Dissertations / Theses on the topic 'Procédé en cellules entières'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Procédé en cellules entières.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Erdem, Elif. "NADPH dependent oxyfunctionalization by Baeyer-Villiger monooxygenases in cyanobacteria." Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0119.
Full textPoly-ɛ-caprolactone (PCL) is a biodegradable polymer of interest, synthesised by the action of peracetic acid, a large-scale explosive reagent, on cyclohexanone. Baeyer-Villiger monooxygenases (BVMOs) catalyse this oxidation under mild conditions but require the stoichiometric addition of organic auxiliary compounds for NADPH cofactor recycling. Furthermore, in whole-cell processes, the oxygen supply, often limited by the transfer rate and cell respiration, caps the usable cell density and thus the volumetric productivity. Recently, recombinant cyanobacteria producing BVMO made possible to use H2O as an electron donor and exploit photosynthetic O2 production, albeit with low productivity (by-product formation). Here, we described an alternative process based on the cloning of a new BVMO, from the bacterium Burkholderia xenovorans, in Synechocystis PPC6803 and in an engineered strain, Synechocystis ∆flv1, for which the photosynthetic electron transport chain (PETC) was partially redesigned via the deletion of flavodiiron proteins. Thus, high specific activities (25 U.gDCW-1) were achieved at high cell densities. We thus demonstrated the potential of oxygenic cyanobacteria as a chassis for the enzymatic oxidation of ketones, improving the atom economy of redox biocatalysis and providing oxygen for oxyfunctionalisation reactions. The process described is a sustainable process, using light as an energy source, water and carbon dioxide as sources of hydrogen, oxygen and carbon, and meets the requirements of green chemistry
Bilodeau, Philippe. "Mesure par microscopie holographique numérique des propriétés viscoélastiques des cellules entières." Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/37528.
Full textThe study of viscoelastic properties of whole-cell by optical microscopy allows one to obtain unique information on cell features. It is all the more important to assess those properties all along cultured cell maturation to extract information on its development and health. However, a vast majority of imaging techniques require a marking agent, whilst methods to measure viscoelastic properties are equally invasive. The use of digital holographic microscopy is proposed, since this method allows to image cell culture in real-time without a marking technique and provides quantitative images. Moreover, digital holographic microscopy provides screening deformation at nanoscopic scale induced on cells, without physical contact between the cells and an external instrument. The goal of this project is to develop shear flow assays allowing precise and non-invasive measurements of whole-cell viscoelastic properties. Cell deformation responses caused by the fluid shear stress are interpreted by viscoelastic models where rigidity and viscosity constants are extracted for the whole cell culture simultaneously. Results have shown that shear flow assays allow non-invasive whole-cell measurements of viscoelastic properties. A significant difference between cell properties of NIH 3T3, HEK 293T/17 and neurons have been found. The rigidity constant E1 and the viscosity constant h2 from Standard and Burgers models are viscoelastic properties to be used to discriminate those cell type.
El, Maataoui Mohamed. "Embryogénèse somatique chez le chêne liège (Quercus suber L. ) : induction, étude cytohistologique et essai de régénération de plantes entières." Aix-Marseille 3, 1990. http://www.theses.fr/1990AIX30039.
Full textL'Écuyer-Coelho, Hélène. "Développement d'un procédé pour la culture à haute concentration de cellules végétales." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0009/MQ60902.pdf.
Full textMandon, Céline. "Mise au point d'un bioessai à cellules entières, pour la détection de pollutions, basé sur la technologie du promoteur de stress." Lyon 1, 2005. http://www.theses.fr/2005LYO10276.
Full textDaligault, Franck. "Contribution à l'étude de bioconversions utilisant la microalgue Chlorella sorokiniana : : aspects mécanistiques de la désaturation ; oxydation de thioéthers par des cellules entières." Rennes 1, 2001. http://www.theses.fr/2001REN10063.
Full textValverde, Lucas. "Conception de cellules bipolaires commutables pour la technologie « Resistive Random Access Memory »." Mémoire, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/6041.
Full textThepenier, Cédric. "Optimisation d'un procédé de culture d'épiderme autologue : influence d'un feeder humanisé et d'une faible tension d'oxygène." Paris 7, 2014. http://www.theses.fr/2014PA077083.
Full textTo enhance the production conditions for cultured epidermal autografts (CEA) for large burns, we sought to study the in vitro effect of a low oxygen level on epidermal growth. We tested this parameter on CEA grown on murin feeder cells (Green's method) as well as human feeder cells. We first could evidence that the optimal feeder density depended on the oxygen level. A feeder density made optimal at 20% 02 could prove inhibitory on keratinocyte growth at 3% 02. At their respective best feeder densities, low oxygen level (3%) led to an average 4,2 fold increase in keratinocyte yield for a same arrest day as compared with 20% culture. This effect proved to be stable on several successive passagings, showing the increase in proliferation did not take place at the expense of tell self renewal. Keratinocytes grown at a low oxygen level kept their ability to form a stratifying epidermis on an in vivo NOD/SCID mouse excisional model. In parallel, the increase in proliferation was also observed when keratinocytes were cultured on human feeder cells, bone marrow mesenchymal stroma' cells and dermal fibroblasts. This effect of a low oxygen tension on keratinocytes appears to be partly direct, as the growth rate of HaCat feederless keratinocytes was enhanced at 3% vs 20% 02. It is also partly an indirect effect, as conditioned medium from murin feeder cells cultured in hypoxia has a more pronounced positive effect on keratinocyte growth than its normoxic counterpart. These preliminary resuits could lead to the modification on the culture protocol currently in use for the majority of CEA grafts for large burns. The expected benefits for the patients, beyond slightly shortening culture time, would include salvaging abortive cultures and bringing less differentiated keratinocytes, a parameter linked with a decrease in fibrotic evolution on murin models
Bouhlel, Wafa. "Procédé d'encapsulation à base d'hydrogels pour le développement de micro-tissus cellulaires." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS414.
Full textThis thesis concerns the improvement of a hydrogel encapsulation process for three-dimensional cell culture. Submillimetric capsules are formed via high speed co-extrusion of macromolecules solutions, thereby forming a compound jet. The drops resulting from the fragmentation of the jet have a core/ shell type geometry where shell is composed of alginate. This layer is then solidified after immersion in a gelling bath. The use of biological materials required the implementation of a sequential injection system to manipulate small volumes, less than 1 mL. This approach is then accompanied by a longitudinal variation of the concentration of the suspended particles flowing in the injection tube. This dispersion can be inhibited by adding air bubbles at each end of the sample to segment it. A destabilization of the suspension initially homogeneous is observed when liquid inertia comes into play at the particle’s scale. These micrometric particles induce a flapping motion and jet speed fluctuations causing the coalescence of the drops and thus a size polydispersity. Finally, a collagen hydrogel, which mimics an extracellular matrix, has been implemented in the capsule’s core to promote adhesion of epithelial cells forming intestine and bile ducts. Within this matrix, the cells form a polarized and functional epithelium. The formation of these collagen capsules required the formulaiton of the collagen solution compatible with the process and the physiological conditions of the cells
Trouillard, Martin. "L'organisation de la chaîne de transfert d'électrons respiratoire : développement d'une nouvelle méthode pour l'étude spectrophotométrique en temps réel des transferts d'électrons respiratoires dans des cellules entières." Paris 6, 2011. http://www.theses.fr/2011PA066647.
Full textSchirr-Bonnans, Martin. "Fonctionnalisation de surfaces et d'interfaces dans les cellules solaires organiques imprimées." Limoges, 2014. http://www.theses.fr/2014LIMO4005.
Full textThis work is part of a partnership between the company DISASOLAR and the University of Limoges (whose common goal is to develop. . . ) in the development of a know-how in the printing of organic photovoltaic solar cells on plastic substrates. Organic solar cells with a classic structure show certain life-time limitations due to the structure itselfs as well as to the materials used, in particular PEDOT:PSS. Thus, the first goal is to replace this interfacial polymer with metallic oxides like Tungsten, Vanadium or Molybdenum oxides. In order to do so, they are tested in cells by evaporation before being integrated via a liquid coating (sol-gel or nanoparticles dispersion) to prepare for their printing. The second goal is to adapt each step of the production process to make them compatible with a plastic substrate. To improve the reliability of the process and the cell's stability, we introduce the inverted structure. However, the performance of solar cells on plastic subtrates remains weaker than their counterparts on glass substrates. To reduce this difference, we look to the integration of dipolar layer in order to improve the charge transfer between the different materials. By carefully choosing the direction and the intensity of the grafted molecule's dipolar momentum we increase the power conversion efficiency of our solar cells on plastic substrates by up to 25%
Zehani, Mongia. "Optimisation du procédé polyol pour la synthèse de nanoparticules d'oxyde de zinc : mise à l'échelle du procédé et applications photovoltaïques." Thesis, Paris 13, 2014. http://www.theses.fr/2014PA132044/document.
Full textThanks to developments in synthesis methods and characterization techniques, nanomaterials research field is increasingly active and attractive. This thesis aims to investigate the polyol process for zinc oxide nanoparticles synthesis. Indeed, this method has the advantage of providing a wide variety of particle morphology with a good crystalline quality. In this thesis, we show that by varying the synthesis conditions we can adjust the size, the size distribution and the morphology of nanoparticles to obtain either shaped nanospheres as small as 6 nm or nanowires as long as 600 nm. Our systemic study focused on a set of parameters that control the forced hydrolysis reaction including stoichiometry, temperature, nature of the polyol but also mixing, injection of reagents and ultrasound activation. We show that the shape of the nanoparticles is determined by the competition between growth rates of different zinc oxide crystal facets. Our study also compared different mixing devices such as laboratory reactor, T- mixer and impinging jets. More over, to mass produce zinc oxide nanoparticles, we developed an original strategy to understand the effect of mixing on nanoparticle size. In our approach, we correlate the turbulent energy dissipated as obtained from Computation Fluid Dynamics with theme asured nanoparticle size. The application to the specific case of zinc oxide has allowed us to produce sample aliquots of ~50 g per Batch. These nanoparticles were subsequently incorporated into dye-sensitized solar cells as semi conducting material at the École Nationale Supérieure de Chimie de Paris. Indeed, the morphological richness of the zinc oxide produced via polyol process suggests good adsorption of the dye on their surfaces. Our results show that the photoconversion efficiencies depend both on the morphology and the size. Our best photoconversion efficiency approaches 5.3%
Bellanger, Pierre. "Etude d'un procédé de recristallisation de plaquettes de silicium fritté pour la réalisation de cellules solaires photovoltaïques." Lyon, INSA, 2010. http://theses.insa-lyon.fr/publication/2010ISAL0115/these.pdf.
Full textToday in the field of photovoltaics the various stages of manufacture of silicon waters are prohibitively expensive, mainly due to high consumption of energy and raw materials. Approximately 50% of the silicon is lest du ring the step of sawing the ingots and among different technologies explored that avoid this step the sintering of silicon powder is highly promising for producing large-area wafers. The company S'TlLE, located in Poitiers, is developing a new two-stage wafer fabrication process comprising a sintering stage based on the compression of silicon powder, and a high temperature recrystallization stage which is necessary to obtain a crystal structure suited to the production of photovoltaic cells. In this thesis, the sample is recrystallized by ZMR (zone melting recrystallization) or FWR (full wafer recrystallization). Initially, a structural and chemical characterization of the material is made. The electrical characteristics of the material are then measured, and the mobility reaches values of 150 and 250 250 cm². V⁻¹. S⁻¹ respectively on samples recrystallized by FWR and ZMR. The p-type doping is 5 * 3 * 10¹⁶ and 10 3*10¹⁷ at/cm ³. The lifetime reaches values of about one microsecond. After the fabrication of cells, an efficiency of 8. 9% is obtained using a simplified process without texturing. Other analyses such as spectral response, thermal imaging and measurement of Suns-Voc are also carried out
Atteia, François. "Développement d'un procédé de texturation de surface du silicium et intégration sur des cellules photovoltaïques et photodétecteurs." Electronic Thesis or Diss., Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0158.
Full textLight trapping is a phenomenon initially observed in the nature. With the advent of new technologies, it is undergoing a strong evolution today. This ability to absorb light has become essential for a growing number of applications, in particular photovoltaics. One of these methods is the fabrication of nanostructures on the material surface.The main objective of this PhD is to develop a process for modifying the surface of silicon (called Black Silicon) at room temperature by plasma etching which will be integrated onto a photovoltaic cell surface. To achieve this goal, the thesis work took place in three stages around the realization of Black Silicon (BS) absorbing more than 99% of light on large surfaces, then on the design and manufacturing of a photovoltaic cell (with a yield of 13%), the last step concerns the passivation of the BSIn conclusion, the surface nanostructuring of Silicon, by the process that we have developed and the proof of concept carried out on photovoltaic cells with interdigitated back contacts, offer numerous perspectives in the field of energy harvesting and solar conversion but also in imaging
Maalej, Sami. "Contribution à l'étude d'un procédé de production en continu d'acide L-aspartique par cellules de Pseudomonas putida immobilisées." Compiègne, 1986. http://www.theses.fr/1986COMPI244.
Full textGuilbert, Sébastien René Charles. "Les cellules solaires photovoltaiques : optimisation et extension des cellules au silicium amorphe : préparation à l'introduction de nouvelles technologies." Lille 1, 2003. https://pepite-depot.univ-lille.fr/RESTREINT/Th_Num/2003/50376-2003-363.pdf.
Full textBaba, Kamal. "Développement et optimisation du procédé Spray Plasma de dépôt de couches minces d'oxyde de zinc : application aux cellules photovoltaïques." Paris 13, 2013. http://scbd-sto.univ-paris13.fr/secure/edgalilee_th_2013_baba.pdf.
Full textThe aim of this work is the development and the optimization of a new method for ZnO thin film deposition for photovoltaic applications. The principle of this so called Spray Plasma process, is the injection of a spray of micro droplets of an aqueous solution of zinc in a low pressure plasma reactor. Under the effect of evaporation and Ar/O2 plasma reactivity, the precursor is converted to zinc oxide thin films on the substrate surface at controlled temperature. Chemical transformation involves oxygen and OH radicals, electrons and excited species from oxygen or argon. The experimental characterization of the discharge by emission spectroscopy and Langmuir probe allowed the plasma parameters to be determined such as electron temperature (2-4 eV), gas temperature (400 K) and the density of ions. In parallel, two models were developed: a hydrodynamic model to calculate the droplet size and temperature evolution in the reactor, and a kinetic model to calculate the plasma parameter evolution. The characterization of the films by different techniques (XRD and SEM) revealed nanostructured films with a typical deposition rate of 90 nm/min. Control of the deposition parameters such as precursor’s concentration and oxygen ratio allows the control of crystal orientation, thickness, surface roughness and grain size of the deposited films. We studied the role of each parameter on film growth and their properties and correlated these results with the characteristics of the plasma
Carin, Muriel. "Etude microscopique et macroscopique des transferts de chaleur et de masse dans un procédé de congélation des cellules vivantes." Aix-Marseille 1, 2000. http://www.theses.fr/2000AIX11006.
Full textDerrien, Thibault. "Nanostructuration de cellules photovoltaïques par impulsion laser ultracourte. : étude numérique des mécanismes de formation." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4005.
Full textUltrashort laser pulsed texturing is a process which allows to modify optical and electrical properties of matter, through formation of nano and micro structures on surface, appearing from pulse to pulse. Control of the process and developments of the potential applications need a good knowledge of the formation mechanisms. Processes occuring during the interaction are studied using numerical simulations and are compared to experimental results. The study aims to increase the efficiency of solar cells based on bulk silicon
Parent, Victor. "Développement d'un milieu sans sérum et d'un procédé à grande échelle pour la prolifération de cellules humaines précurseurs du muscle." Doctoral thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27863.
Full textDuchenne muscular dystrophy (DMD) is a genetic disease affecting one boy out of 3500. It leads to progressive and irreversible muscle degeneration. Currently, there is no cure for this disease and no therapy allows an efficient and safe treatment. Cell therapy consists in injecting healthy human muscle cells, myoblasts, into the muscles of DMD patients. Promising results have been obtained in clinical trials using this approach. However, some problems need to be overcome. Particularly, the original culture medium used to expand myoblasts contains Foetal Bovine Serum (FBS). FBS is an undefined product derived from animal, which can be contaminated with bacteria, viruses or prions. The possibility of harmful consequences for the patients hampers the acceptability of the therapy, so FBS must be replaced by a mixture of defined factors such as specific recombinant cytokines. Moreover, the production processes are currently inappropriate to meet the demand for muscle cells. Therefore, this project aims to develop a serum-free medium for the in vitro proliferation of muscle cells and a large-scale process for the production of those cells. A multi-step method was used to develop the serum-free medium. It is divided into three main steps: a) to build a panel of potential factors from a screen of the literature followed by the detection of more than 100 receptors and autocrine factors using RT-PCR, b) to test those factors in culture using statistical design of experiment (DOE) allowing to verify individual and synergistic effects and c) to add the factors that generate beneficial response to the culture medium. Those steps are followed until a cellular response comparable to the culture in standard medium is obtained. To achieve the scale-up objective, the project was limited to the selection of microcarriers that allowed the proper adhesion of myoblasts. The potential factors identified in the first stage, together with additional ones taken from the literature, formed a panel of 9 basal culture media and 72 additives that have been tested by means of DOE. At the end of this process, a serum-free medium, LOBSFM, was developed. To our best knowledge, it is the only existing efficient serum-free medium for myoblast proliferation and a patent has been obtained to protect its use. It allows a specific expansion of myoblasts (~80% myoblasts, verified by immunostaining) comparable to a standard medium containing 15% FBS over a 60-day culture period. Moreover, myoblasts kept their ability to form muscle fibers. Porous microcarriers Cytoline2 allowed a final cell concentration of 1.5E6 cells/mL, comparable to cell expansion in static culture plate. The pores protected the cells against mechanical stresses while the cell recovery remained easy.
Oliver, Cyril. "Dopage au Bore du Silicium Multicristallin de type N : application à la fabrication de cellules photovoltaïques par un procédé industriel." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20199/document.
Full textThis thesis presents the development of an equipment for boron doping of n-type multicrystalline silicon solar cells. A diffusion furnace was developed by Semco Engineering Company. It was built using LYDOP (LeakTight Yields DOPing) technology, patented by Semco. This one permits a simultaneous doping of a big amount of silicon wafers using regulated low pressure processes. Boron diffusion process development was carried out using LYDOP's specifications with BCl3 as gaseous doping source. Main parameters have been studied to control diffusion process. Several sheet resistance values of emitters were achieved (from 40 to 100 ohm/sq) with uniformity under 5% within wafer and within boat by tuning process parameters. Doping process development leads us to investigate how to create a single side emitter with n-type multicrystalline solar cells. Two fabrications flowcharts were presented: one using KOH emitter etches on backside and the other using back-to-back positioning during boron diffusion. Comparison between both flowcharts carried out to 13,2% and 14,4% efficiencies solar cells, respectively on each flowchart. Results are limited by passivation and metallization of emitters. However boron diffusion process demonstrate that LYDOP technology is well adapted to develop n-type solar cells
Posada, Parra Jorge Ivan. "Optimisation d'un procédé hybride de co-pulvérisation/évaporation pour l'obtention de cellules solaires à base de Cu(In,Ga)Se2." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066057/document.
Full textCu(In,Ga)Se2 (CIGS) thin film solar cells are a very promising technology for high efficiency energy conversion. Several techniques are used to synthesize CIGS absorbers. Magnetron reactive sputtering is an attractive deposition technique for depositing CIGS absorbers because of its potential for providing uniform coatings over large areas, thus offering the possibility for more competitive industrial scale-up. The objective of this work is to develop and optimize a hybrid alternative co-sputtering/evaporation CIGS deposition process. To meet this goal, various studies have been conducted to ensure control of the various deposition parameters. Initially, plasma was studied with Optical Emission Spectroscopy in order to establish correlations between plasma species and thin film composition, structure and morphology. This has allowed to establish in-situ calibration curves for monitoring the deposited layers composition and their homogeneity, and to determine the existence of different sputtering modes, linked to the selenium evaporation temperature. Then, different CIGS absorbers were synthesized with the stabilized hybrid process. These absorbers were deposited in one and three stages to analyze the influence of composition gradients on their morphological, structural and optoelectronic properties. A CIGS absorber giving a maximum conversion efficiency of 10.4 % was fabricated with a one step process. A 9.3 % efficiency solar cell was obtained with a three-stage deposition process
Posada, Parra Jorge Ivan. "Optimisation d'un procédé hybride de co-pulvérisation/évaporation pour l'obtention de cellules solaires à base de Cu(In,Ga)Se2." Electronic Thesis or Diss., Paris 6, 2015. http://www.theses.fr/2015PA066057.
Full textCu(In,Ga)Se2 (CIGS) thin film solar cells are a very promising technology for high efficiency energy conversion. Several techniques are used to synthesize CIGS absorbers. Magnetron reactive sputtering is an attractive deposition technique for depositing CIGS absorbers because of its potential for providing uniform coatings over large areas, thus offering the possibility for more competitive industrial scale-up. The objective of this work is to develop and optimize a hybrid alternative co-sputtering/evaporation CIGS deposition process. To meet this goal, various studies have been conducted to ensure control of the various deposition parameters. Initially, plasma was studied with Optical Emission Spectroscopy in order to establish correlations between plasma species and thin film composition, structure and morphology. This has allowed to establish in-situ calibration curves for monitoring the deposited layers composition and their homogeneity, and to determine the existence of different sputtering modes, linked to the selenium evaporation temperature. Then, different CIGS absorbers were synthesized with the stabilized hybrid process. These absorbers were deposited in one and three stages to analyze the influence of composition gradients on their morphological, structural and optoelectronic properties. A CIGS absorber giving a maximum conversion efficiency of 10.4 % was fabricated with a one step process. A 9.3 % efficiency solar cell was obtained with a three-stage deposition process
Magimel, Alice. "Etude du fractionnement de graines entières oléo-protéagineuses pour l'obtention de fractions multifonctionnelles de type "émulsions actives" dans le domaine de la formulation cosmétique." Thesis, Toulouse, INPT, 2016. http://www.theses.fr/2016INPT0097.
Full textThis PhD work studies the fractionation of selected regional plants in order to produce multifunctional "active emulsions"type fractions , for cosmetic purposes . This process allows the direct substitution of synthetic ingredients (SDS, lauryl sulfate, glycol ether, PEG ... ) and the development of cosmetic formulations in 100% vegetal plant totum, therefore maintaining the expected biological activities and organic qualifying properties. The choice of raw materials was directed to oilseeds. Not only are oilseed seeds renewable and readily available resources, both from conventional agriculture as well as organic farming, but they also have very different compositions. Hemp, rapeseed, cardoon, woad and flax were chosen because of their complementarity in terms of fatty acid and protein composition. Indeed, physico-chemical and functional characterization related to their protein fraction,have yielded fundamental data for the development and understanding of extraction processes involved in this work. The aqueous fractionation of seeds was studied in a stirred batch reactor and then extended to a continuous fractionation process : twin screw extrusion. This method has been more widely explored. The aqueous fractionation in thermomechano- chemical (TMC) reactor of whole oilseed seeds, one variety at a time and then mixed was implemented first. Then an active natural polysaccharide was introduced in situ through the extracting aqueous phase in order to produce enriched fractions in molecules of interest and to increase the stabilization of the emulsions thus obtained. The best results in terms of yield and quality of emulsions were obtained with the whole rapeseed and the mixture of whole hemp / rapeseed. The different types of emulsions obtained by the TMC process and their behavior under different parameters were characterized by optical microscopy but also through innovative methods such as DSC or NMR low fields. The first valuation tests of formulation in emulsions for cosmetics have been developed
Lourette, Natacha Madeleine Germaine. "Analyse in situ de cellules imprégnées de photosensibilisants par ablation / ionisation laser couplée à la spectrométrie de masse : Application en thérapie photodynamique des cancers." Metz, 2004. http://www.theses.fr/2004METZ036S.
Full textThe 5,10,15,20-tetrakis(mesohydroxyphenyl) porphyrin series (m-THPP, m-THPC, and m-THPBC) have attracted interest as possible photosensitizers in PDT owing to their strong absorption in the red region combined with their tumor localizing properties. The m-THPC (FOSCAN, temoporfin), is one of the most efficient prospective sensitizers, although, until recently, there has been little information on the nature of its photoproducts. In aqueous medium, opening studies were carried out by MALDI-TOFMS. After laser irradiation at 650nm, hydroxides and oxides of m-THPC were detected. In addition, m-THPC dehydrogenization into m-THPP was observed. Subsequently, the laser irradiation (647. 5nm) of m-THPP revealed the formation of covalent multimers due to aggregation process. A preliminary structure was proposed. In parallel, a chemical probe (DPBF) was used to characterize the formation of singlet molecular oxygen 1O2 during the period of m-THPC irradiation by MALDI-TOFMS. In both media (ethanol and aqueous), the m-THPC, the DPBF and their respective photoproducts were identified at once. Finally, to understand the photodegradation process in situ, our in vitro assays were performed directly on adherent cells on their culture support. The dye detection inside the whole cells was carried out by MALDI-TOFMS. HT29 human colon carcinoma cells were incubated with m-THPC (2µg/mL). After diode laser irradiation (652nm) of these cells, oxidized photoproducts and m-THPP traces were characterized in situ. Lastly, in an effort to generate proteomic data, three different cancerous cellular lines were analyzed. For each line, a specific protein fingerprint was achieved with reproducibility
Deparis, Véronique. "Étude et maîtrise d'éléments clés du procédé de production de l'[alpha]1,3/4 fucosyltransférase humaine par le système baculovirus / cellules d'insectes." Vandoeuvre-les-Nancy, INPL, 2002. http://www.theses.fr/2002INPL022N.
Full textGomont, Jacques. "Mise au point d'un procédé de filtration/expression continu applicable à la déshydratation en ligne de suspensions solide-liquide concentrées." Compiègne, 1986. http://www.theses.fr/1986COMPI251.
Full textDe, Vecchi Sylvain. "Développement de cellules photovoltaïques à hétérojonction de silicium et contacts interdigités en face arrière." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0050/document.
Full textThis thesis studies the fabrication and the optimization of a new structure to enhance the efficiency of crystalline silicon based solar cells. This new cell design uses a-Si:H/c-Si heterojunction (Si-HJ) technology applied on interdigitated back contact structures (IBC). With IBC Si-HJ solar cells, the efficiency potential is theoretically higher than 25%. Their fabrication requires to pattern doped a-Si:H and the associated metallization on the same side. The implementation of those process steps has been carefully studied. All processes used in this study are potentially industrial (PECVD, sputtering, screen-printing, and laser) and the obtained structure without buffer layer between the BSF and the emitter allows to reduce fabrication steps. Issues linked to this design have been investigated. Within the frame of this work, the maximum efficiency reached on reduced size devices (25cm²) with n-type substrate and is 19% which is the 3rd best result worldwide. The cell performances are still limited by the absorption of front surface passivating layer (a-Si:H) and by the low doped layer conductivity. Several optimization ways are explored in this study. An innovative metallization process is then elaborated to allow large area solar cell fabrication while limiting resistive losses and offering more flexibility on metallized pattern. The interconnection and the encapsulation of cells with this metallization design have been illustrated and a module with 4 cells has been fabricated
Bazer-Bachi, Barbara. "Développement et mise au point d’un procédé innovant de diffusion des dopants N et P pour la fabrication de cellules photovoltaïques silicium." Lyon, INSA, 2010. http://www.theses.fr/2010ISAL0025.
Full textThis thesis, in collaboration with Photowatt Technologies, puts forward a new fabrication process, compatible with thin substrates. The standard industrial process includes full area screen-printed aluminium on the back side of the cell. However, as the thickness decreases : wafer bowing leads to breakage during later processing. Boron doping is an alternative to aluminium. However, boron-BSF is regarded as an expensive solution because it needs a high temperature diffusion step. This work consists in boron and phosphorus diffusion in a single step, by codiffusion. The emitter formation is obtained by phosphorus diffusion in a low pressure Lydop furnace. We have focused on the emitter recombinations reduction, influenced by the phosphorus precipitates. By varying diffusion parameters, we have noticed that the passivation quality is influenced by these precipitates. Moreover, a study of silicon nitride firing has shown that hydrogen plays a role in emitter passivation. Boron doping is obtained by the diffusion from a boron doped oxide (BSG) deposited by PECVD. A comprehensive work on the mechanisms of the diffusion from a doped oxide has emphasized the importance of gas flow adjustment in order to obtain high doping at moderate temperature (850°C). Once both techniques overcome, solar cells were realized at laboratory and industry scales. The emitter quality improvement has led to the improvement of the solar cells results. The whole process, including phosphorus and boron co-diffusion, has been then applied. We have achieved innovative structures, with boron BSF and local back contact. Moreover, we have proven the co-diffusion process feasibility on industrial solar cells
Roy, Vincent. "Caractérisation de gènes codant pour des protéines de surface de la bactérie actinobacillus pleuropneumoniae à l'aide d'un procédé d'invasion de cellules HeLa." Thèse, Université du Québec à Trois-Rivières, 2006. http://depot-e.uqtr.ca/1226/1/000137584.pdf.
Full textMárquez-Meléndez, Rubén. "Immobilisation de cellules d’Escherichia coli sur des supports de type céramique : contribution à l’étude d’un procédé de production en continu de L-tryptophane." Compiègne, 1986. http://www.theses.fr/1986COMPI110.
Full textMartin, Céline. "Étude des procédés d’amplification de cellules souches mésenchymateuses humaines." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0261/document.
Full textProgress in regenerative medicines over the past ten years have led to an important research mobilisation, but obtaining a sufficient amount of human stem cells remains nonetheless problematic, especially for mesenchymal stem cells (MSC). Hence, this work developed an approach coupling biology and process engineering to identify barriers limiting MSC growth. The study of scaled-up amplification methods was performed using microcarriers and a 200~mL minibioreactors platform. In order to maximise MSC growth in a biochemically controlled environment, a serum free medium development was tested as well. Human MSC as model cell type for cellular therapies have thus been demonstrated as extremely sensitive to freeze/thaw cycles, temperature variations, subject to premature aging and needing a complex medium enriched in multiple growth and adherence factors. Following this study, several pitfalls might be avoided during MSC process scale-up by integrating the cells biology into the bioreactors' process engineering parameters (heat transfer, hydrodamic stress, adhesion surface)
Hayes, Maxim. "Intégration de collecteurs de charges avancés dans les cellules solaires bifaciales à haut rendement : vers un procédé générique pour les nouveaux matériaux silicium." Electronic Thesis or Diss., Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0519.
Full textThanks to a relatively simple fabrication process and high conversion efficiency values the PERC structure is well established at the industrial level. Nevertheless, industrial PERC solar cells performances are mostly limited by two charge carrier recombination sources: P thermally diffused emitter on the front side and the Al-Si interfaces at the rear contacts. The main goal of this work aims at limiting both recombination sources. A selective emitter (SE) obtained by plasma immersion ion implantation (PIII) is developed for an integration on the front side; whereas a B-doped polysilicon (poly-Si) on oxide passivated contact (PC) is integrated on the back side. The second goal of this work consists in evaluating the compatibility between these advanced carrier collectors and directionally solidified Si materials. SE featuring good geometrical properties and a well-controlled doping were fabricated thanks to an in situ localized doping process obtained with a specific mask developed for PIII. Besides, several metal deposition technologies were investigated for the poly-Si(B). Fire-through screen-printing appears as the most promising approach so far. Indeed, the deposition of a non-sacrificial hydrogen-rich layer allowed to reach an excellent surface passivation level for solar cell precursors. However, the specific contact resistivity obtained remains too high for an optimal cell integration. Lastly, the fabrication of poly-Si PC showed excellent external gettering efficiencies for multicrystalline Si. Thus, the potential of the developed cell structure to be integrated with low-cost and low carbon footprint materials is encouraging
Ferrari, Caroline. "Études cinétiques de procédés d'expansion de cellules souches mésenchymateuses cultivées sur microporteurs en systèmes agités." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0117/document.
Full textThe extensive use of mesenchymal stem cells (MSC) in tissue engineering increases the necessity to improve the expansion performance. This work aimed at studying an efficient expansion process for porcine MSC in agitated mode. First, a culture medium was adapted to the multipotent porcine MSC. Then, various expansion modes and agitation conditions were evaluated with the cells fixed on microcarriers. Cultures on the Cytodex 1 microcarrier enabled to reach a specific growth rate of 0.54 d-1, which was higher than the one observed in static T-flasks (0.31 d-1), with the same culture conditions. In parallel, an innovative counting method was proposed for the automatic enumeration of cells cultivated on Cytodex 1, without passing by a trypsination step. Finally, the operating conditions of the expansion process were studied. Compared to a culture of MSC on non-agitated Cytodex 1 microcarriers, cell aggregation occurred and an apparent decrease in the cell concentration was observed at an agitation rate of 25 and 75 rpm. Moreover, the addition of microcarriers during a 300 h culture, performed in an agitated culture at 25 rpm and in a volume of 200 mL enabled to prolong the cell proliferation without any aggregation, while maintaining the multipotency of the cells. A cell concentration of 3 x 105 cells/mL was obtained, instead of the 1.2 x 105 cells/mL in static flasks with the same culture conditions. An efficient expansion process for porcine MSC under agitated conditions has therefore been proposed
Braud, Armelle. "Procédé de phytoextraction couplé à la bioaugmentation d'un sol agricole polycontaminé par du chrome, du mercure et du plomb." Phd thesis, Université de Haute Alsace - Mulhouse, 2007. http://tel.archives-ouvertes.fr/tel-00465806.
Full textPattier, Bruno. "Etude de gels d'oxyde de titane entrant dans la fabrication de cellules photovoltaïques." Le Mans, 2010. http://cyberdoc.univ-lemans.fr/theses/2010/2010LEMA1019.pdf.
Full textThis work focused on the elaboration and the characterisation of materials based on titanium oxide synthesised by sol-gel way. It is a part of the research on the third generation photovoltaic cell. In this study, the photovoltaic cell is made up of a photosensitive gel based on titanium oxide sandwiched between a titanium dioxide film and a conductive polymer. The gel is elaborated from titanium oxichloride solution in acid medium and diluted in N,N dimethylformamide (DMF). By hydrolisation, the DMF leads to the polymerisation of the titanium ; studies of Raman spectroscopy and small angle X ray scattering contributed to a better understanding of the process of formation of these gels in function of their composition. The photosensitive gels resulting of the titanium condensation have the particularity to absorb the solar radiation in a wide range of its spectrum. In this way, the transparent gel turns blue after a UV irradiation. This is the consequence of reduction of the titanium ions Ti(IV) into Ti(III). The photosensitive properties have been followed in situ by electronic paramagnetic resonance spectroscopy. They revealed the connection between the initial composition of the sol and the kinetic of the titanium reduction. An important part of this work is also consecrated to the optimization of the synthesis conditions of dense and mesoporous TiO2 thin films ; the role of the latter is to improve the interface between the gel and the TiO2. Their elaboration is built on the self assembly of surfactant inside a TiO2 matrix. The films have been characterised by X ray reflectivity and the mesostructure by grazing angle X ray scattering. Finally, we have assembled the first photovoltaic cell of this type and studied their characteristics under irradiation from a solar simulator. The first results have given a maximum efficiency of 1,7 %. Many factors can impact its value witch we need to go the causes too closely
Tsin, Fabien. "Développement d'un procédé sur grande surface d'électrodépôt d'oxyde de zinc comme contact avant transparent et conducteur de cellules solaires à base de Cu(In,Ga)Se2." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066311/document.
Full textCu(In,Ga)(S,Se)2 (CIGS) thin films based solar cells are a promising technology for high efficiency energy conversion. A window layer completes the stack of the cell. It is commonly constituted by an intrinsic and aluminum doped bi-layer of zinc oxide (ZnO) deposited by magnetron sputtering, an expensive vacuum process. Alternative processes, using low cost and atmospheric techniques, have been developed in order to reduce the costs. The aim of this work was to achieve a functional window layer of ZnO by a photo-assisted electrodeposition process on large scale substrates of CIGS/CdS in aqueous medium and replace the sputtered one. For this purpose, several studies have been carried out in order to determine the optoelectronic properties such as doping level and mobilities of the electrodeposited ZnO and optimize the deposition process. Firstly, the effect of three different electrolytes on the zinc oxide properties and doping has been studied on metallic substrate: chloride medium (Cl-), perchlorate medium (ClO4-) and a mixed medium of perchlorate with boric acid (H3BO3). Then, electrochemical synthesis of zinc oxide as window layer has been performed on CIGS/ CdS substrates. This study allowed to establish the need to synthesize an in situ seed layer which promotes the growth and the compactness of the final layer of zinc oxide. This two-step method has led to the achievement of high photovoltaic performances on large scale with promising efficiencies up to 14.3 % for a solar cell made entirely by atmospheric processes
Kintz, Harold. "Réalisation de couches minces nanocomposites par un procédé original couplant la pyrolyse laser et la pulvérisation magnétron : application aux cellules solaires tout silicium de troisième génération." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00958453.
Full textTalla, Amadou. "Etude et mise au point de procédés industriels de traitement de surfaces par voie sèche pour la fabrication de cellules photovoltaïques à base de Silicium." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20083.
Full textA significant efficiency gain for crystalline silicon solar cell can be achieved by the use of dry process. Indeed significant gains in conversion efficiency can be achieved with texturing, polishing the back face and burning the BRL (Boron Ritch layer) by using plasma process.In this paper Dry plasma processing for industrial crystalline silicon solar cell was studied.This thesis focuses on the replacement of wet processes by dry processes in the manufacture of silicon photovoltaic cells. This work is divided into three distinct parts. First Technique texturing plasma, parameter optimization of the reactor and the advantages thereof with respect to the conventional texturing has been discussed. The development of a compatible with an industrial line reactor is then discussed: optimizing different parameters of the reactor in order to obtain the best results cells. Other possible applications have been demonstrated with the use of our reactor, including polishing the backside of silicon wafers and etching BRL (Boron Ritch Layer) on n-type substrates.An improvement of the conversion efficiency on the order of 0.2 to 0.3 % has been demonstrated on multicristalline and monolike silicon wafers and Aesthetic of solar panel was improved. Key words: Silicon wafer, Plasma texturing, multicristalline wafer, monolike wafer……………
Jeon, Taewoo. "Nanostructured hybrid solar cells based on PECVD grown SiNWs and organic semiconducting polymers." Palaiseau, Ecole polytechnique, 2013. http://pastel.archives-ouvertes.fr/docs/00/91/78/26/PDF/Thesis_Taewoo_JEON_EP_PICM.pdf.
Full textSolar cells are an exciting alternative energy technology due to the infinite energy source, the Sun. Many types of solar cells based on inorganic or organic materials are currently developed with the objective of higher efficiency and lower cost. In this context, this thesis suggests to study nano-structured hybrid solar cells based on silicon nanowires (SiNWs) and organic active materials to benefit advantages of both materials. SiNWs are grown by PECVD on transparent conducting oxide via Vapor-Liquid-Solid (VLS) mechanism with careful control of their nano-morphology. The organic materials made of polymers or blend polymers are then deposited by spin-coating on top of SiNWs. In these hybrid solar cells the SiNWs are used as light-trapping medium and/or electron acceptor material. For better solar cell performance, the optimization of SiNWs array is carried out by removing residual catalyst and etching parasitic hydrogenated amorphous silicon. Their effects on hybrid solar cells have been fully analyzed and discussed. Furthermore, the electron-acceptor properties of the nano-structured SiNWs have been estimated with Bismuth-doped n-type SiNWs. The results clearly reveal the potential of this type of hybrid solar cells, namely, 1) power conversion efficiency improvement by enhancing external quantum efficiency in longer wavelength regime and 2) variety uses of SiNWs by tuning their electrical property and morphology
Nourdine, Ali. "Matériaux polymères pour cellule solaire photovoltaïque organique : vers un nouveau procédé de mise en forme par extrusion de multicouches." Grenoble INPG, 2010. http://www.theses.fr/2010INPG0114.
Full textThe performance of organic photovoltaic solar cells depends on the active layer morphology and the arrangement of the donor and acceptor. Increasing the amount of donor/acceptor interface and reducing the size of the domains optimize the photovoltaic efficiencies. A new approach could consist in using nano-multilayers of donor and acc¬¬¬eptor polymers by forced assembly. The work presented in this thesis is part of a broader project, which consists in developing a new solvent-free process for production of nano-multilayers organic solar cells alternating donor and acceptor layers. More specifically, the aim of this thesis was to select, synthesize and study photoactive and extrudable donor and acceptor polymers. Poly(3-octylthiophene) was chosen as the donor polymer and polystyrene grafted by an various percentage of fullerene C60 as the acceptor polymer. This work was realised at the National Institute of Solar Energy (INES), and was organized in three steps. The first part focused on synthesis and characterization of various acceptor polymers with different percentages of C60. Both physicochemical and photovoltaic properties (electron mobility, tests in solar cells) were characterized. Finally, the rheological behaviour and characteristic temperatures were studied to confirm their plausible processability by extrusion
Jeon, Taewoo. "Cellules solaires hybrides à base de polymères et de nanofils de silicium fabriqués par dépôt chimique en phase vapeur assisté par plasma." Phd thesis, Ecole Polytechnique X, 2013. http://pastel.archives-ouvertes.fr/pastel-00917826.
Full textMerigeon, Julien. "Etude des verres d’encapsulation pour cellules solaires photovoltaïques en silicium monocristallin." Thesis, Angers, 2015. http://www.theses.fr/2015ANGE0083.
Full textThe thesis studies the encapsulation glass for monocrystalline silicon solar cells. Two ways were explored to reduce the efficiency loss due to encapsulation: reducing reflection losses of silica based glasses with antireflection layers and the use of rareearth- doped fluoride glass for frequency conversion. On the one hand, antireflection layers have been deposited on the silica glass by sol-gel method. The optical characterizations were carried out by spectrophotometry and ellipsometry and the influence of different encapsulation glasses on the current density-voltage characteristics (J-V) were measured under solar simulator irradiation in standard conditions (AM1.5 and 100 mW/cm2) for various reference cells. On the other hand, the rare-earth-doped fluoride glasses which they can convert frequencies in order to change the energy of photons to energies adapted to the optical gap of the silicon has been investigated. The glasses used are fluorinated matrix ZLAG and ZBLA doped with rareearth elements (Pr3+, Tm3+, Yb3+). The effect of doping on the electrical performance of encapsulated cells was studied correlated with physical and optical properties of glasses (energy transfer, luminescence, transmittance). Frequency conversion was demonstrated by luminescence for all of the rare-earth-doped samples. Then the most promising results for encapsulating was found for codoped Yb3+-Pr3+ ZBLA glass. The benefit of the frequency conversion was shown for the first time in J-V characteristics. Then, characteristics of the reference cells with these new encapsulating glasses were compared to those from glasses commonly used in the photovoltaic modules industry
Maria, Sophie. "Développement d'un bioprocédé continu couplant la production et la purification d'un anticorps recombinant." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0898/document.
Full textMonoclonal antibodies are a biopharmaceuticals class of growing interest. Their production is widely studied to obtain higher yields and to reduce costs. This thesis describes the development of a complete continuous process, from the production of recombinant antibodies by mammalian cells until their purification. The objective is to connect cell culture in perfusion mode to a semi-continuous chromatographic purification. The development of the process was done in a bioreactor with a Chinese hamster ovary cell line (CHO-DP12) transformed to produce an anti-interleukin-8 antibody used as a cell model. After adaptation, the cells were cultured in batch mode in order to study the behavior of the cell line in controlled environment. Then, a 2L culture perfusion process with cell recycling was set up. The main challenge is to maintain a steady state with constant cell concentration and to determine the optimal cell-specific perfusion rate (CSPR). Several methods were tested and compared for the determination of this optimal CSPR. The perfusion process was maintained for 24 days at cell concentrations of 10, 20 and 40 million cells per mililiters. The antibody produced by different culture methods was compared (batch, fed-batch and perfusion). The N-glycosylations, the charge variants as well as the thermo-stability of the antibody were studied. The results show that the produced antibody have similar characteristics whatever the chosen production mode. For purification process, we performed a preliminary study to characterize the behavior of the supernatant on the chromatographic affinity resin MabSelect Sure LX. A semi-continuous process was simulated through BioSC® Predict software and then tested and optimized on the BioSC® chromatograph. It includes antibody purification but also cleaning and sanitizing steps. A first production/purification coupling test was successfully carried out for 32 h. It provides antibodies at a purity level similar to that of the conventional chromatography. Productivity was increased by 23% (in grams of purified antibody per liter of resin per day) and the volume of buffer used was reduced by 25%. In addition, production/purification coupling prevented storage of large volumes of supernatant (7,2L of supernatant per production day in perfusion mode). Finally, a cost-of-production study, at research scale, was carried out to determine, depending on the productivity of the clone and the antibodies amount, the difference of costs between batch or perfusion production according to different CSPRs
Petiot, Emma. "Procédés de cultures de cellules VERO en milieu sans sérum : contributions au développement d'une stratégie PAT." Thesis, Vandoeuvre-les-Nancy, INPL, 2009. http://www.theses.fr/2009INPL071N/document.
Full textThis work contributes to the development of the PAT strategy for animal cell culture processes. The aim of this study was to improve the understanding and the control of Vero cell culture, dedicated to the production of viral vaccines, and grown on microcarriers in serum-free medium. An initial study was performed to screen the effects of certain groups of compounds of the culture medium, by the cell growth monitoring in microplates. Then, kinetic and metabolic studies conducted in spinners flasks allowed to go further and to show that the Vero cell metabolism is saturated through the pyruvate intracellular accumulation and that it is not oriented toward growth. While media renewal or punctual addition of glutamine improve the cell growth without improving the metabolism balance, the substitution of glucose and glutamine allowed to reduce apoptosis and to improve growth and metabolic performances.Furthermore, dielectric and near-infrared spectroscopies have been evaluated for the in-line process monitoring, taking into account the particularities of adherent cells. We have demonstrated their ability to quantify cell concentrations, medium component concentrations, and to detect apoptosis. Finally, major improvements by substitution of glutamine have been applied to bioreactor culture to produce a dengue vaccine prototype, with culture conditions close to industrial process. In these cases, medium renewal during the cell expansion was removed without compromising the production of infectious viral particles
Valot, Laurine. "Development of multifonctional hybrid hydrogels for mesenchymal stem cell-based cartilage repair." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS074.
Full textWe developed hybrid hydrogels for mesenchymal stem cells embedding, which could be of interest for cartilage repair. Our strategy is based on the functionalization of bioactive molecules and biopolymer with triethoxysilane moieties to prepare hydrogels by a sol-gel process. This bio-orthogonal process take place in water, at physiological pH and 37 °C. First, we searched for a biocompatible catalysis method and we studied the reaction parameters influencing the gelation time. Then, collagen-like peptides of various sizes have been synthesised and silylated to prepare biomimetic hydrogels. The composition of these hydrogels has been improved to reach the best cellular viability and chondrocyte differentiation after embedding. The resulting mechanical properties were also studied. Finally, theses hydrogels have been 3D-printed by extrusion and new compositions have been developed to reach a better accuracy. Through the numerous hydrogel compositions we developed, the potential and versatility of sol-gel process for hydrogel preparation was demonstrated, paving the way to many applications in health sciences
Ma, Alexandre. "Etude et optimisation d'un procédé plasma basse puissance pour le dépôt de ZnO dopé et non dopé à propriétés photovoltaïques à partir d'une solution aqueuse." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066475/document.
Full textThis work is part of the Research and Development of Photovoltaic. The aim was to study, develop and optimize a new deposition plasma process for the elaboration of zinc oxide thin layers (ZnO) as the window layer in Cu(In,Ga)Se2 solar cells of. The particularity of this process is to quickly realize oxide layers (≥ 0.6 nm/s) from an aqueous solution of non-toxic precursors, interacting in the form of droplets, with the plasma. The feasibility of the ZnO deposition by the low power plasma reactor (LPPR) was checked by obtaining homogeneous, crystalline and transparent layers of ZnO thanks to the optimization of reactor parameters. The diagnostic and modeling / simulation of the plasma reactor allowed us to see that the physical state and droplet size affect the quality of the oxide layers. Solar cells were created to validate the quality of ZnO layers obtained via our plasma process. The best obtained efficiency is about 14% which is very promising for future research. The study of doping N type ZnO was addressed in order to achieve a complete window layer by LPPR reactor. However many improvements and studies are still needed, such as the establishment of a sophisticated injection system, or the thorough investigation on doping. Nevertheless a cost study about material/energy of the process was conducted in order to place the plasma reactor among other techniques used for the production of CIGS solar cells
Jonckeau, Agathe. "Production, purification et caractérisation d’une gonadotropine chorionique équine recombinante à usage vétérinaire." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0208.
Full textThe gonadotrophic hormones are used for reproduction control in farming animals. Up to now, these hormones were extracted from animal fluids or tissues. The company CEVA Santé Animal has recently decided to produce recombinant versions of these hormones. The objective of this study was to obtain a pure and biologically active recombinant equine chorionic gonadotropin (reCG) after expression in CHO mammalian cells. The production, purification and characterization steps have been developed. CHO cells were grown in Erlenmeyer flasks with different culture media. Two media were selected based on their cell growth potency and of the amount of reCG produced. By using a bioreactor to control key parameters (temperature, pH), the production process was then optimized. The recombinant proteins that accumulated in the supernatant of the two conditions were called reCG 1 and reCG 2. A 3-steps purification process was then developed using reCG 1. Several resins and chromatographic conditions were screened in microplates. Multimodal resins were used to eliminate the main contaminants thanks to their selectivity. reCG aggregates were efficiently eliminated by a chromatographic step with an anionic resin. The overall purification process was finally validated for reCG 1 and reCG 2. Purity and yield were respectively, 98 % and 80 % for the two reCG. We verified that the in vitro and in vivo activities of reCG 1 and reCG 2 were comparable to those of the CG extracted from natural sources. The in vivo assays also confirmed previous studies showing that the degree of glycosylation of an hormone, and most notably their level of sialytation, is important for their biological activity
Sion, Caroline. "Development of an optimized perfused-continuous process of culture of human umbilical cord mesenchymal stem cells (hMSC) grown on innovative adhesion supports." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0113.
Full textMesenchymal stem cells (MSCs) show great interest in cellular therapies. Their various characteristics such as their immuno-modulatory properties, their ability to differentiate, and also the secretion of factors, are numerous and promising for new clinical treatments for diseases where few therapies are proposed or have few efficiencies. The doses to be injected for significant results must be repeated and generally contain high quantities of cells (106 cells kg-1 per patient approx). Large scale production methods must be implemented to meet the demand, and in the least costly way possible. In this PhD work, the main objective was to develop a scalable process adapted to these support-dependent cells. For this end, a first study allowed to understand part of the mechanisms of interaction of cells with their growth supports, the microcarriers. The adhesion time but also the cell migrations between microcarriers were characterized and evaluated. A strategy of fed-batch mode strategy with microcarriers addition at specific times in the culture was also proposed. Following this, the second part of the study of this work was to determine the efficiency on larger scale expansion process (1.5 L), using of innovative microcarriers developed by the partner teams of the ‘ImprovesStem’ European project. Several microcarriers candidates with chemically modified surface proved to be promising for the expansion of Wharton’s jelly stem cells. Finally, in the last part of the thesis, an innovative process based on the removal of empty microcarriers, avoiding the risk of deleterious frictions between highly concentrated microcarriers was proposed. Moreover, an on-line monitoring of viable cell concentration was carried-out in the stirred tank bioreactor. Innovative commercial microcarriers, soluble under the action of enzymes, were used in this last part of the study. An improvement of the expansion factor (by a factor of 1.5) was obtained in this continuous-perfused mode of culture in the stirred bioreactor. In addition, these enzymatically-soluble commercial microcarriers allowed for an excellent detachment yield, essential to consider their use in cell therapy
Oliva, Florian. "Modélisation, caractérisation et optimisation des procédés de traitements thermiques pour la formation d’absorbeurs CIGS." Thesis, Saint-Etienne, EMSE, 2014. http://www.theses.fr/2014EMSE0738/document.
Full textSolar energy is promised to be a major actor in the future of energy production. Even if silicon based solar cells remain the main product their fabrication is energy consuming and requires heavy cover glass for protection, which reduce their development. For several years, commercial interest has shifted towards thin-film cells for which manufacturing time, large scale production, fabrication costs and weight savings are the main advantages. For thin film technology, a wide variety of materials can be used but chalcopyrite such as Cu(In,Ga)Se2 is one of the most promising. The most current method used for chalcopyrite formation is co- evaporation but this process is very expensive and not well suitable for large scale production due to high vacuum requirements. One alternative solution described in this work consists of a two-step technology based on the sequential electro-deposition of a metallic precursor followed by a rapid reactive annealing. However to reach its full potential this technology needs a better understanding of the Ga incorporation mechanism and of the selenization/sulfurization step. This work focuses first on formation mechanisms through the study of several kinds of precursor. This knowledge is then used to explain and to optimize innovative annealing processes. This study is achieved by observing the impact of some process parameters using designs of experiment (DOE). A link between process parameters and properties of these thin films is obtained using electrical, structural and diffusion characterization of the devices. Finally we propose hypothesis to explain observed phenomena and also some improvements to meet the challenges of this process