Contents
Academic literature on the topic 'Procaryotes aquatiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Procaryotes aquatiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Procaryotes aquatiques"
Palesse, Stephanie. "Déterminisme de la décision lysogénique au sein des communautés virales aquatiques : importance des fluctuations physiologiques et métaboliques des hôtes procaryotes." Thesis, Clermont-Ferrand 2, 2014. http://www.theses.fr/2014CLF22520.
Full textRain, Franco Angel. "Consequences of environmental disturbances on community structure and functioning of aquatic prokaryotes." Electronic Thesis or Diss., Sorbonne université, 2021. https://theses.hal.science/tel-03730170.
Full textMicrobes are impacted by environmental disturbances affecting the functional stability of microbial communities. However, their responses are complex, difficult to elucidate and the mechanics of functional stability are still poorly understood. In this thesis, I investigated microbial responses to environmental disturbances from single populations to complex communities. For the single population approach, we addressed the transcriptional response of single bacterial populations with varying niche breadths along an environmental gradient. To address the consequences of disturbances at the community level, we have established and tested a protocol for cryopreserving complex microbial communities to improve the replicability of experimental studies with natural microbial aquatic community assemblies as inoculum sources. Furthermore, we have experimentally exposed complex aquatic microbial communities to pulsed disturbances to study the consequences of such disturbances on community structural changes and broad functional parameters, such as bacterial growth efficiency. Finally, we have inspected in more detail the consequences of pulsed disturbances on processes involved in nitrogen cycling. During this thesis, I particularly focused on isolates and communities that originated from coastal aquatic habitats that provide important ecosystem services
Borrel, Guillaume. "Diversité des archées et implication de la composante procaryote dans le cycle biogéochimique du méthane en milieu aquatique continental : études taxonomiques et fonctionnelles dans la colonne d'eau et les sédiments anoxiques du lac Pavin." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00932300.
Full textLaBrie, Richard. "Origine, composition et destinée de la matière organique dissoute et ses interactions avec les communautés de procaryotes dans la mer du Labrador." Thesis, 2019. http://hdl.handle.net/1866/24482.
Full textOceanic prokaryotes are key players in the carbon cycle by consuming dissolved organic mat-ter (DOM) produced by primary producers. As this organic matter is highly complex with varying degree of bioavailability, prokaryotic communities are highly diverse and different taxa target certain types of organic compounds. By consuming this organic matter, prokary-otes reintroduce this carbon into the food web, a critical energy flow in oligotrophic gyres. However, this consumption is not perfect and they release a lot of carbon as CO2 through respiration, but also as recalcitrant DOM. Thus, they contribute to carbon sequestration in aquatic ecosystems. The objective of this thesis is to characterize DOM bioavailability and its influence on the composition and metabolism of prokaryotic communities in the Labrador Sea, described as one of the Earth’s climate system tipping elements. More precisely, we quantify for the first time how the spatial abundance distribution of prokaryotes influences ecosystem metabolism and organic matter association in the surface waters of the Labrador Sea. Lastly, we look at how DOM produced at the surface is transformed and sequestered following the Labrador Sea winter convective mixing. The oceanic carbon budget is still unbalanced. In order to better understand its carbon sources and bioavailability, we characterize DOM bioavailability across the aquatic contin-uum, from lakes to the open ocean. Using a meta-analysis, our results show that the propor-tion of labile organic matter, i.e. readily available for prokaryotes, is similar at around 6% in all aquatic ecosystems. However, the proportion of semi-labile organic matter, i.e requiring transformations to be consumed by prokaryotes, is highly related to terrestrial connectivity. The only ecosystems that did not follow these patterns were in a phytoplankton bloom pe-riod and had a high proportion of labile and semi-labile organic matter as their counterparts at equilibrium. Finally, we estimated that semi-labile organic matter could sustain 62% of prokaryotic biomass in lakes and coastal zones. Second, we evaluated the influence of DOM on prokaryotic metabolism and community composition. In order to determine organic matter composition, prokaryotic community composition and metabolic rates, we did three oceanic cruises in the Labrador Sea onboard the Hudson ship. By using spatial abundance distribution modelling of prokaryotes, we identified strong associations between groups of this novel approach and organic matter composition. We also proposed a framework to bridge the gap between prokaryotic diversity, microbial ecology, and biogeochemistry among methods and across scales. Lastly, we compared how prokaryotic communities from different oceanic strata could se-quester carbon. When they consume organic matter, prokaryotes release a small amount in recalcitrant forms. Through this iterative process, called the microbial carbon pump, prokaryotes contribute to carbon sequestration by creating highly recalcitrant compounds that resist further degradation for hundreds of years. We have shown that all prokaryotes enable the microbial carbon pump, but that prokaryotes from deeper strata are more effi-cient. Our results also conclusively show that the rare prokaryotic taxa are key players in the microbial carbon pump. This thesis contributes to better understand the carbon cycle in the Labrador Sea and in all aquatic ecosystems. We proposed a novel framework to relate biogeochemistry, prokaryotic diversity and microbial ecology which has been a challenge for decades. Moreover, we con-clusively showed for the first time that the iterative process of the microbial carbon pump is related to prokaryotic succession. We also show that it happens in all oceanic strata, but that rare prokaryotes from the deep ocean are more efficient to sequester carbon. Better understanding how DOM composition influences prokaryotes is of prime importance as they are the main drivers of the oceanic carbon cycle.
Book chapters on the topic "Procaryotes aquatiques"
RAVEN, John A. "Évolution des photoautotrophes aquatiques." In Planète bleue, photosynthèse rouge et verte, 29–43. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9082.ch2.
Full text