Academic literature on the topic 'Process control Dynamics Mathematical models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Process control Dynamics Mathematical models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Process control Dynamics Mathematical models"
Al Salaimeh, Safwan. "MATHEMATICAL MODELS FOR COMPUTERIZED CONTROL SYSTEM." Gulustan-Black Sea Scientific Journal of Academic Research 48, no. 05 (July 5, 2019): 119–23. http://dx.doi.org/10.36962/gbssjar119.
Full textZAVADSKY, SERGEY V., DMITRI A. OVSYANNIKOV, and SHENG-LUEN CHUNG. "PARAMETRIC OPTIMIZATION METHODS FOR THE TOKAMAK PLASMA CONTROL PROBLEM." International Journal of Modern Physics A 24, no. 05 (February 20, 2009): 1040–47. http://dx.doi.org/10.1142/s0217751x09044486.
Full textBarrios Sánchez, Jorge Manuel, Roberto Baeza Serrato, and Marco Bianchetti. "Design and Development of a Mathematical Model for an Industrial Process, in a System Dynamics Environment." Applied Sciences 12, no. 19 (September 30, 2022): 9855. http://dx.doi.org/10.3390/app12199855.
Full textVukobratović, M. K., V. F. Filaretov, and A. I. Korzun. "A unified approach to mathematical modelling of robotic manipulator dynamics." Robotica 12, no. 5 (September 1994): 411–20. http://dx.doi.org/10.1017/s0263574700017963.
Full textJia, Xiao Yi, Yu Tian Lin, Hui Bin Lin, Ling Gao, Jian Qun Lin, and Jian Qiang Lin. "Mathematical Modeling of CSTR Bioreactor Control for Production of Recombinant Protein." Advanced Materials Research 894 (February 2014): 311–15. http://dx.doi.org/10.4028/www.scientific.net/amr.894.311.
Full textKochuk, Serhii, Dinh Dong Nguyen, Artem Nikitin, and Rafael Trujillo Torres. "Identification of UAV model parameters from flight and computer experiment data." Aerospace technic and technology, no. 6 (November 29, 2021): 12–22. http://dx.doi.org/10.32620/aktt.2021.6.02.
Full textAlzbutas, R., and V. Janilionis. "THE SIMULATION OF DYNAMIC SYSTEMS USING COMBINED MODELLING." Mathematical Modelling and Analysis 5, no. 1 (December 15, 2000): 7–17. http://dx.doi.org/10.3846/13926292.2000.9637123.
Full textKorniyenko, Bogdan, and Andrii Nesteruk. "Mathematical modelling of granulation process in fluidised bed (overview of models)." Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving, no. 2 (June 30, 2022): 51–59. http://dx.doi.org/10.20535/2617-9741.2.2022.260349.
Full textRitonja, Jožef, Andreja Goršek, Darja Pečar, Tatjana Petek, and Boštjan Polajžer. "Dynamic Modeling of the Impact of Temperature Changes on CO2 Production during Milk Fermentation in Batch Bioreactors." Foods 10, no. 8 (August 5, 2021): 1809. http://dx.doi.org/10.3390/foods10081809.
Full textZamula, Alina, and Sergii Kavun. "Complex systems modeling with intelligent control elements." International Journal of Modeling, Simulation, and Scientific Computing 08, no. 01 (January 10, 2017): 1750009. http://dx.doi.org/10.1142/s179396231750009x.
Full textDissertations / Theses on the topic "Process control Dynamics Mathematical models"
Beh, Christopher Chun Keong. "Vacuum swing adsorption process for oxygen enrichment : a study into the dynamics, modelling and control." Monash University, Dept. of Chemical Engineering, 2003. http://arrow.monash.edu.au/hdl/1959.1/9533.
Full textCuadros, Bohórquez José Fernando. "Estratégia alternativa de otimização em duas camadas de uma unidade de craqueamento catalítico-FCC : implementação de algoritmos genéticos e metodologia híbrida de otimização." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266651.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química
Made available in DSpace on 2018-08-21T11:54:20Z (GMT). No. of bitstreams: 1 CuadrosBohorquez_JoseFernando_D.pdf: 6686167 bytes, checksum: 1899259fbe648f651c06a5f9ca3e2c29 (MD5) Previous issue date: 2012
Resumo: Esta pesquisa teve por finalidade o desenvolvimento de uma metodologia de otimização em duas camadas. A otimização preliminar foi baseada na técnica de planejamento de experimentos junto com a metodologia por superfície de resposta com a finalidade de identificar uma possível região de busca do ponto de operação ótimo, o qual foi obtido através da implementação de métodos híbridos de otimização desenvolvidos mediante associação do modelo determinístico de otimização por programação quadrática sucessiva (SQP) com a técnica dos algoritmos genéticos (GA) no modelo do processo de craqueamento catalítico fluidizado- FCC. Este processo é caracterizado por ser um sistema heterogêneo e não isotérmico, cuja modelagem detalhada engloba as equações de balanço de massa e energia das partículas do catalisador, como também para a fase líquida e gasosa, sendo um dos casos de estudo para a aplicação da metodologia de otimização desenvolvida. Como caso de estudo principal foi considerado o modelo do conversor do processo de FCC desenvolvido por Moro e Odloak (1995). Mediante a metodologia de otimização do processo baseado no uso do modelo determinístico da planta, foram definidas estratégias e políticas operacionais para a operação da unidade de FCC em estudo. Procurou-se alto nível de desempenho e segurança operacional, através da integração das etapas de operação, otimização e controle no contexto de otimização em tempo real do processo. As otimizações foram divididas em quatro etapas: 1) Análises preliminares dos fatores e das variáveis de resposta do modelo do conversor foram realizadas usando a técnica de planejamento de experimentos, com o objetivo de compreender a interação entre elas, assim como obter modelos simplificados das variáveis de resposta. A geração dos modelos simplificados é devido à necessidade de ganho no tempo computacional permitindo o conhecimento prévio da região de otimização já que em casos industriais pode não ser possível representar adequadamente o processo por modelos determinísticos; 2) Otimização usando algoritmos genéticos implementados no modelo simplificado da conversão, e no modelo determinístico com e sem restrições; 3) Otimização considerando o método de otimização SQP implementado no modelo simplificado da conversão e no modelo determinístico com restrições; e 4) otimização multi-objetivo do conversor usando x a técnica dos algoritmos genéticos, com o objetivo de maximizar a conversão, assim como a minimização da vazão dos gases de combustão, especificamente o monóxido de carbono (CO). Das otimizações foram obtidos ganhos em torno de 8% na conversão quando comparado com os valores de conversão sem otimização. Finalmente, foi realizada a integração do modelo do processo, com a otimização e o controle, dando como resultado a otimização em tempo real do conversor de FCC. A variável de otimização foi a conversão e, através da implementação do controle por matriz dinâmica com restrições (QDMC), aplicando a metodologia de controle inferencial. As variáveis escolhidas como variável controlada foi a temperatura de reação e como variável manipulada foi a temperatura da alimentação, com perturbações na vazão de alimentação do ar de regeneração. Valores de conversão da ordem de 88% foram atingidos para o esquema de otimização em tempo real, o método de otimização por algoritmo genético apresentou um desempenho satisfatório, com tempos e cargas computacionais razoáveis para implementação desta metodologia, em nível industrial
Abstract: The purpose of this research was the develop of an optimization methodology. Experimental design technique along with a hybrid optimization methodology obtained by association of sequential quadratic programming (SQP) with genetic algorithms (GA), were implemented in the model of a Fluid Catalytic Cracking process (FCC) developed by Moro and Odloak (1995). This process is described for a heterogeneous, non isothermal system, in which a detailed modeling comprises mass and energy balance equations for catalyst particles, liquid and gaseous phases that makes this process model, a case study for implementing the optimization methodology developed. The process optimization methodology developed; along with the deterministic model of the plant were applied to define operational strategies and policies for the operation of the FCC unit studied aiming to obtain high performance and operational safety, through the integration of control, operation and optimization stages in the context of real-time optimization (RTO) process. Optimizations were divided into four stages: 1) Preliminary analysis of factors and response variables of converter modeling were performed using experimental design technique aiming to understand the factors and response variables interaction, as well as to obtain response variables simplified models to be used as objective function in optimization stages, 2) a optimization using genetic algorithms was implemented in the simplified conversion model, in the deterministic modeling and the deterministic model considering factors restrictions, 3) a optimization considering a local search methodology like sequential quadratic programming (SPQ) was implemented in the simplified model of process conversion and also it was consided the deterministic model with restrictions. As initial estimative, the optimum factor values obtained with genetic algorithms were considered as well as two random points in the search space, and 4) a multi objective optimization considering genetic algorithms technique in order to maximize conversion and minimize combustion gases emissions, specifically carbon monoxide was developed. Applying this optimization methodology was obtained increments of around 8% in the feed conversion when compared with conversion values without optimization. xii Finally, it was developed the integration of optimization, control and process modeling giving as result the real time optimization (RTO) of FCC converter. The variable maximized by genetic algorithms was the feed conversion and the control technique implemented was based on the matrix named (QDMC) in conjunction with inferential control methodology. It was considered as controlled variable the reaction temperature adjusting the feed temperature (manipulated variable), for disturbances in the feed flow of the regeneration air. Feed conversion in the order of 88% were achieved for the real time optimization scheme considered, in which, the genetic algorithm showed an excellent performance in reasonable computational times and computational loads for implementation at industrial level
Doutorado
Desenvolvimento de Processos Químicos
Doutor em Engenharia Química
Roberts, Gwendolyn Rose 1963. "A comparison of multiple univariate and multivariate geometric moving average control charts." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276779.
Full textChang, Min-Yung. "Active vibration control of composite structures." Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-09162005-115021/.
Full textSinangil, Mehmet Selcuk. "Modeling and control on an industrial polymerization process." Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/10150.
Full textDu, Plessis Sydney Charles. "Investigation of process parameters and development of a mathematical model for the purposes of control design and implementation for a wastewater treatment process." Thesis, Cape Peninsula University of Technology, 2009. http://hdl.handle.net/20.500.11838/1194.
Full textThe problem for effective and optimal control of wastewater treabnent plants is very important recently because of the increased requirements to the qualitY of the effluent The activated sludge process is a type of wastewater process characterized with complex dynamics and because of this proper control design and implementation strategies are necessary and important for its operation. Since the early seventies, when a major leap forward was made by the widespread introduction of dissolved oxygen control, little progress has been made. The most critical phase in the solution of any control problem is the modelling stage. The primary building block of any modem control exercise is to construct and identify a model for the system to be controlled. The existing full Activated Sludge Model 1 (ASM1) and especially University of Cape Town (UCT) models of the biological processes in the activated sludge process, called in the thesis biological models, are highly complex because they are characterised with a lot of variables that are difficult to be measured on-line, complex dependencies and nonlinear interconnections between the biological variables, many kinetic parameters that are difficult to be determined, . different time scales for the process dynamics. The project considers reduction of the impact of the complexity of the process model over the methods for control design and proposes a solution to the above difficulties by development of a reduced model with small number of variables, but still with the same characteristics as the original full model for the purposes of real time.
Ruiz, Orlando E. "Numerical analysis of the dropwise evaporation process." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/18879.
Full textTai, Hoi-lun Allen, and 戴凱倫. "Quantitative analysis in monitoring and improvement of industrial systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B4394193X.
Full textHecker, Rogelio Lorenzo. "Power feedback control in cylindrical grinding process." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/16619.
Full textThompson, Christopher David. "An analytical and experimental investigation of respiratory dynamics using P/D control and carbon dioxide feedback." Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/43059.
Full textMaster of Science
Books on the topic "Process control Dynamics Mathematical models"
Volgin, L. N. Optimalʹnoe diskretnoe upravlenie dinamicheskimi sistemami. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1986.
Find full textPearson, Ronald K. Discrete-time dynamic models. New York: Oxford University Press, 1999.
Find full textHuang, Jen-Kuang. Indirect identification of linear stochastic systems with known feedback dynamics. [Washington, D.C: National Aeronautics and Space Administration, 1997.
Find full textHuang, Jen-Kuang. Indirect identification of linear stochastic systems with known feedback dynamics. [Washington, D.C: National Aeronautics and Space Administration, 1997.
Find full textProcess control and identification. Boston: Academic Press, 1994.
Find full textKecman, V. State-space models of lumped and distributed systems. Berlin: Springer-Verlag, 1988.
Find full textSystem dynamics and control. Pacific Grove: PWS Publishing Company, 1999.
Find full textDenkena, Berend. Process Machine Interactions: Predicition and Manipulation of Interactions between Manufacturing Processes and Machine Tool Structures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textBeyreuther, Roland. Dynamics of fibre formation and processing: Modelling and application in fibre and textile industry. Berlin: Springer, 2007.
Find full textD, Gunzburger Max, ed. Flow control. New York: Springer-Verlag, 1995.
Find full textBook chapters on the topic "Process control Dynamics Mathematical models"
Pletnev, L. V., N. I. Gamayunov, and V. M. Zamyatin. "Computer Simulation of Evaporation Process into the Vacuum." In Mathematical Models of Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media, 153–56. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4799-0_13.
Full textArinstein, Arkadii E. "Phenomenological Description for Process of Multiple Disintegration* of Solids Under Intensive Stress Action Such as Compression & Shear." In Mathematical Models of Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media, 311–24. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4799-0_26.
Full textRao, Ming, and Haiming Qiu. "Mathematical Models and Transfer Functions." In Process Control Engineering, 15–54. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203741931-2.
Full textAlbi, Giacomo, Emiliano Cristiani, Lorenzo Pareschi, and Daniele Peri. "Mathematical Models and Methods for Crowd Dynamics Control." In Crowd Dynamics, Volume 2, 159–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50450-2_8.
Full textRoy, Priti Kumar. "Insight of Delay Dynamics." In Mathematical Models for Therapeutic Approaches to Control HIV Disease Transmission, 79–117. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-852-6_5.
Full textLedzewicz, Urszula, and Heinz Schättler. "An Optimal Control Approach to Cancer Chemotherapy with Tumor–Immune System Interactions." In Mathematical Models of Tumor-Immune System Dynamics, 157–96. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1793-8_7.
Full textAustin, Daren J. "Mathematical Models in the ICU: Dynamics, Infection Control and Antibiotic Resistance." In Infection Control in the ICU Environment, 245–66. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0781-9_19.
Full textLeonov, G. A., and N. V. Kondrat’eva. "Electromechanical and Mathematical Models of Salient-Pole Synchronous Motors." In Advanced Dynamics and Model-Based Control of Structures and Machines, 143–50. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0797-3_17.
Full textKhamutova, Maria, Alexander Rezchikov, Vadim Kushnikov, Vladimir Ivaschenko, Elena Kushnikova, and Andrey Samartsev. "Mathematical Models and Algorithms for the Management of Liquidation Process of Floods Consequences." In Recent Research in Control Engineering and Decision Making, 540–51. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12072-6_44.
Full textChernavskii, Dmitrii S., Olga D. Chernavskaya, Andrei V. Scherbakov, Boris A. Suslakov, and Nikolai I. Starkov. "The Dynamics of the Economic Society Structure." In Mathematical Models of Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media, 103–20. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4799-0_8.
Full textConference papers on the topic "Process control Dynamics Mathematical models"
Belda, Kvetoslav, and Oliver Rovny. "Predictive control of 5 DOF robot arm of autonomous mobile robotic system motion control employing mathematical model of the robot arm dynamics." In 2017 21st International Conference on Process Control (PC). IEEE, 2017. http://dx.doi.org/10.1109/pc.2017.7976237.
Full textWillkomm, Johannes, Matthias Wahler, and Jürgen Weber. "Process-Adapted Control to Maximize Dynamics of Speed- and Displacement-Variable Pumps." In ASME/BATH 2014 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fpmc2014-7821.
Full textVásquez, Rafael E., Norha L. Posada, Fabio Castrillón, and David Giraldo. "Development of a Laboratory Equipment for Dynamic Systems and Process Control Education." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38924.
Full textYeh, Hung-Ping, Yuan-Che Chien, and Jia-Ying Tu. "Identification of Hysteresis Dynamics Using Duffing-Like and Bouc-Wen Models." In ASME 2016 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/isps2016-9588.
Full textSamuel, Robello, Fedor Baldenko, and Dmitry Baldenko. "Mud Motor PDM Dynamics: A Control Model for Automation." In IADC/SPE International Drilling Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/208789-ms.
Full textCelik, Ismail B., Asaf Varol, Coskun Bayrak, and Jagannath R. Nanduri. "A One Dimensional Mathematical Model for Urodynamics." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37647.
Full textWu, Shuihua, Kazem Kazerounian, Zhongxue Gan, and Yunquan Sun. "A Free Form Robotic Grinding System: A Mathematical Model and an Actual System." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-29038.
Full textSimeunovic´, G., P. Zi´tek, and D. Lj Debeljkovic´. "Differential-Discrete Mathematical Model of the Recuperative Counter-Flow Heat Exchanger." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48256.
Full textKhot, S. M., Nitesh P. Yelve, and Raj Nair. "Simulation Study of Active Vibration Control of Cantilever Beam by Using State and Output Feedback Control Laws." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64041.
Full textHammell, Joshua J., Christopher J. Ludvigson, Michael A. Langerman, and James W. Sears. "Thermal Imaging of Laser Powder Deposition for Process Diagnostics." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63701.
Full textReports on the topic "Process control Dynamics Mathematical models"
Osypova, Nataliia V., and Volodimir I. Tatochenko. Improving the learning environment for future mathematics teachers with the use application of the dynamic mathematics system GeoGebra AR. [б. в.], July 2021. http://dx.doi.org/10.31812/123456789/4628.
Full textPerdigão, Rui A. P. Beyond Quantum Security with Emerging Pathways in Information Physics and Complexity. Synergistic Manifolds, June 2022. http://dx.doi.org/10.46337/220602.
Full textCastellano, Mike J., Abraham G. Shaviv, Raphael Linker, and Matt Liebman. Improving nitrogen availability indicators by emphasizing correlations between gross nitrogen mineralization and the quality and quantity of labile soil organic matter fractions. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597926.bard.
Full text