Academic literature on the topic 'Processes and Dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Processes and Dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Processes and Dynamics"

1

Dew, Ryan, Asim Ansari, and Yang Li. "Modeling Dynamic Heterogeneity Using Gaussian Processes." Journal of Marketing Research 57, no. 1 (October 14, 2019): 55–77. http://dx.doi.org/10.1177/0022243719874047.

Full text
Abstract:
Marketing research relies on individual-level estimates to understand the rich heterogeneity of consumers, firms, and products. While much of the literature focuses on capturing static cross-sectional heterogeneity, little research has been done on modeling dynamic heterogeneity, or the heterogeneous evolution of individual-level model parameters. In this work, the authors propose a novel framework for capturing the dynamics of heterogeneity, using individual-level, latent, Bayesian nonparametric Gaussian processes. Similar to standard heterogeneity specifications, this Gaussian process dynamic heterogeneity (GPDH) specification models individual-level parameters as flexible variations around population-level trends, allowing for sharing of statistical information both across individuals and within individuals over time. This hierarchical structure provides precise individual-level insights regarding parameter dynamics. The authors show that GPDH nests existing heterogeneity specifications and that not flexibly capturing individual-level dynamics may result in biased parameter estimates. Substantively, they apply GPDH to understand preference dynamics and to model the evolution of online reviews. Across both applications, they find robust evidence of dynamic heterogeneity and illustrate GPDH’s rich managerial insights, with implications for targeting, pricing, and market structure analysis.
APA, Harvard, Vancouver, ISO, and other styles
2

Martínez-Grau, Héctor, Reto Jagher, F. Xavier Oms, Joan Anton Barceló, Salvador Pardo-Gordó, and Ferran Antolín. "Global Processes, Regional Dynamics?" Documenta Praehistorica 47 (December 1, 2020): 170–91. http://dx.doi.org/10.4312/dp.47.10.

Full text
Abstract:
The goal of this paper is to discuss the validity of radiocarbon dates as a source of knowledge for explaining social dynamics over a large region and a long period of time. We have carefully selected c. 1000 14C dates for the time interval 8000–4000 cal BC within the northwestern Mediterranean area (NE Iberian Peninsula, SE France, N Italy) and Switzerland. Using statistical analysis, we have modelled the summed probability distribution of those dates for each of the analysed ecoregion and discussed the rhythms of neolithisation in these regions and the probability of social contact between previous Mesolithic and new Neolithic populations.
APA, Harvard, Vancouver, ISO, and other styles
3

Fernández, J., A. Plastino, L. Diambra, and C. Mostaccio. "Dynamics of coevolutive processes." Physical Review E 57, no. 5 (May 1, 1998): 5897–903. http://dx.doi.org/10.1103/physreve.57.5897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Behringer, Hans, Ralf Eichhorn, and Stefan Wallin. "Dynamics of biomolecular processes." Physica Scripta 87, no. 5 (April 11, 2013): 058501. http://dx.doi.org/10.1088/0031-8949/87/05/058501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weissman, Haim, and Shlomo Havlin. "Dynamics in multiplicative processes." Physical Review B 37, no. 10 (April 1, 1988): 5994–96. http://dx.doi.org/10.1103/physrevb.37.5994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jung, W., K. Lee, and C. A. Morales. "Dynamics of G-processes." Stochastics and Dynamics 20, no. 01 (January 28, 2020): 2050037. http://dx.doi.org/10.1142/s0219493720500379.

Full text
Abstract:
A G-process is briefly a process ([A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, Vol. 182 (Springer, 2013)], [C. M. Dafermos, An invariance principle for compact processes, J. Differential Equations 9 (1971) 239–252], [P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, Vol. 176 (Amer. Math. Soc., 2011)]) for which the role of evolution parameter is played by a general topological group [Formula: see text]. These processes are broad enough to include the [Formula: see text]-actions (characterized as autonomous [Formula: see text]-processes) and the two-parameter flows (where [Formula: see text]). We endow the space of [Formula: see text]-processes with a natural group structure. We introduce the notions of orbit, pseudo-orbit and shadowing property for [Formula: see text]-processes and analyze the relationship with the [Formula: see text]-processes group structure. We study the equicontinuous [Formula: see text]-processes and use it to construct nonautonomous [Formula: see text]-processes with the shadowing property. We study the global solutions of the [Formula: see text]-processes and the corresponding global shadowing property. We study the expansivity (global and pullback) of the [Formula: see text]-processes. We prove that there are nonautonomous expansive [Formula: see text]-processes and characterize the existence of expansive equicontinuous [Formula: see text]-processes. We define the topological stability for [Formula: see text]-processes and prove that every expansive [Formula: see text]-process with the shadowing property is topologically stable. Examples of nonautonomous topologically stable [Formula: see text]-processes are given.
APA, Harvard, Vancouver, ISO, and other styles
7

Krapivsky, P. L. "Dynamics of repulsion processes." Journal of Statistical Mechanics: Theory and Experiment 2013, no. 06 (June 20, 2013): P06012. http://dx.doi.org/10.1088/1742-5468/2013/06/p06012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Němcová, Ingeborg. "Dynamics of socio-economic processes." Acta Informatica Pragensia 2, no. 2 (December 31, 2013): 122–24. http://dx.doi.org/10.18267/j.aip.29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

APOLLONI, ANDREA, and FLORIANA GARGIULO. "DIFFUSION PROCESSES THROUGH SOCIAL GROUPS' DYNAMICS." Advances in Complex Systems 14, no. 02 (April 2011): 151–67. http://dx.doi.org/10.1142/s0219525911003037.

Full text
Abstract:
Axelrod's model describes the dissemination of a set of cultural traits in a society constituted by individual agents. In a social context, nevertheless, individual choices toward a specific attitude are also at the basis of the formation of communities, groups and parties. The membership in a group changes completely the behavior of single agents who start acting according to a social identity. Groups act and interact among them as single entities, but still conserve an internal dynamics. We show that, under certain conditions of social dynamics, the introduction of group dynamics in a cultural dissemination process avoids the flattening of the culture into a single entity and preserves the multiplicity of cultural attitudes. We also consider diffusion processes on this dynamical background, showing the conditions under which information as well as innovation can spread through the population in a scenario where the groups' choices determine the social structure.
APA, Harvard, Vancouver, ISO, and other styles
10

VINCENT, THOMAS L. "THE G-FUNCTION METHOD FOR ANALYZING DARWINIAN DYNAMICS." International Game Theory Review 06, no. 01 (March 2004): 69–90. http://dx.doi.org/10.1142/s0219198904000083.

Full text
Abstract:
Darwinian dynamics refers to the dynamical processes underlying natural selection that drives evolution. We are interested in the evolution of strategies used by biological entities. There are two dynamical processes involved, population dynamics (relationship between population density and the agents affecting density) and strategy dynamics (relationship between strategy values and the agents affecting these values). Darwinian dynamics is a total dynamic obtained through the coupling of these two processes, the modeling of which, involves dynamical systems, optimization, stability, and game theory. Using a method called the G-function approach, we explore how an evolutionary process can take place in a set of differential equations, and we examine some interesting links between evolutionary stability and optimization as embodied in the ESS maximum principle. One of the interesting paradoxes is how a "hill-climbing" algorithm can end up at a stable local minimum and why this might have important implications in understanding speciation (the creation of new species from a homogeneous population). Finally, we will examine how these concepts are currently being applied to model the development of tumors in humans.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Processes and Dynamics"

1

Palau, Ortin David. "Dynamics of cellular decision making processes." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/396084.

Full text
Abstract:
Cells, either as unicellular organisms or as part of a tissue of a multicellular organism, can acquire different functions thanks to their capability of changing their expression state. The enzyme synthesis, cell division or cell differentiation are some examples of these functions. The turning on and off of them lie in the mechanisms by which cells are able to integrate the information they perceive from the environment. Frequently, cells exhibit different responses under the same stimulus or environment. These probabilistic processes, whose behaviours are not univocal, are known as "cellular decision making". We can classify these processes according to the range at which the decision is made. We denominate cell-autonomous decision those in which of each cell chooses its response independently of the choice of the other cells of the population. By contrast, if the decision is made collectively by the whole population, it is classified as non autonomous. This second type of decisions involve mechanisms of cell-to-cell communication that mediate in the choices the cells and so, some spatial distributions of the different cell states can arise. The capability of cellular decision making processes of performing a variety of responses under a same signal is given by the multistability and the stochasticity of their dynamics. While multistability is underlain by the nonlinear interactions of the elements involved in genetic regulation, stochasticity arises from the discrete nature of biochemical reactions and the thermal fluctuations of the cellular environment. These two characteristics motivate the study of these processes from Systems Dynamics the point of view, by identifying cell states with system attractors. This Thesis focuses on the study of the general dynamical mechanisms that control cellular decision making processes. The main goal is to connect the properties of the decision with the relevant dynamical behaviour of the system while it is being made. We have analysed the properties of cellular decisions in two systems: a system with cell-autonomous dynamics, where cells choose their state regardless the choice of the others; and a system where the decision is made jointly by all the tissue. In this second system, cells interact through a cell-to-cell communication that takes place at first neighbours. From these interactions, different pattern solutions arise, where different different cell types are spatially distributed along the tissue. Finally, it has been analysed the role that a specific choice, whose probability value is well known, plays in the functionality of an organism. The chosen system to study these consequences has been a process of differentiation that the parasite that causes malaria in humans performs.
Cada célula, ya se como organismo unicelular o formando parte de un organismo multicelular, tiene que desarrollar distintas funciones a lo largo de su vida. Algunos ejemplos de estas funciones son tales como la síntesis de encimas, dividirse o diferenciarse en otro tipo celular. La activación y desactivación de muchas de estas funciones está sujeta a la integración de la información que la célula percibe de su entorno. A menudo, las células exhiben respuestas distintas bajo un mismo estímulo o bajo unas mismas condiciones del entorno. Estos procesos probabilísticos son conocidos como "toma de decisiones celulares". Estos eventos celulares se puede desarrollar de forma autónoma por cada célula, o de forma colectiva por toda una población o tejido. En este segundo caso, se requiere de algún mecanismo que medie en la comunicación entre células. Esta capacidad de estos sistemas de producir una variedad de respuestas es otorgada por la multiestabilidad y estocasticidad de sus dinámicas. Estas características motivan el estudio de estos procesos desde la perspectiva de la Dinámica de Sistemas, identificando los estados celulares a los atractores del sistema. Esta Tesis se centra en el estudio de los mecanismos dinámicos genéricos que controlan la toma de decisiones celulares. Se ha caracterizado la conexión entre las propiedades de una decisión y el mecanismo subyacente que la genera. Dos tipos decisiones autónomas han sido analizadas de acuerdo a esta perspectiva. También se ha estudiado los mecanismos dinámicos que llevan a la selección de un patrón espacial concreto en un escenario de decisión no autónoma, en el que las células interactúan entre sí a primeros vecinos mediante una inhibición lateral. Estas decisiones han revelado como la simetría especial de la señal inductora de las mismas afecta a la solución final alcanzada por el tejido. Finalmente, se ha analizado el papel que la probabilidad de una decisión concreta y bien conocida puede desarrollar en la viabilidad del organismo implicado. El sistema de estudio escogido ha sido un proceso de diferenciación que lleva a cabo el parásito responsable de causar la malaria en humanos.
APA, Harvard, Vancouver, ISO, and other styles
2

Herbert, Julian Richard. "Stochastic processes for parasite dynamics." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Styles, M. J. "Predictive engineering processes for motorcycle dynamics." Thesis, Cranfield University, 2004. http://dspace.lib.cranfield.ac.uk/handle/1826/10715.

Full text
Abstract:
This study is an investigation into the use of computer aided handling and stability analysis for motorcycles. In particular it considers Triumph Motorcycles Ltd., delving into Triumph's background, their strategy and the likelihood of them using virtual techniques for stability and handling analysis. Additionally, this work reviews current knowledge of motorcycle dynamics analysis and builds on it. A novel way of studying the steering feel has been developed by analysing the response of the steer torque equation for the Sharp 1971 [1] and 1994 [2] models. The individual contributors to this equation are identified and the important ones are investigated further. One conclusion of this study is that in reduced cornering and camber conditions the steer angle of the motorcycle, for a given steering input torque, increases when compared to standard operating conditions. The steer angle also increases further as the speed increases. An update to a previous motorcycle model [3] has been made by revising the parameter set, so that it is more applicable to a modem sports motorcycle. The rider model and relaxation length description have also been improved upon. The results show that the new motorcycle has been made more manoeuvrable by the alterations to the parameters. An optimal preview steering control system for cars [4] has been taken, improved upon and used with the newly developed motorcycle model discussed above. The results from this novel work allow a designer to alter parameters and see how this affects the motorcycles steering demands, path following, etc. It was shown that an increase in the front wheel inertia makes the motorcycle feel like the steering is heavier, and an increase in the front wheel radius and wheelbase make the steering feel lighter. Future work into non-linear analysis is recommended and improved rider and tyre modelling is also desired.
APA, Harvard, Vancouver, ISO, and other styles
4

Rué, Queralt Pau. "Transient and stochastic dynamics in cellular processes." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/128333.

Full text
Abstract:
This Thesis studies different cellular and cell population processes driven by non-linear and stochastic dynamics. The problems addressed here gravitate around the concepts of transient dynamics and relaxation from a perturbed to a steady state. In this regard, in all processes studied, stochastic fluctuations, either intrinsically present in or externally applied to these systems play an important and constructive role, by either driving the systems out of equilibrium, interfering with the underlying deterministic laws, or establishing suitable levels of heterogeneity. The first part of the Thesis is committed the analysis of genetically regulated transient cellular processes. Here, we analyse, from a theoretical standpoint, three genetic circuits with pulsed excitable dynamics. We show that all circuits can work in two different excitable regimes, in contrast to what was previously speculated. We also study how, in the presence of molecular noise, these excitable circuits can generate periodic polymodal pulses due to the combination of two noise induced phenomena: stabilisation of an unstable spiral point and coherence resonance. We also studied an excitable genetic mechanism for the regulation of the transcriptional fluctuations observed in some pluripotency factors in Embryonic Stem cells. In the embryo, pluripotency is a transient cellular state and the exit of cells from it seems to be associated with transcriptional fluctuations. In regard to pluripotency control, we also propose a novel mechanism based on the post-translational regulation of a small set of four pluripotency factors. We have validated the theoretical model, based on the formation of binary complexes among these factors, with quantitative experimental data at the single-cell level. The model suggests that the pluripotency state does not depend on the cellular levels of a single factor, but rather on the equilibrium of correlations between the different proteins. In addition, the model is able to anticipate the phenotype of several mutant cell types and suggests that the regulatory function of the protein interactions is to buffer the transcriptional activity of Oc4, a key pluripotency factor. In the second part of the Thesis we studied the behaviour of a computational cell signalling network of the human fibroblast in the presence of external fluctuations and signals. The results obtained here indicate that the network responds in a nontrivial manner to background chatter, both intrinsically and in the presence of external periodic signals. We show that these responses are consequence of the rerouting of the signal to different network information-transmission paths that emerge as noise is modulated. Finally, we also study the cell population dynamics during the formation of microbial biofilms, wrinkled pellicles of bacteria glued by an extracellular matrix that are one of the simplest cases of self-organised multicellular structures. In this Thesis we develop a spatiotemporal model of cellular growth and death that accounts for the experimentally observed patterns of massive bacterial death that precede wrinkle formation in biofilms. These localised patterns focus mechanical forces during biofilm expansion and trigger the formation of the characteristic ridges. In this sense, the proposed model suggests that the death patterns emerge from the mobility changes in bacteria due to the production of extracellular matrix and the spatially inhomogeneous cellular growth. An important prediction of the model is that matrix productions is crucial for the appearance of the patterns and, therefore for winkle formation. We have also experimentally validated validated this prediction with matrix deficient bacterial strains, which show neither death patterns nor wrinkles.
En aquesta Tesi s’estudien diferents processos intracel·lulars i de poblacions cel·lulars regits per dinàmica estocàstica i no lineal. El problemes biològics tractats graviten al voltant el concepte de dinàmica transitòria i de relaxació d’un estat dinàmic pertorbat a l’estat estacionari. En aquest sentit, en tots els processos estudiats, les fluctuacions estocàstiques, presents intrínsecament o aplicades de forma externa, hi tenen un paper constructiu, ja sigui empenyent els sistemes fora de l’equilibri, interferint amb les lleis deterministes subjacents, o establint els nivells d’heterogeneïtat necessaris. La primera part de la Tesi es dedica a l’estudi de processos cel·lulars transitoris regulats genèticament. En ella analitzem des d’un punt de vista teòric tres circuits genètics de control de polsos excitables i, contràriament al que s’havia especulat anteriorment, establim que tots ells poden treballar en dos tipus de règim excitable. Analitzem també com, en presència de soroll molecular, aquests circuits excitables poden generar polsos periòdics i multimodals degut a la combinació de dos fenòmens induïts per soroll: l’estabilització estocàstica d’estats inestables i la ressonància de coherència. D’altra banda, estudiem com un mecanisme genètic excitable pot ser el responsable de regular a nivell transcripcional les fluctuacions que s’observen experimentalment en alguns factors de pluripotència en cèl·lules mare embrionàries. En l’embrió, la pluripotència és un estat cel·lular transitori i la sortida de les cèl·lules d’aquest sembla que està associada a fluctuacions transcripcionals. En relació al control de la pluripotència, presentem també un nou mecanisme basat en la regulació post-traduccional d’un petit conjunt de 4 factors de pluripotència. El model teòric proposat, basat en la formació de complexos entre els diferents factors de pluripotència, l’hem validat mitjançant experiments quantitatius en cèl·lules individuals. El model postula que l’estat de pluripotència no depèn dels nivells cel·lulars d’un únic factor, sinó d’un equilibri de correlacions entre diverses proteïnes. A més, prediu el fenotip de cèl·lules mutants i suggereix que la funció reguladora de les interaccions entre les quatre proteïnes és la d’esmorteir l’activitat transcripcional d’Oct4, un dels principals factors de pluripotència. En el segon apartat de la Tesi estudiem el comportament d’una xarxa computacional de senyalització cel·lular de fibroblast humà en presència de senyals externs fluctuants i cíclics. Els resultats obtinguts mostren que la xarxa respon de forma no trivial a les fluctuacions ambientals, fins i tot en presència d’una senyal externa. Diferents nivells de soroll permeten modular la resposta de la xarxa, mitjançant la selecció de rutes alternatives de transmissió de la informació. Finalment, estudiem la dinàmica de poblacions cel·lulars durant la formació de biofilms, pel·lícules arrugades d’aglomerats de bacteris que conformen un dels exemples més simples d’estructures multicel·lulars autoorganitzades. En aquesta Tesi presentem un model espai-temporal de creixement i mort cel·lular motivat per l’evidència experimental sobre l’aparició de patrons de mort massiva de bacteris previs a la formació de les arrugues dels biofilms. Aquests patrons localitzats concentren les forces mecàniques durant l’expansió del biofilm i inicien la formació de les arrugues característiques. En aquest sentit, el model proposat explica com es formen els patrons de mort a partir dels canvis de mobilitat dels bacteris deguts a la producció de matriu extracel·lular combinats amb un creixement espacialment heterogeni. Una important predicció del model és que la producció de matriu és un procés clau per a l’aparició dels patrons i, per tant de les arrugues. En aquest aspecte, els nostres resultats experimentals en bacteris mutants que no produeixen components essencials de la matriu, confirmen les prediccions.
APA, Harvard, Vancouver, ISO, and other styles
5

Santos, Jaime Eduardo Moutinho. "Non-equilibrium dynamics of reaction-diffusion processes." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Debacher, Nito Angelo. "Studies on the dynamics of wetting processes." Thesis, University of Bristol, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Melander, Joshua. "On the dynamics of interacting spreading processes." Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/34559.

Full text
Abstract:
Master of Science
Department of Electrical and Computer Engineering
Faryad Darabi Sahneh
A significant number of processes we observe in nature can be described as a spreading process; any agent which is compelled to survive by replicating through a population, examples include viruses, opinions, and information. Accordingly, a significant amount of thought power has been spent creating tools to aid in understanding spreading processes: How do they evolve? When do they thrive? What can we do to control them? Often times these questions are asked with respect to processes in isolation, when agents are free to spread to the maximum extent possible given topological and characteristic constraints. Naturally, we may be interested in considering the dynamics of multiple processes spreading through the same population, examples of which there are no shortage; we frequently characterize nature itself by the interaction and competition present at all scales of life. Recently the number of investigations into interacting processes, particularly in the context of complex networks, has increased. The roles of interaction among processes are varied from mutually beneficial to hostel, but the goals of these investigations has been to understand the role of topology in the ability of multiple processes to co-survive. A consistent feature of all present works -- within the current authors knowledge -- is that conclusions of coexistence are based on marginal descriptions population dynamics. It is the main contribution of this work to explore the hypothesis that purely marginal population descriptions are insufficient indicators of co-survival between interacting processes. Specifically, evaluating coexistence based on non-zero marginal populations is an over-simplistic definition. We randomly generate network topologies via a community based algorithm, the parameters of which allow for trivially controlling possibility of coexistence. Both marginal and conditional probabilities of each process surviving is measured by stochastic simulations. We find that positive marginal probabilities for both processes existing long term does not necessarily imply coexistence, and that marginal and conditional measurements only agree when layers are strongly anti-correlated (sufficiently distinct). In addition to the present thesis, this work is being prepared for a journal article publication. The second portion of this thesis presents numerical simulations for the Adaptive Contact - Susceptible Alert Infected Susceptible model. The dynamics of interaction between an awareness process and an infectious process are computed over a multilayer network. The rate at which nodes "switch" their immediate neighbors (contacts) when exposed to the infection is varied and numerical solutions to the epidemic threshold are computed according to mean-field approximation. We find two unexpected cases where certain parameter configurations allow the epidemic threshold to either increase above or decrease below the theoretical limits of the layers when considered individually. These computations were performed as part of a separate journal article that has been accepted for publication.
APA, Harvard, Vancouver, ISO, and other styles
8

Grasselli, Nora Ilona. "MBA learning group dynamics : Structures and processes." Jouy-en Josas, HEC, 2008. http://www.theses.fr/2008EHEC0010.

Full text
Abstract:
Cette thèse vise à explorer la dynamique de petits groupes d’apprentissage autogérés et non-hiérarchiques au sein d’un programme MBA. A travers un processus inspiré de la recherche-action et de la psychosociologie, cette recherche se focalise d’abord sur deux hypothèses de travail : l’impact de la iversité et la fonction des espaces sociaux dans ces groupes. Cependant, cette recherche a permis de mettre en évidence que la question centrale dans ces groupes d’apprentissage serait leur design : la division du travail appropriée, la gestion du temps, et l’allocation des rôles. Les analyses complémentaires concernant la division du travail et la gestion du temps montrent que ces éléments du design peuvent aussi fonctionner comme stratégies protectrices contre les difficultés possibles que ces groupes d’apprentissage rencontrent pendant leur fonctionnement. Ainsi, cette recherche met en avant l’importance d’un design adaptatif et ses liens aves les processus internes dans les petits groupes. Cette thèse met aussi en évidence l’importance de la démarche de recherche-action, du moins de son esprit, qui permet de découvrir des phénomènes subtils et imprévus et de répondre aux critiques formulées à l’encontre des MBA, stigmatisant la normalisation des apprentissages et des comportements
This study explores the dynamics of small, non-hierarchical, self-managing learning groups in an MBA program. In the spirit of action research and psychosociology two initial working hypotheses, the impact of diversity on the groups and the use of social spaces, are examined. Nonetheless, it turns out that the central issue in the learning groups seems to be the groups’ design, e. G. The adequate division of labor, the management of time, and the allocation of roles. Further analyses on labor division and group time management show that these design features may also function as protective strategies against the possible difficulties the learning groups risk to encounter. Herewith this research puts forward the importance of adaptive group designs and their links with the internal processes in small groups. This study also emphasizes the value of action research for discovering subtle, unpredictable phenomena and for providing a possible response to the critiques addressed to the standardized learning and behaviors on MBA programs
APA, Harvard, Vancouver, ISO, and other styles
9

Redd, Preston T. "Market Dynamics with Non-Homogeneous Poisson Processes." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3630.

Full text
Abstract:
The Bertrand Duopoly model for demand in economics is a well-used model. Although this model has important insights towards pricing strategy, it does not accurately depict true market behaviors. In this paper, we will examine the advantages and disadvantages of the current model and its assumptions.We then take a whole new approach towards modeling this phenomena, using Poisson processes to model the demand of goods. We will discuss why this is a better approach and explain how we can extend this to better understand pricing strategies and market dynamics. We then apply our findings to the newsvendor problem, a commonly used problem in inventory management. Using non-homogeneous Poisson processes we explain how to find an optimal pricing strategy and an optimal inventory level for the newsvendor problem.In this paper we explain how to extend the newsvendor problem to a newsvendor duopoly problem. Again we show how to find the optimal pricing strategies and inventory levels for multiple goods in a market. Having found the optimal pricing strategy and inventory level, we then examine the market dynamics in more details. We explore monopolistic and duopolistic markets where the goods range from complements to substitutes and homogeneous to differentiated goods. We discuss how to model the progression of the inventory probabilities and then explain how to price inventory options.
APA, Harvard, Vancouver, ISO, and other styles
10

Eakin, H. J. W. "Ultrafast relaxation processes in semiconductors." Thesis, University of Oxford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382634.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Processes and Dynamics"

1

1950-, Schimansky-Geier Lutz, Pöschel Thorsten 1963-, and Ebeling Werner 1936-, eds. Stochastic dynamics. Berlin: Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Albert, Isaac O., and Is-haq Oloyede. Dynamics of peace processes. Ilorin, Nigeria: Centre for Peace and Strategic Studies, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Process dynamics: Modeling, analysis, and simulation. Upper Saddle River, N.J: Prentice Hall PTR, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

R, Calvet, and Prost R. 1938-, eds. Soil pollution: Processes and dynamics. Berlin: Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Briggs, J. S., H. Kleinpoppen, and H. O. Lutz, eds. Fundamental Processes of Atomic Dynamics. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5544-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

S, Briggs J., Kleinpoppen H, Lutz H. O, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Fundamental processes of atomic dynamics. New York: Plenum Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Briggs, J. S. Fundamental Processes of Atomic Dynamics. Boston, MA: Springer US, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Burrows, C. J. Processes of vegetation change. London: Unwin Hyman, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

C.J. van der Veen. Fundamentals of glacier dynamics. Rotterdam: Balkema, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1939-, Moon F. C., ed. Dynamics and chaos in manufacturing processes. New York: Wiley, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Processes and Dynamics"

1

Critchley, Sarah. "Processes." In Dynamics 365 Essentials, 435–505. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5911-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Critchley, Sarah. "Processes." In Dynamics 365 CE Essentials, 347–423. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3973-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pilipchuk, Valery N. "Smooth Oscillating Processes." In Nonlinear Dynamics, 37–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12799-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parry, Sharon. "Induction Processes." In Higher Education Dynamics, 39–52. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/1-4020-5312-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pilipchuk, Valery N. "Essentially Non-periodic Processes." In Nonlinear Dynamics, 295–303. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12799-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yapa, Sanjaya. "Automating Business Processes." In Customizing Dynamics 365, 109–34. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4379-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bajar, Sumedha. "Processes of transformation." In Dynamics of Difference, 23–42. London: Routledge India, 2021. http://dx.doi.org/10.4324/9781003047063-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pani, Narendar. "Processes of inequality." In Dynamics of Difference, 3–22. London: Routledge India, 2021. http://dx.doi.org/10.4324/9781003047063-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Valiela, Ivan. "Population Dynamics in Consumers." In Marine Ecological Processes, 117–41. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-0-387-79070-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lever, M. John. "Mass Transport Processes in Atherosclerosis." In Vascular Dynamics, 219–27. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-7856-3_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Processes and Dynamics"

1

Malysheva, Nadezhda N., and Aleksandr A. Pavlov. "Determination of probabilistic descriptions and stochastic processes of changes loads." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Malysheva, Nadezhda N., and Aleksandr A. Pavlov. "Determination of probabilistic descriptions and stochastic processes of changes loads." In 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kozlov, A. G., and E. A. Fadina. "Analysis of electrophysical processes in system of interdigitated microelectrodes used in microchannels." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kaygorodtseva, N. V., and M. N. Odinets. "From Idea to 3D-model. The continuous design automation of petrochemical processes equipment." In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lyubchenko, Alexander, Joaquin A. Pacheco, Vasilii A. Maystrenko, Evgeny Y. Kopytov, Sergey S. Lutchenko, and Igor V. Bogachkov. "Quantitative analysis of diagnosis errors in the models of electronics preventive maintenance processes." In 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kovalev, V. Z., V. O. Bessonov, Ye M. Kuznetsov, and V. V. Anikin. "Electromagnetic Processes in the Energy-Efficient Phase Switch of an Electrical Submersible Motor." In 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2018. http://dx.doi.org/10.1109/dynamics.2018.8601450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Seo, Jeong-Ah. "Dehydration Processes of Sugar Glasses and Crystals." In FLOW DYNAMICS: The Second International Conference on Flow Dynamics. AIP, 2006. http://dx.doi.org/10.1063/1.2204475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Naumenko, A. P., I. S. Kudryavtseva, and A. I. Odinets. "Evaluation of Peak Values of the Oscillation Processes Parameters." In 2018 Dynamics of Systems, Mechanisms and Machines. IEEE, 2018. http://dx.doi.org/10.1109/dynamics.2018.8601451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Polyakov, Sergey. "DYNAMICS OF THE TEMPERATURE SENSOR OF THE «SMART HOME» HEATING SYSTEM." In Modern aspects of modeling systems and processes. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mamsp_105-111.

Full text
Abstract:
The article deals with the issues of modeling the control of room heating. The dynamics of the object-the heating system of a residential building-is obtained. The equation of the dynamics of the temperature sensor is derived. Dynamic errors are determined by the dynamic characteristics of the temperature sensor. The dynamic error is determined for a stepwise change in the input signal.
APA, Harvard, Vancouver, ISO, and other styles
10

Girshin, S. S., V. N. Gorjunov, A. Ya Bigun, E. V. Petrova, and E. A. Kuznetsov. "Overhead power line heating dynamic processes calculation based on the heat transfer quadratic model." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819013.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Processes and Dynamics"

1

Starace, A. F. Dynamics of collision processes. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6688172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leone, Stephen R., and Veronica M. Bierbaum. State Resolved Dynamics of Ion-Molecule Processes. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada338924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Family, Fereydoon. Structure and Dynamics of Correlated Cluster Growth Processes. Fort Belvoir, VA: Defense Technical Information Center, September 1990. http://dx.doi.org/10.21236/ada246581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thompson, Donald L. Theoretical Studies of the Chemical Dynamics of Unimolecular Processes. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada198795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Paulen, R. C. A revised look at Canada's landscape: glacial processes and dynamics. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/300286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sternberg, Saul. The Dynamics of Visual Representation, Attention, Encoding, and Retrieval Processes. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada243031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meulé, S., P. R. Hill, and C. Pinazo. Wave dynamics over Roberts Bank, British Columbia: processes and modelling. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2007. http://dx.doi.org/10.4095/224297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Paulen, R. C. A revised look at Canada's landscape: glacial processes and dynamics. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2013. http://dx.doi.org/10.4095/292682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Miller, Terry. Spectroscopic detection, characterization and dynamics of free radicals relevant to combustion processes. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1183575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Vigor. Liquid-Propellant Rocket Engine Injector Dynamics and Combustion Processes at Supercritical Conditions. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada428947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography