Nehrey. Data science: opportunities to transform education. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3241.
Full text