Contents
Academic literature on the topic 'Procédé de mélange sans solvant'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Procédé de mélange sans solvant.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Procédé de mélange sans solvant"
Bettahar, M., O. Razakarisoa, F. Van Dorpe, and M. Baviere. "Incidence d'une technique de décontamination par tensioactifs sur la conductivité hydraulique d'un aquifère contrôlé pollué par du gazole." Revue des sciences de l'eau 11, no. 1 (April 12, 2005): 85–100. http://dx.doi.org/10.7202/705298ar.
Full textYOUAN, Bi-Botti Celestin. "Systèmes nanoparticulaires : Applications phytopharmaceutiques et cosmétiques." Journal Africain de Technologie Pharmaceutique et Biopharmacie (JATPB) 2, no. 3 (December 20, 2023). http://dx.doi.org/10.57220/jatpb.v2i3.116.
Full textDissertations / Theses on the topic "Procédé de mélange sans solvant"
Lu, Mengnan. "New technology development for advanced "Clean" solid catalysts for Fischer-Tropsch synthesis." Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10108.
Full textFischer–Tropsch (FT) synthesis converts syngas into liquid hydrocarbons over cobalt catalyst for new ultraclean alternative fuels. The syngas can be produced from both fossil and renewable resources. The catalysts for FT synthesis are currently prepared by chemical ways like impregnation etc. All these routes involve toxic solvents and high temperature retreatment. Because of lower cost, reduced energy requirements and environmental pollution, the mechano-chemistry has a number of advantages for the synthesis of heterogeneous catalysis compared to conventional techniques. In this study, the mechano-chemical method was used to prepare alumina supported cobalt catalysts for FT synthesis. Differently to the conventional catalyst preparation, the deposition of active phase did not involve any solvent in the proposed method. The goal of this work is to obtain efficient FT catalysts and to simplify catalyst synthesis by reducing the number of preparation steps. The project involves innovative method of synthesis of catalysts in three different mechanical working processes in dry context. The process of mechano-chemistry to synthesize the catalyst for FT reaction was developed. The operating conditions for the control of the coating technique were identified through optimal conditions study by statistical analysis. Moreover, characterizations were studied to understand the basic mechanisms behind deposition of particles on the interface. Catalytic performance tests were estimated in a mili-fixed bed reactor; Optimization algorithm of parameters in a mechanical process was carried out via deriving target formula about energy and material size
Xiong, Shuyao. "Nouveau procédé de mise en forme de matériaux composites et modélisation numérique pour les applications par voie solaire thermique." Electronic Thesis or Diss., Centrale Lille Institut, 2023. http://www.theses.fr/2023CLIL0031.
Full textSolar energy, a sustainable and non-polluting alternative to fossil fuels, gains momentum with enhanced materialproperties. This study proposes a novel approach for composite solar receiver materials, integrating an absorptionlayer and a thermal conductive substrate. Various powders, including AlN, α-SiC, Cu, stainless steel, CaO (micron,submicron, and nano-scale), β-SiC, γ-Al2O3, and carbon black, were explored. Innovative solvent-free processes andheat-treatment-free techniques were introduced for powder mixing and coating. Pellets, produced by spark plasmasintering, include AlN with CaO additives, α-SiC with CaO and Al2O3 additives, Cu with β-SiC, and stainless steel. Solarabsorber material deposition utilized carbon black. The self-constructed solar simulator assessed energy absorptionand heat transfer efficiency. Finite element method simulated radiative and conductive heat transfer in compositeporous pellets. Geometric shapes aligned with pellet structures for accurate comparisons. The Picomix provedsuperior to traditional ball milling for preparing mixed powders, offering a solvent-free and eco-friendly approach.Achieving a thermal conductivity of 135.3 W/m∙K, the AlN pellet with 3 wt% nano CaO at 5000 rpm rotational speedexceled. Dry-coating β-SiC by Picomix effectively reduced Cu oxidation while maintaining high thermal conductivity,presenting a promising anti-oxidation treatment. Adding 9 wt% Al2O3 and CaO to α-SiC elevated its pellet thermalconductivity to 114 W/m∙K. Under the solar simulator's high radiative heat flux, AlN-additive with carbon layercomposites and α-SiC-additive pellets exhibited enhanced solar energy absorption and heat transfer. Modeling resultsunderscored the combined influence of thickness, porosity, and thermal conductivity on porous pellet heat transfer.For pellets with thickness below 50 mm, porosity less than 0.3, and thermal conductivity surpassing 100 W/m∙K, heattransfer efficiency remained comparable. The solar absorption layer's thickness significantly impacted compositeporous pellet heat transfer rate. Solar absorber material’s thermal conductivity minimally affected solar energyabsorption and heat transfer efficiency beyond 50 W/m∙K. Diverse geometric model configurations yieldedcomparable simulation outcomes
Belaid, Sofiane. "Formulation et procédé d'élaboration sans solvant d'électrodes de batteries Lithium-ion." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10038.
Full textThis study aims to find a new way of lithium-ion battery electrodes production using dry process. The production procedure consists on the extrusion of different compounds of the electrode (binder, active material and conductive agent) with a sacrificial polymer. First, a study was established to choose optimal conductive agent and coating material of the collector substrat in order to optimize electrical properties of the electrode. Then the interaction between charges and polymer was studied to justify charges cohesion despite the low amount of the binder and to explain some performances loss mainly in terms of ionic and electrical conductivity. This study revealed the presence of adsorbed / grafted polymer on the surface of charges, known as "bound rubber". Finally, we showed that electrode porosity could be controlled. In addition it was proved that it is possible to perform a dry electrode responding to initial specifications. In fact, electrodes with active material content greater than 80 wt% ( rate of global fillers greater than 80 vol % ), a rate of porosity of 40 vol % , a thickness less than 100 μm, high electrically conductive and finally a specific capacity of 145 mA.h/g were performed
Violet, Fabien. "Développement d’une protéine à libération prolongée, mise au point du procédé d’encapsulation sans solvant halogéné et optimisation du profil de libération." Thesis, Angers, 2015. http://www.theses.fr/2015ANGE0040/document.
Full textPharmacologically active microcarriers (PAM) have been developed as innovative tools for tissue regeneration. This microspherical platform provided an environment for the survival and the differentiation of stem cells through the release of encapsulated protein growth factor. To improve the therapeutic efficacy of the PAM, the microspheres have to (1) provide the full and sustained release of the protein (2) be formulated without halogenated solvent by a process with an easy scale-up. The protein release has been studied through two strategies. The first one was to look for a preservation of the biological activity of the protein during the release. A literature review highlighted protein additives. Some of them were incorporated into the microspheres and increased significantly the protein release. The second one was the modulation of the matrix copolymer PLGAP188-PLGA. The modification of its properties (MW,hydrophobicity) permitted to reach a continuous release and to understand the structure of the microspheres. The prilling technique and the use of glycofurol provide an easy transferable process without toxic solvent. Experimental designs were performed to overcome the technological barriers. Through the modeling the physicochemical properties of the reception medium and the study of the process parameters, the formulation has been improved to produce acceptable particles
Benbettaieb, Nasreddine. "Influence de traitements de réticulation sans solvant sur les propriétés de films à base de gélatine et chitosan encapsulant ou non des antioxydants naturels : caractérisations physico-chimiques et application." Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS045/document.
Full textThis thesis aims to develop an edible packaging made of a mixture of chitosan and gelatin (beef or fish), to better understand the influence of the electron beam irradiation and of the incorporation of natural antioxidants on the physico-chemical and functional properties of the films. A study of the effect of irradiation on antioxidants release kinetics in a simple liquid medium was studied for validation. A preliminary study first showed that the densification of the film-forming solution and the gel during drying does not depend on the thickness or concentration or time and suggests a Fickian diffusion of water in the matrix. The permeability to water vapor increases linearly with film thickness and especially when the extent of the relative humidity differential is high. This phenomenon is attributed to a swelling mechanism and plasticization of the gelatin-chitosan network by the water. The effect of the chitosan-gelatin ratio showed an improvement of the mechanical properties and barrier to water and oxygen of the films compared to chitosan films. These performance gains are due to the good miscibility of the two macromolecules and to the molecular interactions established after the formation of a polyelectrolyte complex, as confirmed by FTIR analysis. Irradiation of films after drying increases the polarity of the surface and the film hydrophilicity, and thus induces an increase in barrier properties to water vapor and oxygen, and also of the mechanical and thermal films. However, irradiation does not change the crystallinity of the films. The incorporation of antioxidants (ferulic acid, coumarin, quercetin and tyrosol) with or without irradiation acts differently on the organization of the macromolecular network and thus on the film properties. Thus, ferulic acid and tyrosol reduce the permeability of water vapor measured in a gradient of 0-30% relative humidity, while it increases up to 90 times with a gradient 30-84 % and an irradiation treatment. The oxygen permeability decreases significantly after addition of quercetin or tyrosol and after irradiation. Ferulic acid and coumarin increases the tensile strength of the films while they are quercetin and ferulic acid which allow to increase the thermal resistance of the films. These results thus demonstrate the complexity of the interactions involved between antioxidants and the chains of chitosan and/or gelatin, their dependence on the moisture level of the system and on the impact of cross-linking treatment by irradiation. It is noticed that the irradiation has protected the active molecules against oxidation for a long period of storage of the films. Release in aqueous medium of ferulic acid is the more delayed with the highest retention in the film at equilibrium (27%). The antioxidants diffusion coefficients, determined from the release kinetics, could be modulated (about 50%) by the irradiation treatments
Wang, Yun. "Catalyseurs d'oxydation en conditions de chimie verte : métaux non toxiques, eau oxygénée, transformation de la biomasse, recyclage par greffage." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30241.
Full textIn order to develop a chemistry more respectful of the environment, access to sustainable processes is mandatory. More specifically, in the field of oxidation chemistry, use of toxic oxidants has to be banished, use of solvents limited and reusable catalysts developed. In this context, two types of greener approaches have been explored. The first approach concerns removal or replacement of acetic acid, an additive - in association with H2O2, favoring exclusive formation of epoxides with Mn and Fe metal complexes as catalysts. For this objective, two strategies have been explored. The first one consists in introducing fluoroalcohol functions in the second coordination sphere of metal complexes with pyridinophane-based ligand to easily activate H2O2. Those complexes did not enhance the catalytic activity for cyclooctene oxidation reactions in comparison to analogous Mn(II) and Fe(III) complexes with unmodified ligands. However, Ni(II) and Co(II) metal complexes with unmodified ligands display interesting catalytic activity for H2 photoproduction. The second strategy aimed to replace acetic acid. Using silica beads functionalized with COOH pendant arms (SiO2@COOH) as additive and H2O2 as oxidant, catalytic epoxidation reactions catalyzed by Mn(II) and Fe(III) metal complexes with BPMEN ligand displayed significant selectivity towards epoxide. The second approach concerns organic-solvent free (ep)oxidation processes with catalysts based on polyoxometalates (POMs). Catalysts SiO2@PMo and SiO2@PW, respectively obtained by ionic grafting of H3PMo12O40 or H3PW12O40 on silica beads functionalized with NH2 pending functions (SiO2@NH2), have been fully characterized. With low catalyst loading, both catalysts displayed efficient oxidation activity and better selectivity than the free POMs. Moreover, recovered beads gave similar conversion and selectivity after two recycling processes