Academic literature on the topic 'Processes and Dynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Processes and Dynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Processes and Dynamics"
Dew, Ryan, Asim Ansari, and Yang Li. "Modeling Dynamic Heterogeneity Using Gaussian Processes." Journal of Marketing Research 57, no. 1 (October 14, 2019): 55–77. http://dx.doi.org/10.1177/0022243719874047.
Full textMartínez-Grau, Héctor, Reto Jagher, F. Xavier Oms, Joan Anton Barceló, Salvador Pardo-Gordó, and Ferran Antolín. "Global Processes, Regional Dynamics?" Documenta Praehistorica 47 (December 1, 2020): 170–91. http://dx.doi.org/10.4312/dp.47.10.
Full textFernández, J., A. Plastino, L. Diambra, and C. Mostaccio. "Dynamics of coevolutive processes." Physical Review E 57, no. 5 (May 1, 1998): 5897–903. http://dx.doi.org/10.1103/physreve.57.5897.
Full textBehringer, Hans, Ralf Eichhorn, and Stefan Wallin. "Dynamics of biomolecular processes." Physica Scripta 87, no. 5 (April 11, 2013): 058501. http://dx.doi.org/10.1088/0031-8949/87/05/058501.
Full textWeissman, Haim, and Shlomo Havlin. "Dynamics in multiplicative processes." Physical Review B 37, no. 10 (April 1, 1988): 5994–96. http://dx.doi.org/10.1103/physrevb.37.5994.
Full textJung, W., K. Lee, and C. A. Morales. "Dynamics of G-processes." Stochastics and Dynamics 20, no. 01 (January 28, 2020): 2050037. http://dx.doi.org/10.1142/s0219493720500379.
Full textKrapivsky, P. L. "Dynamics of repulsion processes." Journal of Statistical Mechanics: Theory and Experiment 2013, no. 06 (June 20, 2013): P06012. http://dx.doi.org/10.1088/1742-5468/2013/06/p06012.
Full textNěmcová, Ingeborg. "Dynamics of socio-economic processes." Acta Informatica Pragensia 2, no. 2 (December 31, 2013): 122–24. http://dx.doi.org/10.18267/j.aip.29.
Full textAPOLLONI, ANDREA, and FLORIANA GARGIULO. "DIFFUSION PROCESSES THROUGH SOCIAL GROUPS' DYNAMICS." Advances in Complex Systems 14, no. 02 (April 2011): 151–67. http://dx.doi.org/10.1142/s0219525911003037.
Full textVINCENT, THOMAS L. "THE G-FUNCTION METHOD FOR ANALYZING DARWINIAN DYNAMICS." International Game Theory Review 06, no. 01 (March 2004): 69–90. http://dx.doi.org/10.1142/s0219198904000083.
Full textDissertations / Theses on the topic "Processes and Dynamics"
Palau, Ortin David. "Dynamics of cellular decision making processes." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/396084.
Full textCada célula, ya se como organismo unicelular o formando parte de un organismo multicelular, tiene que desarrollar distintas funciones a lo largo de su vida. Algunos ejemplos de estas funciones son tales como la síntesis de encimas, dividirse o diferenciarse en otro tipo celular. La activación y desactivación de muchas de estas funciones está sujeta a la integración de la información que la célula percibe de su entorno. A menudo, las células exhiben respuestas distintas bajo un mismo estímulo o bajo unas mismas condiciones del entorno. Estos procesos probabilísticos son conocidos como "toma de decisiones celulares". Estos eventos celulares se puede desarrollar de forma autónoma por cada célula, o de forma colectiva por toda una población o tejido. En este segundo caso, se requiere de algún mecanismo que medie en la comunicación entre células. Esta capacidad de estos sistemas de producir una variedad de respuestas es otorgada por la multiestabilidad y estocasticidad de sus dinámicas. Estas características motivan el estudio de estos procesos desde la perspectiva de la Dinámica de Sistemas, identificando los estados celulares a los atractores del sistema. Esta Tesis se centra en el estudio de los mecanismos dinámicos genéricos que controlan la toma de decisiones celulares. Se ha caracterizado la conexión entre las propiedades de una decisión y el mecanismo subyacente que la genera. Dos tipos decisiones autónomas han sido analizadas de acuerdo a esta perspectiva. También se ha estudiado los mecanismos dinámicos que llevan a la selección de un patrón espacial concreto en un escenario de decisión no autónoma, en el que las células interactúan entre sí a primeros vecinos mediante una inhibición lateral. Estas decisiones han revelado como la simetría especial de la señal inductora de las mismas afecta a la solución final alcanzada por el tejido. Finalmente, se ha analizado el papel que la probabilidad de una decisión concreta y bien conocida puede desarrollar en la viabilidad del organismo implicado. El sistema de estudio escogido ha sido un proceso de diferenciación que lleva a cabo el parásito responsable de causar la malaria en humanos.
Herbert, Julian Richard. "Stochastic processes for parasite dynamics." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368164.
Full textStyles, M. J. "Predictive engineering processes for motorcycle dynamics." Thesis, Cranfield University, 2004. http://dspace.lib.cranfield.ac.uk/handle/1826/10715.
Full textRué, Queralt Pau. "Transient and stochastic dynamics in cellular processes." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/128333.
Full textEn aquesta Tesi s’estudien diferents processos intracel·lulars i de poblacions cel·lulars regits per dinàmica estocàstica i no lineal. El problemes biològics tractats graviten al voltant el concepte de dinàmica transitòria i de relaxació d’un estat dinàmic pertorbat a l’estat estacionari. En aquest sentit, en tots els processos estudiats, les fluctuacions estocàstiques, presents intrínsecament o aplicades de forma externa, hi tenen un paper constructiu, ja sigui empenyent els sistemes fora de l’equilibri, interferint amb les lleis deterministes subjacents, o establint els nivells d’heterogeneïtat necessaris. La primera part de la Tesi es dedica a l’estudi de processos cel·lulars transitoris regulats genèticament. En ella analitzem des d’un punt de vista teòric tres circuits genètics de control de polsos excitables i, contràriament al que s’havia especulat anteriorment, establim que tots ells poden treballar en dos tipus de règim excitable. Analitzem també com, en presència de soroll molecular, aquests circuits excitables poden generar polsos periòdics i multimodals degut a la combinació de dos fenòmens induïts per soroll: l’estabilització estocàstica d’estats inestables i la ressonància de coherència. D’altra banda, estudiem com un mecanisme genètic excitable pot ser el responsable de regular a nivell transcripcional les fluctuacions que s’observen experimentalment en alguns factors de pluripotència en cèl·lules mare embrionàries. En l’embrió, la pluripotència és un estat cel·lular transitori i la sortida de les cèl·lules d’aquest sembla que està associada a fluctuacions transcripcionals. En relació al control de la pluripotència, presentem també un nou mecanisme basat en la regulació post-traduccional d’un petit conjunt de 4 factors de pluripotència. El model teòric proposat, basat en la formació de complexos entre els diferents factors de pluripotència, l’hem validat mitjançant experiments quantitatius en cèl·lules individuals. El model postula que l’estat de pluripotència no depèn dels nivells cel·lulars d’un únic factor, sinó d’un equilibri de correlacions entre diverses proteïnes. A més, prediu el fenotip de cèl·lules mutants i suggereix que la funció reguladora de les interaccions entre les quatre proteïnes és la d’esmorteir l’activitat transcripcional d’Oct4, un dels principals factors de pluripotència. En el segon apartat de la Tesi estudiem el comportament d’una xarxa computacional de senyalització cel·lular de fibroblast humà en presència de senyals externs fluctuants i cíclics. Els resultats obtinguts mostren que la xarxa respon de forma no trivial a les fluctuacions ambientals, fins i tot en presència d’una senyal externa. Diferents nivells de soroll permeten modular la resposta de la xarxa, mitjançant la selecció de rutes alternatives de transmissió de la informació. Finalment, estudiem la dinàmica de poblacions cel·lulars durant la formació de biofilms, pel·lícules arrugades d’aglomerats de bacteris que conformen un dels exemples més simples d’estructures multicel·lulars autoorganitzades. En aquesta Tesi presentem un model espai-temporal de creixement i mort cel·lular motivat per l’evidència experimental sobre l’aparició de patrons de mort massiva de bacteris previs a la formació de les arrugues dels biofilms. Aquests patrons localitzats concentren les forces mecàniques durant l’expansió del biofilm i inicien la formació de les arrugues característiques. En aquest sentit, el model proposat explica com es formen els patrons de mort a partir dels canvis de mobilitat dels bacteris deguts a la producció de matriu extracel·lular combinats amb un creixement espacialment heterogeni. Una important predicció del model és que la producció de matriu és un procés clau per a l’aparició dels patrons i, per tant de les arrugues. En aquest aspecte, els nostres resultats experimentals en bacteris mutants que no produeixen components essencials de la matriu, confirmen les prediccions.
Santos, Jaime Eduardo Moutinho. "Non-equilibrium dynamics of reaction-diffusion processes." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361994.
Full textDebacher, Nito Angelo. "Studies on the dynamics of wetting processes." Thesis, University of Bristol, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240354.
Full textMelander, Joshua. "On the dynamics of interacting spreading processes." Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/34559.
Full textDepartment of Electrical and Computer Engineering
Faryad Darabi Sahneh
A significant number of processes we observe in nature can be described as a spreading process; any agent which is compelled to survive by replicating through a population, examples include viruses, opinions, and information. Accordingly, a significant amount of thought power has been spent creating tools to aid in understanding spreading processes: How do they evolve? When do they thrive? What can we do to control them? Often times these questions are asked with respect to processes in isolation, when agents are free to spread to the maximum extent possible given topological and characteristic constraints. Naturally, we may be interested in considering the dynamics of multiple processes spreading through the same population, examples of which there are no shortage; we frequently characterize nature itself by the interaction and competition present at all scales of life. Recently the number of investigations into interacting processes, particularly in the context of complex networks, has increased. The roles of interaction among processes are varied from mutually beneficial to hostel, but the goals of these investigations has been to understand the role of topology in the ability of multiple processes to co-survive. A consistent feature of all present works -- within the current authors knowledge -- is that conclusions of coexistence are based on marginal descriptions population dynamics. It is the main contribution of this work to explore the hypothesis that purely marginal population descriptions are insufficient indicators of co-survival between interacting processes. Specifically, evaluating coexistence based on non-zero marginal populations is an over-simplistic definition. We randomly generate network topologies via a community based algorithm, the parameters of which allow for trivially controlling possibility of coexistence. Both marginal and conditional probabilities of each process surviving is measured by stochastic simulations. We find that positive marginal probabilities for both processes existing long term does not necessarily imply coexistence, and that marginal and conditional measurements only agree when layers are strongly anti-correlated (sufficiently distinct). In addition to the present thesis, this work is being prepared for a journal article publication. The second portion of this thesis presents numerical simulations for the Adaptive Contact - Susceptible Alert Infected Susceptible model. The dynamics of interaction between an awareness process and an infectious process are computed over a multilayer network. The rate at which nodes "switch" their immediate neighbors (contacts) when exposed to the infection is varied and numerical solutions to the epidemic threshold are computed according to mean-field approximation. We find two unexpected cases where certain parameter configurations allow the epidemic threshold to either increase above or decrease below the theoretical limits of the layers when considered individually. These computations were performed as part of a separate journal article that has been accepted for publication.
Grasselli, Nora Ilona. "MBA learning group dynamics : Structures and processes." Jouy-en Josas, HEC, 2008. http://www.theses.fr/2008EHEC0010.
Full textThis study explores the dynamics of small, non-hierarchical, self-managing learning groups in an MBA program. In the spirit of action research and psychosociology two initial working hypotheses, the impact of diversity on the groups and the use of social spaces, are examined. Nonetheless, it turns out that the central issue in the learning groups seems to be the groups’ design, e. G. The adequate division of labor, the management of time, and the allocation of roles. Further analyses on labor division and group time management show that these design features may also function as protective strategies against the possible difficulties the learning groups risk to encounter. Herewith this research puts forward the importance of adaptive group designs and their links with the internal processes in small groups. This study also emphasizes the value of action research for discovering subtle, unpredictable phenomena and for providing a possible response to the critiques addressed to the standardized learning and behaviors on MBA programs
Redd, Preston T. "Market Dynamics with Non-Homogeneous Poisson Processes." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3630.
Full textEakin, H. J. W. "Ultrafast relaxation processes in semiconductors." Thesis, University of Oxford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382634.
Full textBooks on the topic "Processes and Dynamics"
1950-, Schimansky-Geier Lutz, Pöschel Thorsten 1963-, and Ebeling Werner 1936-, eds. Stochastic dynamics. Berlin: Springer, 1997.
Find full textAlbert, Isaac O., and Is-haq Oloyede. Dynamics of peace processes. Ilorin, Nigeria: Centre for Peace and Strategic Studies, 2010.
Find full textProcess dynamics: Modeling, analysis, and simulation. Upper Saddle River, N.J: Prentice Hall PTR, 1998.
Find full textR, Calvet, and Prost R. 1938-, eds. Soil pollution: Processes and dynamics. Berlin: Springer, 1996.
Find full textBriggs, J. S., H. Kleinpoppen, and H. O. Lutz, eds. Fundamental Processes of Atomic Dynamics. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5544-1.
Full textS, Briggs J., Kleinpoppen H, Lutz H. O, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Fundamental processes of atomic dynamics. New York: Plenum Press, 1988.
Find full textBriggs, J. S. Fundamental Processes of Atomic Dynamics. Boston, MA: Springer US, 1988.
Find full textBurrows, C. J. Processes of vegetation change. London: Unwin Hyman, 1990.
Find full textC.J. van der Veen. Fundamentals of glacier dynamics. Rotterdam: Balkema, 1999.
Find full text1939-, Moon F. C., ed. Dynamics and chaos in manufacturing processes. New York: Wiley, 1997.
Find full textBook chapters on the topic "Processes and Dynamics"
Critchley, Sarah. "Processes." In Dynamics 365 Essentials, 435–505. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5911-5_12.
Full textCritchley, Sarah. "Processes." In Dynamics 365 CE Essentials, 347–423. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3973-5_8.
Full textPilipchuk, Valery N. "Smooth Oscillating Processes." In Nonlinear Dynamics, 37–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12799-1_2.
Full textParry, Sharon. "Induction Processes." In Higher Education Dynamics, 39–52. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/1-4020-5312-6_4.
Full textPilipchuk, Valery N. "Essentially Non-periodic Processes." In Nonlinear Dynamics, 295–303. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12799-1_13.
Full textYapa, Sanjaya. "Automating Business Processes." In Customizing Dynamics 365, 109–34. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4379-4_4.
Full textBajar, Sumedha. "Processes of transformation." In Dynamics of Difference, 23–42. London: Routledge India, 2021. http://dx.doi.org/10.4324/9781003047063-3.
Full textPani, Narendar. "Processes of inequality." In Dynamics of Difference, 3–22. London: Routledge India, 2021. http://dx.doi.org/10.4324/9781003047063-2.
Full textValiela, Ivan. "Population Dynamics in Consumers." In Marine Ecological Processes, 117–41. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-0-387-79070-1_4.
Full textLever, M. John. "Mass Transport Processes in Atherosclerosis." In Vascular Dynamics, 219–27. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-7856-3_17.
Full textConference papers on the topic "Processes and Dynamics"
Malysheva, Nadezhda N., and Aleksandr A. Pavlov. "Determination of probabilistic descriptions and stochastic processes of changes loads." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819045.
Full textMalysheva, Nadezhda N., and Aleksandr A. Pavlov. "Determination of probabilistic descriptions and stochastic processes of changes loads." In 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239485.
Full textKozlov, A. G., and E. A. Fadina. "Analysis of electrophysical processes in system of interdigitated microelectrodes used in microchannels." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819032.
Full textKaygorodtseva, N. V., and M. N. Odinets. "From Idea to 3D-model. The continuous design automation of petrochemical processes equipment." In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005657.
Full textLyubchenko, Alexander, Joaquin A. Pacheco, Vasilii A. Maystrenko, Evgeny Y. Kopytov, Sergey S. Lutchenko, and Igor V. Bogachkov. "Quantitative analysis of diagnosis errors in the models of electronics preventive maintenance processes." In 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239483.
Full textKovalev, V. Z., V. O. Bessonov, Ye M. Kuznetsov, and V. V. Anikin. "Electromagnetic Processes in the Energy-Efficient Phase Switch of an Electrical Submersible Motor." In 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2018. http://dx.doi.org/10.1109/dynamics.2018.8601450.
Full textSeo, Jeong-Ah. "Dehydration Processes of Sugar Glasses and Crystals." In FLOW DYNAMICS: The Second International Conference on Flow Dynamics. AIP, 2006. http://dx.doi.org/10.1063/1.2204475.
Full textNaumenko, A. P., I. S. Kudryavtseva, and A. I. Odinets. "Evaluation of Peak Values of the Oscillation Processes Parameters." In 2018 Dynamics of Systems, Mechanisms and Machines. IEEE, 2018. http://dx.doi.org/10.1109/dynamics.2018.8601451.
Full textPolyakov, Sergey. "DYNAMICS OF THE TEMPERATURE SENSOR OF THE «SMART HOME» HEATING SYSTEM." In Modern aspects of modeling systems and processes. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mamsp_105-111.
Full textGirshin, S. S., V. N. Gorjunov, A. Ya Bigun, E. V. Petrova, and E. A. Kuznetsov. "Overhead power line heating dynamic processes calculation based on the heat transfer quadratic model." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819013.
Full textReports on the topic "Processes and Dynamics"
Starace, A. F. Dynamics of collision processes. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6688172.
Full textLeone, Stephen R., and Veronica M. Bierbaum. State Resolved Dynamics of Ion-Molecule Processes. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada338924.
Full textFamily, Fereydoon. Structure and Dynamics of Correlated Cluster Growth Processes. Fort Belvoir, VA: Defense Technical Information Center, September 1990. http://dx.doi.org/10.21236/ada246581.
Full textThompson, Donald L. Theoretical Studies of the Chemical Dynamics of Unimolecular Processes. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada198795.
Full textPaulen, R. C. A revised look at Canada's landscape: glacial processes and dynamics. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/300286.
Full textSternberg, Saul. The Dynamics of Visual Representation, Attention, Encoding, and Retrieval Processes. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada243031.
Full textMeulé, S., P. R. Hill, and C. Pinazo. Wave dynamics over Roberts Bank, British Columbia: processes and modelling. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2007. http://dx.doi.org/10.4095/224297.
Full textPaulen, R. C. A revised look at Canada's landscape: glacial processes and dynamics. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2013. http://dx.doi.org/10.4095/292682.
Full textMiller, Terry. Spectroscopic detection, characterization and dynamics of free radicals relevant to combustion processes. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1183575.
Full textYang, Vigor. Liquid-Propellant Rocket Engine Injector Dynamics and Combustion Processes at Supercritical Conditions. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada428947.
Full text