Dissertations / Theses on the topic 'Problème à N corps quantique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Problème à N corps quantique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Puertas, Javier. "Interaction lumière-matière dans le régime à N-corps des circuits quantiques supraconducteurs." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY021/document.
Full textUnderstanding the way light and matter interact remains a central topic in modern physics despite decades of intensive research. Owing to the large light-matter interaction in superconducting circuits, it is now realistic to think about experiments where the dynamics of environments containing many degrees of freedom becomes relevant. It suggests that bridging many-body physics, usually devoted to condensed matter, and quantum optics is within reach.In this work we present a fully tunable system for studying light-matter interaction with many bodies at different coupling regimes. The circuit consists of a transmon qubit (“the matter”) capacitively coupled to an array of 4700 Josephson junctions in a squid geometry, sustaining many electromagnetic or plasma modes (“the light”). Thanks to the large kinetic inductance of Josephson junctions, the array shows a high characteristic impedance that enhances the qubit-modes coupling. The squids in the transmon and in the array allow us to tune the strength of this coupling via an external magnetic flux.We observe the three required ingredients to explore many-body physics: an environment with a high density of electromagnetic modes, the ultra-strong light-matter coupling regime and a non-linearity comparable to the other relevant energy scales. Moreover, we present a method to treat the effect of the vacuum fluctuations of all these degrees of freedom. Thus we provide a quantitative and parameter-free model of this large quantum system. Finally, from the phase shift induced by the transmon on the modes of the array, the transmon phase shift, we quantify the hybridization of the transmon qubit with several modes in the array (up to 10) and obtain the transmon resonance frequency and its width, demonstrating that we are in the ultra-strong coupling regime.This work demonstrates that quantum circuits are a very powerful platform to explore many-body quantum optics in a fully controlled way. Combining superconducting metamaterials and qubits could allow us to observe qualitative many-body effects such as giant lambshift, non-classical states of light and particle productions or to simulate quantum impurity problems (such as the Kondo model or the sine-Gordon model) and dissipative quantum phase transitions
CHAU, Huu-Tai. "Symétrie et géométrie du problème à N-corps. Application à la physique nucléaire." Phd thesis, Université de Caen, 2002. http://tel.archives-ouvertes.fr/tel-00002252.
Full textFalakshahi, Houman. "Etude de la fusion quantique du cristal de Wigner." Paris 11, 2004. http://www.theses.fr/2004PA112279.
Full textWe study the behaviour of a two-dimensional electrons system as a function of the density of the particles at zero temperature and zero disorder. At high density, the system is in a Fermi liquid state. At low density, the Coulomb repulsion locates the electrons on a periodic lattice (Wigner crystal, 1934). As the density increases, the Wigner crystal melts because of quantum fluctuations. The understanding of this transition is still an open question. According to the usual hypothesis, the crystal melts directly into the Fermi Liquid. In this case the critical density was precisely estimated by Quantum Monte Carlo methods (Tanatar and Ceperley, 1989). But according to other studies another phasis may exist in between theses two phases (Pichard 2003, Andreev and Lifchitz 1969). This work contains two different sections. In the first part, we show that in some experimental samples, the atomic lattice upon which the electrons are traped modify the physical behaviour of the electronic system. In the second part, we study the melting of the Wigner crystal. At first we reproduced the result of Tanatar and Ceperley with supposing that the cristal melts directly to the Fermi Liquid. But the principle result of this work is the finding of a new phasis of lower energy than the liquid and the crystal. This phasis has the same symmetry than the crystal but has new properties. For instance the electrons are located around the crystal sites and are also delocalised everywhere in the system. This result shows that at least a new quantum phasis exists in between the Fermi liquid and the Wigner crystal
Chau, Huu-Tai Pierre. "Symétrie et géométrie du problème à N-corps : application à la physique nucléaire." Caen, 2002. http://www.theses.fr/2002CAEN2029.
Full textLe, Boité Alexandre. "Strongly correlated photons in arrays of nonlinear cavities." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC109.
Full textIn recent years, the control of photon-photon interactions in optical nonlinear media has led to the realization of quantum fluids of light. One of the current challenges is to increase the strength of these interactions and enter the so-called strongly correlated regime. To achieve this goal, arrays of nonlinear cavities are a very promising candidate. In this thesis, theoretical results on arrays of nonlinear cavities described by a driven¬dissipative Bose-Hubbard model are presented. In particular, a general method to compute the mean-field phase diagram of this model is described. Due to the finite life time of photons, the system is intrinsically dissipative : cavity losses must be compensated by an external driving field. This nonequilibrium nature gives rise to interesting features, such as a transition between monostable and bistable phases induced by tunneling. In the limit of weak dissipation and weak driving, analytical results describing generalized Mott insulating phases are derived. These states survive up to a critical tunneling strength, above which a crossover to a classical coherent state takes place. Finally, the issue of how to go beyond the mean-field approximation is addressed by performing exact numerical simulations. Large arrays of cavities were simulated by implementing a new method specifically tailored for driven-dissipative systems
Molineri, Anaïs. "Un nouveau dispositif pour étudier la relaxation d'un système quantique à N corps." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLO013/document.
Full textThis manuscript presents the first steps of a new ultracold atoms experiment using strontium 84. The aim of this experiment is to study the relaxation dynamics of quantum gases initially prepared in an out-of-equilibrium state. This experiment will include a quantum gas microscope, allowing us to measure spatial correlation functions in two-dimensionnal systems. The current state of the construction allows us to generate both magneto-optical trap of strontium: along its wide transition at 461 nm and its narrow transition at 689 nm. Concurrently with the experimental setup, we carried out works on a reconstruction algorithm required for the future data processing of the microscope images. This manuscript details experimental aspects, justifying their choices, and presents the current state of work on the reconstruction algorithm. There are still steps to complete the experimental setup: add a chamber where we will make the measurements to the vaccuum system, set up the quantum gaz microscope and all the required optics to transport the atomic clouds between two vaccuum chambers, to reach Bose-Einstein condensation and to confine the atoms in two-dimensionnal optical traps
Thibaut, Jérôme. "Corrélations, intrication et dynamique des systèmes quantiques à N Corps : une étude variationnelle." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEN021/document.
Full textThis thesis presents a study of quantum many-body systems at zero temperature, where the behavior of the system is purely driven by the quantum effects. I will introduce a variationnal approach developped with Tommaso Roscilde, my PhD supervisor, and Fabio Mezzacapo, my co-supervisor, in order to study these systems.This approach is based on a parametrisation of the quantum state (named Ansatz) on which we apply a variational optimisation, allowing us reproduce the system's evolution under Schrödinger's equation with a limited number of variables.By considering an imaginary-time evolution, it is possible to reconstruct the system's ground state. I focused on S=1/2 XX spin chain, where the long-range quantum correlations complicate a variational study; and I have specifically targeted our Ansatz in order to reproduce the correlations and the entanglement of the ground state. Moreover I considered the antiferromagnetic S=1/2 J1-J2 spin chain, where the non-trivial sign structure of the coefficients of the quantum state introduces an important challenge for the quantum Monte Carlo approach; and where the magnetic frustration induces a quantum phase transition (from a state with long range correlations to a non-magnetic state in the form of a valence-bond crystal).Finally I focused on the time evolution of a quantum many-body system starting from a non-stationary state. I studied the ability of our approach to reproduce the linear increase of the entanglement during time, which is a fondamental obstacle for other approaches such as the density-matrix renormalization group
Moutenet, Alice. "Nouveaux algorithmes pour l’étude des propriétés d’équilibre et hors d’équilibre des systèmes quantiques fortement corrélés." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX026.
Full textWhat do stars in a galaxy, drops in a river, and electrons in a superconducting cuprate levitating above a magnet all have in common? All of these systems cannot be described by the isolated motion of one of their parts. These singular properties emerge from particles and their interactions as a whole: we talk about the emph{many-body problem}.In this Thesis, we focus on properties of strongly-correlated systems, that obey quantum mechanics. Analytical methods being rapidly limited in their understanding of these materials, we develop novel numerical techniques to precisely quantify their properties when interactions between particles become strong.First, we focus on the equilibrium properties of the layered perovskite Sr2IrO4, a compound isostructural to the superconducting cuprate La2CuO4,where we prove the existence of a pseudogap and describe the electronic structure of this material upon doping.Then, in order to address the thermodynamic limit of lattice problems, we develop extensions of determinant Monte Carlo algorithms to compute dynamical quantities such as the self-energy. We show how a factorial number of diagrams can be regrouped in a sum of determinants, hence drastically reducing the fermionic sign problem.In the second part, we turn to the description of nonequilibrium phenomena in correlated systems.We start by revisiting the real-time diagrammatic Monte Carlo recent advances in a new basis where all vacuum diagrams directly vanish.In an importance sampling procedure,such an algorithm can directly addressthe long-time limit needed in the study of steady states in out-of-equilibrium systems.Finally, we study the insulator-to-metal transition induced by an electric field in Ca2RuO4, which coexists with a structural transition.An algorithm based on the non-crossing approximation allows us to compute the current as a function of crystal-field splitting in this material and to compare our results to experimental data
Lienhard, Vincent. "Physique quantique expérimentale à N corps dans des matrices d'atomes de Rydberg. Des modèles de spins à la matière topologique." Thesis, Université Paris-Saclay (ComUE), 2019. https://pastel.archives-ouvertes.fr/tel-02949007.
Full textRydberg-based platforms, involving single atoms trapped in arrays of optical tweezers and excited to Rydberg states, have recently proven attractive to perform quantum simulation of many-body physics. In this thesis, we first demonstrated the generation of arrays of optical tweezers fully loaded by single ground-state atoms. The trapping technique was then extended for Rydberg atoms. The latest are repelled from high-intensity regions via the ponderomotive force, so we created holographically dark regions surrounded by light to confine them. We also studied spin-spin correlations in artificial Ising or XY magnets, engineered by using either the van der Waals or the resonant dipolar coupling between Rydberg atoms. In the Ising case, we observed the growth of antiferromagnetic correlations during a dynamical tuning of the Hamiltonian, revealing an effective velocity for the spreading of correlations, and a typical site to site build-up mechanism. In the XY case, we demonstrated the preparation of a controlled number of spin excitations, and the generation of 1D XY ferromagnets and a 2D stripy order phase (ferromagnetic chains anti-aligned with respect to each other). Finally, we used additional exchange terms of the dipole-dipole interaction to engineer complex hopping amplitudes for an effective particle. This resulted in the emergence of an artificial gauge field, characterized on a minimal three-atom system, and opens the way to the observation of chiral edge states, a signature of topological insulators
Garioud, Renaud. "When perturbation theory goes non-perturbative : applications to strongly-correlated systems." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAX052.
Full textThis thesis focuses on developing new algorithms for the study of strongly correlated materials. They are quantum systems in which interactions between electrons, such as the Coulomb repulsion, play a major role and give rise to remarkable physical properties (like high temperature superconductivity) which can't be described using a one-body formalism. To fully understand these phenomenon one has to treat the full system of many particles and their interactions : this is the many body problem.The project of this thesis is developing, analyzing and applying numerical methods called diagrammatic to these systems. A lots of fundamental questions remain unanswered about the using of perturbative methods to describe a system which is, by definition, in a non-perturbative regime. What are the limits of these approaches? How do correlations effects control the structure of the perturbative series ?Algorithmic developments will be applied to the study of strongly correlated systems, such as the Hubbard model, which will allow to cope with current topics of interest in condensed matter physics, in particular with the physics of correlated magnetism and of the pseudo gap in cuprate superconductors, or with the existence of a Mott phase transition with no preexisting ordered phase as it has been recently observed in experiments on organic materials
Gheeraert, Nicolas. "Non-linéarités quantiques d'un qubit en couplage ultra-fort avec un guide d'ondes." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY034/document.
Full textIn the recent years, the field of light-matter interaction has made a further stride forward with the advent of superconducting qubits ultra-strongly coupled to open waveguides. In this setting, the qubit becomes simultaneously coupled to many different modes of the waveguide, thus turning into a highly intricate light-matter object. Investigating the wealth of new dynamical phenomena that emerge from the high complexity of these engineered quantum many-body systems is the main objective of this thesis.As a first crucial step, we tackle the time-evolution of such a non-trivial system using a novel numerical technique based on an expansion of the full state vector in terms of multi-mode coherent states. Inspired by earlier semi-classical approaches, this numerically exact method provides an important advance compared to the state-of-the-art techniques that have been used so far to study the many-mode ultra-strong coupling regime. Crucially, it also keeps track of every detail of the dynamics of the complete qubit-waveguide system, allowing both to perform the tomography and to extract multi-particle scattering of the waveguide degrees of freedom.An exploration of the many-mode ultra-strong coupling regime using this new technique led to the two core theoretical predictions of this thesis. The first demonstrates that the radiation spontaneously emitted by an excited qubit takes the form of a Schrödinger cat state of light, a result strikingly different from the usual single-photon emission known from standard quantum optics. The second prediction concerns the scattering of low-power coherent signals on a qubit, a very common experimental protocol performed routinely in laboratories. Most remarkably, it is shown that the qubit non-linearity, transferred to the waveguide through the ultra-strong light-matter interaction, is able to split photons from the incoming beam into several lower-energy photons, leading to the emergence of a low-frequency continuum in the scattered power spectrum that dominates the inelastic signal. By studying the second-order correlation function of the radiated field, it is also shown that emission at ultra-strong coupling displays characteristic signatures of particle production.In the final part of the thesis, the second-order correlation function is investigated again, but this time experimentally, and in the regime of moderate coupling. Although the results are still preliminary, this part of the thesis will provide an instructive account of signal measurement theory and will allow to understanding in-depth the experimental procedure involved in measuring quantum microwave signals. Moreover, the experimental developments and microwave simulations tools described in this section could be applied in the future to signals emitted by ultra-strongly coupled qubits, in order to observe the signatures of particle production revealed by the second-order correlation function
Hansen, Hubert. "Méthodes non-perturbatives en théorie quantique des champs : au-delà du champ moyen, l'approximation de la phase aléatoire." Phd thesis, Université Claude Bernard - Lyon I, 2002. http://tel.archives-ouvertes.fr/tel-00003814.
Full textEn se plaçant au-delà du champ moyen où seules sont prises en compte les corrélations entre une particule et un potentiel "moyen" à un corps, la RPA va permettre de rajouter dans le calcul de l'état fondamental des corrélations entre particules.
Afin de mettre en place le formalisme, on applique la RPA, sons différentes formes (standard, renormalisée, en termes de fonctions de Green), à l'une des plus simples théories des champs en interaction, la théorie scalaire lambda x phi^4. On montre qu'il se produit une transition de phase due à une brisure dynamique de symétrie dont le paramètre critique se rapproche des résultats obtenus sur réseaux et par la technique des "clusters". Les résultats sont aussi présentés à température finie pour le champ moyen.
On étudie également un modèle effectif réaliste de la transition de phase chirale, le modèle sigma-linéaire et on montre que le théorème de Goldstone est restauré, contrairement à l'approximation gaussienne.
Enfin pour éclaircir quelques points de la RPA et, aller au-delà des corrélations obtenues dans la forme renormalisée, on considère l'oscillateur anharmonique en mécanique quantique, en introduisant les corrélations minimales au-delà du champ moyen et on montre que les corrélations RPA améliorent grandement le résultat obtenu en champ moyen.
Shevate, Sayali. "Preparation and Rydberg excitation of large arrays of microscopic atomic ensembles." Thesis, Strasbourg, 2021. http://www.theses.fr/2021STRAE003.
Full textUltracold atoms in optical tweezer arrays have emerged as one of the most versatile platforms for quantum many-body physics, quantum simulation and quantum computation. In this thesis, I report a way to achieve fully occupied tweezer arrays to sizes well beyond 200 sites by exploiting elastic collisions as compared to light-assisted inelastic collisions and along the way greatly advance the feasibility of quantum simulations based on trapped atomic ensembles with programmable geometries. We demonstrate, for the first time, fully filled versatile arrays of atomic ensembles > 400 tweezers prepared using a digital micromirror device, where each tweezer contains ~ 60 atoms in a microscopic volume, high atom number and remarkably low atom number fluctuations. As a necessary pre-requisite to performing the coherent manipulation of the Rydberg excitation of these atomic ensembles, I present experiments on narrow line with two-photon Rydberg excitation of these large arrays of atomic ensembles. I also discuss an analysis of the effects causing spectral broadening. This work paves the way towards detailed analysis of many-body effects in a structured Rydberg gas-an important step towards building a quantum simulator based on trapped atomic ensembles in optical tweezer arrays. This opens up applications ranging from quantum simulation of exotic quantum spin models, quantum dynamics including transport and many-body localization and quantum cellular automat a with programmable spatial configurations and versatile Rydberg mediated interactions
Mei, Pu. "Corrélations spatiales des particules dans l’Hélium-6 et dans l’Hélium-8." Caen, 2011. http://www.theses.fr/2011CAEN2066.
Full textIn a nuclear system, each nucleon is subject to nuclear forces exerted by the others, and the structure of states provides evidence of the nature of the interactions. On the other hand, the nuclear wave function is a measure of the probability of a particular geometry. As such, it provides an illustrative picture of the geometric structures inside the nucleus. Knowledge of the geometries of nuclear matter in specific quantum states helps understand nuclear structure and interactions, provides theoretical validation and allows prediction of experimental results. This thesis has its focus on the geometries of two and four identical particle systems, in particular those resulting from the short-range attractive nature of nuclear interactions. For two-particle systems coupled to an arbitrary angular momentum, distinct spatial and angular configurations are found regularly related to the quantum numbers, which is explained analytically. Application to the Borromean halo nucleus 6He with first the delta interaction and then the pairing interaction shows the coexistence of the di-neutron and the cigar-like configurations, with a predominance of the former over the latter. As for four-particle systems, 8He is studied as a prototype. The expression of the angular probability density is derived analytically for a general 0+ state. Configurations in terms of relative angles where the angular probability density peaks fall into two categories of geometries with specific symmetries, which can be considered as the generalization of the geometries of a two-particle system to those of a four-particle system
Victorin, Nicolas. "Gaz quantiques à plusieurs composantes sous champ de jauge." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY049.
Full textThe first observation of Bose-Einstein condensation (BEC) in dilute atomic vapors has been a breakthrough both fundamentally, verifying theoretical concept predicted by Bose and Einstein several decades ago, revealing the statistical property of quantum particles. Since then, a new field has emerged and experimentalists are able to study this artificial matter in a very clean and controllable way. Cold-atom systems allows us to explore a whole range of fundamental phenomena that are extremely difficult or impossible to study in real materials, such as Bloch oscillation, Mott-superfluid transition, topology of band structure, orbital magnetism just to name a few. These progresses allow the quantum simulation of a large class of Hamiltonians subjected to magnetic field. Indeed, condensed matter phenomena under strong magnetic fields are still intriguing and are at the center of modern research. For instance, topological states of matter are realized in quantum Hall systems. A ladder is the simplest geometry where one can get some insight on two-dimensional quantum systems subjected to a synthetic gauge field.The first part of this thesis is dedicated to the study of double ring ladder subjected to gauge fluxes.Through both numerical and analytical calculation we explore the phase diagram of the system revealing known phases such as Meissner, vortex and biased ladder phase and the effect of commensurability of the total flux. Thanks to Bogoliubov approximation we are able to derive the excitation spectrum of the system and the nature of the low energy modes in the different phases revealing supersolid features as well as Josephson oscillation between the rings. The regime of infinite interaction between the boson enabled us to use exact mapping into fermions using Jordan-Wigner transformation to characterize the properties of the ground state. We explore the intermediate regime of interactions. Thanks to mode expansion and re-fermionization approach of the bosonized Hamiltonian of the double ring under gauge flux, we show the peculiarities of finite size periodic boundary condition on the current in the double ring with a rotating barrier inducing gauge flux.Exciton-polaritons in semiconductor microcavities constitute an amazing playground to study quantum fluids of light where remarkable effects, similar to those observed in cold atoms experiments, arise. Even though this quantum fluid of light is assumed to be composed, almost, upon pure condensate, the non-equilibrium nature of the gas make the comparison with typical condensates in cold atom experiment rather non trivial.The second part of the thesis is devoted to the study of excitons-polariton in honeycomb lattice. One of the most interesting aspect of the honeycomb lattice problem is that its low-energy excitations are massless, chiral, Dirac particles. Exciton-polariton, which are composite particle of light, in this lattice get back the relativist character of light but in a context where condensation is possible. Features of bosons in honeycomb lattice including retarded Green’s functions, Brillouin-zone selection mechanism and link between geometry of the lattice. We show that decay mode are suppressed as a consequence of the symmetry of the lattice leading to the possibility to engineer polaritonic dark-state. Then we obtain the Bogoliubov excitation spectrum of exciton-polariton. The usual bistability curve is shown to be unstable above C point showing the break-down of mean-field theory because of possible highly non-classical state. Finally experiment and theory are compared
Scarlatella, Orazio. "Driven-Dissipative Quantum Many-Body Systems." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS281/document.
Full textMy PhD was devoted to the study of driven-dissipative quantum many-body systems. These systems represent natural platforms to explore fundamental questions about matter under non-equilibrium conditions, having at the same time a potential impact on emerging quantum technologies. In this thesis, we discuss a spectral decomposition of single-particle Green functions of Markovian open systems, that we applied to a model of a quantum van der Pol oscillator. We point out that a sign property of spectral functions of equilibrium systems doesn't hold in the case of open systems, resulting in a surprising ``negative density of states", with direct physical consequences. We study the phase transition between a normal and a superfluid phase in a prototype system of driven-dissipative bosons on a lattice. This transition is characterized by a finite-frequency criticality corresponding to the spontaneous break of time-translational invariance, which has no analog in equilibrium systems. Later, we discuss the mean-field phase diagram of a Mott insulating phase stabilized by dissipation, which is potentially relevant for ongoing experiments. Our results suggest that there is a trade off between the fidelity of the stationary phase to a Mott insulator and robustness of such a phase at finite hopping. Finally, we present some developments towards using dynamical mean field theory (DMFT) for studying driven-dissipative lattice systems. We introduce DMFT in the context of driven-dissipative models and developed a method to solve the auxiliary problem of a single impurity, coupled simultaneously to a Markovian and a non-Markovian environment. As a test, we applied this novel method to a simple model of a fermionic, single-mode impurity
Ripoche, Julien. "Projected Bogoliubov Many-Body Perturbation Theory : Overcoming formal and technical challenges." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS325.
Full textGiven elementary inter-nucleon interactions,the resolution of the A-body Schrödinger equation gives access to the properties of the nuclear eigenstates. Many-body perturbation theory (MBPT) based on a Hartree-Fock mean field allows one to treat the dynamical correlations at play in doubly-closed-shell nuclei. Beyond shell closures,breaking U(1) symmetry associated with the conservation of neutron and proton numbers further permits to capture static correlations at the meanfield level and to formulate the well-behaved Bogoliubov many-body perturbation theory (BMBPT).Nevertheless, BMBPT results show contaminations associated with the broken symmetry that is only emergent on finite quantum system such as theatomic nucleus. Thus, the restoration of U(1) symmetry beyond the mean field is necessary for acorrect description and gives rise to the projected BMBPT method (PBMBPT). The goal is to implement PBMBPT in order to perform ab initio calculations of singly-open-shell mid-mass nuclei.The present work provides systematic solutions to the formal and technical problems arising during the implementation of PBMBPT: an automatic and safe method to generate PBMBPT diagrams and associated expressions, a framework to calculate other observables than the energy, an extension of the normal ordering approximation to symmetry breaking methods as well as an automatic and safe tool for spherical reduction of tensor networks
Drissi, Mehdi. "Renormalization invariance of many-body observables within pionless effective field theory." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS414/document.
Full textThe current paradigm to describe the nuclear interaction is within the frame of Chiral Effective Field Theory (ₓEFT) which organizes contributions to observables in a serie of decreasing importance. It happens that the leading contribution already requires to solve exactly the Schrödinger equation with a particular Hamiltonian. The same requirement is at play in pionless EFT which considers only nucleonic degrees of freedom. Such calculations are numerically intractable for A-body observables with A >> 10. One must design an additional expansion and truncation for many-body observables. In this thesis, non-perturbative approximations on the basis self-consistent Green’s function (SCGF) and on many-body perturbation theory (MBPT) are considered together with a pionless EFT. The goal of the present thesis is to investigate, in such framework, the renormalization invariance of many-body observables computed in A-body sectors with A >> 10. Hopefully the lessons learnt can be extended to ₓEFT. Analysis of numerical calculations realized with a state-of-the-art SCGF code reveals a critical numerical approximation leading to renormalization dependent observables. A necessary fix is proposed and must be implemented before any calculations based on SCGF and EFT in the future. This emphasizes the criticality of numerical approximations for any calculation within a pionless EFT. At the same time, renormalization invariance of observables computed within MBPT is studied formally, opening the path to formulate the renormalization of a wide range of many-body truncation schemes in the future
Bureik, Jan-Philipp. "Number statistics and momentum correlations in interacting Bose gases." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP014.
Full textThis thesis work is dedicated to the study of number statistics and momentum correlations in interacting lattice Bose gases. The Bose-Hubbard model is simulated by loading Bose-Einstein condensates (BECs) of metastable Helium-4 atoms into a three-dimensional (3D) optical lattice. This model exhibits a quantum phase transition from a superfluid to a Mott insulator that is driven by interaction-induced quantum fluctuations. The objective of this work is to comprehend the role of these quantum fluctuations by analyzing their signatures in momentum space. The original detection scheme employed towards this aim provides the single-particle resolved momentum distribution of the atoms in 3D. From such datasets made up of thousands of individual atoms, the number statistics of occupation of different sub-volumes of momentum space yield information about correlation or coherence properties of the interacting Bose gas. At close-by momenta these occupation probabilities permit the identification of underlying pure-state statistics in the case of textbook many-body states such as lattice superfluids and Mott insulators. In the weakly-interacting regime, well-established correlations between pairs of atoms at opposite momenta are observed. Furthermore, these pair correlations are found to decrease in favor of more intricate correlations between more than two particles as interactions are increased. A direct observation of non-Gaussian correlations encapsulates the complex statistical nature of strongly-interacting superfluids well before the Mott insulator phase transition. Finally, at the phase transition, fluctuations of the occupation number of the BEC mode are found to be enhanced, constituting a direct signature of the quantum fluctuations driving the transition. System-size independent quantities such as the Binder cumulant are shown to exhibit distinctive sharp features even in a finite-size system, and hold promise for constituting suitable observables for determining universal behavior when measured in a homogeneous system
Arthuis, Pierre. "Bogoliubov Many-Body Perturbation Theory for Nuclei : Systematic Generation and Evaluation of Diagrams and First ab initio Calculations." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS304/document.
Full textThe last few decades in nuclear structure theory have seen a rapid expansion of ab initio theories, aiming at describing the properties of nuclei starting from the inter-nucleonic interaction. Such an expansion relied both on the tremendous growth of computing power and novel formal developments. This work focuses on the development of the recently proposed Bogoliubov Many-Body Perturbation Theory that relies on a particle-number-breaking reference state to tackle singly open-shell nuclei. The formalism is first described in details, and diagrammatic and algebraic contributions are derived up to second order. Its link to standard Many-Body Perturbation Theory is made explicit, as well as its connexion to Bogoliubov Coupled-Cluster theory. An automated extension to higher orders based on graph theory methods is then detailed, and the ADG numerical program generating and evaluating BMBPT diagrams at arbitrary order is introduced. Such a formal development carries implications that are not restricted to the present work, as the developed methods can be applied to other many-body methods. Finally, first numerical results obtained for oxygen, calcium and nickel isotopes are presented. They establish BMBPT as a method of interest for large-scale computations of isotopic or isotonic chains in the mid-mass sector of the nuclear chart
Ricaud, Julien. "Symétrie et brisure de symétrie pour certains problèmes non linéaires." Thesis, Cergy-Pontoise, 2017. http://www.theses.fr/2017CERG0849.
Full textThis thesis is devoted to the mathematical study of two quantum systems described by nonlinear models: the anisotropic polaron and the electrons in a periodic crystal. We first prove the existence of minimizers, and then discuss the question of uniqueness for both problems. In the first part, we show the uniqueness and nondegeneracy of the minimizer for the polaron, described by the Choquard--Pekar anisotropic equation, assuming that the dielectric matrix of the medium is almost isotropic. In the strong anisotropic setting, we leave the question of uniqueness open but identify the symmetry that can possibly be degenerate. In the second part, we study the electrons of a crystal in the periodic Thomas--Fermi--Dirac--Von~Weizsäcker model, varying the parameter in front of the Dirac term. We show uniqueness and nondegeneracy of the minimizer when this parameter is small enough et prove the occurrence of symmetry breaking when it is large
Baloïtcha, Ezinvi. "[Première partie] : Méthode des paquets d'ondes pour le calcul des sections efficaces et constantes de vitesse dans les processus non adiabatiques : [deuxième partie] : paramétrisation de problèmes à N-corps en mécanique quantique non relativiste." Paris 11, 2002. http://www.theses.fr/2002PA112144.
Full textThe thesis is subdivided in two parts: I. Method of wave packets for calculation of the cross section and thermal rate constant for the non-adiabatic processes. II. Parametrization of N-body problem in non-relativistic quantum mechanics. The part devoted to parameterization of the N-body problem deals with curvilinear coordinates and supersymmetry in non-relativistic quantum mechanics with applications to the principal-axis hyperspherical coordinate. Operators known as quasimomenta properties have been studied and a generalization of commutation relation has been established for these quasimomenta. The supersymmetry studied in non-relativistic quantum mechanics constitutes an approach for resolving the eigenvalue problems mainly for the Schrödinger equation. These works have been presented in three publications: J. Math. Phys. 40 6133 (1999) ; J. Phys. B 32 4823 (1999) ; Mol. Phys. 98, 387 (2000). The other part devoted to molecular dynamics contains two applications: first, the development of a method of calculation based on wave packets to extract the rate constant speed charge exchange process in ion-atom collision. This work have been presented in three publications: Phys. Rev. A, 63 42704(2001); J Chem. Phys. 114, 8741(2001); International Journal of Molecular Sciences, (in press, 2002). The second application concerns the computation of the cumulative probability of reaction for an hydrogen transfer in isomerization process. The conclusions are published in J Chem. Phys. 117 (in press, 2002)
Despres, Julien. "Correlation spreading in quantum lattice models with variable-range interactions." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLO018.
Full textIn this thesis, we have investigated the spreading of quantum correlations in isolated lattice models with short- or long-range interactions driven far from equilibrium via sudden global quenches. A main motivation for this research topic was to shed new light on the conflicting results in the literature concerning the scaling law of the correlation edge, its lack of universality and the incompleteness of the existing physical pictures to fully characterize the propagation of quantum correlations. To do so, we have presented a general theoretical approach relying on a quasiparticle theory. The latter has permitted to unveil a generic expression for the equal-time connected correlation functions valid both for short-range and long-range interacting particle and spin lattice models on a hypercubic lattice. Relying on stationary phase arguments, we have shown that its causality cone displays a universal twofold structure consisting of a correlation edge and a series of local extrema defining the outer and inner structure of the space-time correlations. For short-range interactions, the motion of each structure is ballistic and the associated spreading velocities are related to the group and phase velocites of the quasiparticle dispersion relation of the post-quench Hamiltonian. For long-range interactions of the form 1/|R|^α, the correlation spreading is substantially different due to a possible divergence of group velocity when tuning the power-law exponent α. For a divergent group velocity, extit{ie.} the quasi-local regime, we have presented evidence of a universal algebraic structure for the causality cone. While, the correlation edge motion has been found to be always slower than ballistic, the local extrema propagate faster than ballistically and ballistically for gapless and gapped quantum systems respectively. For the local regime implying a well-defined group velocity, we have recovered similar scaling laws and spreading velocities than the short-range case for the causality cone of correlations. The previous theoretical predictions have been verified numerically using tensor network techniques within the case study of the short-range Bose-Hubbard chain and the long-range s=1/2 XY and transverse Ising chains
Gremaud, Benoit. "Problème coulombien à trois corps en mécanique quantique." Phd thesis, Université Pierre et Marie Curie - Paris VI, 1997. http://tel.archives-ouvertes.fr/tel-00011786.
Full textBoumerzoug, Mohamed Saddek. "Méthode variationnelle dans le problème quantique de trois corps." Thèse, Université du Québec à Trois-Rivières, 1986. http://depot-e.uqtr.ca/5800/1/000561744.pdf.
Full textBidzhiev, Kemal. "Out-of-equilibrium dynamics in a quantum impurity model." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS352/document.
Full textThe fields of in- and out-of-equilibrium quantum many-body systems are major topics in Physics, and in condensed-matter Physics in particular. The equilibrium properties of one-dimensional problems are well studied and understood theoretically for a vast amount of interacting models, from lattice spin chains to quantum fields in a continuum. This progress was allowed by the development of diverse powerful techniques, for instance, Bethe ansatz, renormalization group, bosonization, matrix product states and conformal field theory. Although the equilibrium characteristics of many models are known, this is in general not enough to describe their non-equilibrium behaviors, the latter often remain less explored and much less understood. Quantum impurity models represent some of the simplest many-body problems. But despite their apparent simplicity, they can capture several important experimental phenomena, from the Kondo effect in metals to transport in nanostructures such as point contacts or quantum dots. In this thesis consider a classic impurity model - the interacting resonant level model (IRLM). The model describes spinless fermions in two semi-infinite leads that are coupled to a resonant level -- called quantum dot or impurity -- via weak tunneling and Coulomb repulsion. We are interested in out-of-equilibrium situations where some particle current flows through the dot, and study transport characteristics like the steady current (versus voltage), differential conductance, backscattered current, current noise or the entanglement entropy. We perform extensive state-of-the-art computer simulations of model dynamics with the time-dependent density renormalization group method (tDMRG) which is based on a matrix product state description of the wave functions. We obtain highly accurate results concerning the current-voltage and noise-voltage curves of the IRLM in a wide range parameter of the model (voltage bias, interaction strength, tunneling amplitude to the dot, etc.).These numerical results are analyzed in the light of some exact out-of-equilibrium field-theory results that have been obtained for a model similar to the IRLM, the boundary sine-Gordon model (BSG).This analysis is in particular based on identifying an emerging Kondo energy scale and relevant exponents describing the high- and low- voltage regimes. At the two specific points where the models are known to be equivalent our results agree perfectly with the exact solution. Away from these two points, we find that, within the precision of our simulations, the transport curves of the IRLM and BSG remain very similar, which was not expected and which remains somewhat unexplained
Roccia, Jérome. "Densité de niveaux du problème a n-corps." Paris 11, 2007. http://www.theses.fr/2007PA112136.
Full textWe investigate the many-body level density rho_MB for fermion and boson gases. We establish its behavior as a function of the temperature and the number of particules. We deal with correction terms due to finite number of particles effects for rho_MB : for fermions, it seems that it exists only one behavior whereas the case of bosons. Besides we propose a semiclassical expression of rho_MB for two types of particules with an angular momentum. It is decomposed into a smooth part coming from the saddle point method plus corrective terms due to the expansion of the number of partitions for two types of particles and an oscillating part coming from the fluctuations of the single-particle level density. Our model is validated by a numerical study. For the case of the atomic nucleus, the oscillating part of rho_MB is controled by a temperature factor which depends on the chaotic or integrable nature of the system and depends on the fluctuation of the ground state energy. This leads to consider in more detail this last quantity. For an isolated system, we give the general expression of the mean value for fixed potentials. We treat the self-bound system case through the example of the three dimensional harmonic oscillator (3DHO). Furthermore we study the oscillating part of rho_MB for bosons in the low temperature regime for billiards and for isotropic 3DHO. We note the oscillations disappear leading to a power law correction. In the case of the isotropic 3DHO, these corrections have the same order of magnitude as the smooth part. In the same way, for the high temperature regime we show the oscillating part of rho_MB is exponentially negligeable compared to the smooth part
Lasseri, Raphaël-David. "Distribution spatiale de fermions fortement corrélés en interaction forte : formalisme, méthodes et phénoménologie en structure nucléaire." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS248/document.
Full textThe atomic nucleus is intrinsically a complex system, composed of strongly correlated non-elementary fermions, sensitive to strong and electroweak interaction. The description of its internal structure is a major challenge of modern physics. In fact the complexity of the nucleon-nucleon interaction generates correlations which are responsible of the diversity of shapes that the nuclei can adopt. Indeed the nuclei can adopt either quasi-homogeneous shapes when nucleons are delocalized or shapes where spatially localized structure can emerge, namely nuclear clusters. This work is an extension of relativistic mean-fields approach (RMF), which allows an universal treatment of nuclear phenomenology. In a first time we will present the necessary formalism to construct such an approach starting with the fundamental interactions underlying nucleons dynamics within the nucleus. However this approach doesn't allow an accurate reproduction of experimental properties: a purely mean-field approach neglects to many correlations. Existing methods to treat both particle-hole (deformation), particle-particle (pairing) correlations will be discussed. First we will propose a new diagrammatic method, which take correlation into account in a perturbative way, the implementation of this approach using combinatory theory will be discussed. Then we will get back to a phenomenological treatment of particle-hole correlations, to focus on the impact of particle-particle. Formation of nucleonic pair will be discussed in the language of graph theory, allowing several formal simplifications and shed a different light on pairing. Pairing correlations will be at first treated using a relativistic Hartree-Bogolioubov approach. Nevertheless this formalism doesn't conserve particle number, and thus we will present a projective approach to restore it. The effect of this restoration will also be studied. Then to describe general nuclear deformation, several implementations and optimizations developed during this PhD will be presented. With this tools, clusterisation will be investigated as phenomenon emerging for certain class of correlations. Localization measure will be derived allowing a clearer understanding of cluster physics. The analysis of theses quantities makes possible a first unified description of cluster formation both for light nuclei (Neon) or for heavy alpha emitters (Polonium). Cluster emergence will be described as a quantum phase transition, an order parameter will be displayed and this formation will be characterized as a Mott transition. The influence of pairing correlations on cluster formation is studied and a detailed study of pairs spatial properties is performed for nuclei from several mass regions. Lastly a method allowing treatment of 4-body correlations (quartteting) is proposed to explain cluster emergence as alpha particle preformation
Magnan, Eric. "Spontaneous decoherence in large Rydberg systems." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLO008/document.
Full textQuantum simulation consists in engineering well-controlled artificial systems that are ruled by the idealized models proposed by the theorists. Such toy models can be produced with individual atoms, where laser beams control individual atomic states and interatomic interactions. In particular, exciting atoms into a highly excited state (called a Rydberg state) allows to control individual atoms and taylor interatomic interactions with light. In this thesis, we investigate experimentally two different types of Rydberg-based quantum simulators and identify some possible limitations.At the Joint Quantum Institute, we observe the decoherence of an ensemble of up to 40000 Rydberg atoms arranged in a cubic geometry. Starting from the atoms prepared in a well-defined Rydberg state, we show that the spontaneous apparition of population in nearby Rydberg states leads to an avalanche process. We identify the origin of the mechanism as stimulated emission induced by black-body radiation followed by a diffusion induced by the resonant dipole-dipole interaction. We describe our observations with a steady-state mean-field analysis. We then study the dynamics of the phenomenon and measure its typical timescales. Since decoherence is overall negative for quantum simulation, we propose several solutions to mitigate the effect. Among them, we discuss the possibility to work at cryogenic temperatures, thus suppressing the black-body induced avalanche.In the experiment at Laboratoire Charles Fabry (Institut d'Optique), we analyze the limitation of a quantum simulator based on 2 and 3 dimensional arrays of up to 70 atoms trapped in optical tweezers and excited to Rydberg states. The current system is limited by the lifetime of the atomic structure. We show that working at cryogenic temperatures could allow to increase the size of the system up to N=300 atoms. In this context, we start a new experiment based on a 4K cryostat. We present the early stage of the new apparatus and some study concerning the optomechanical components to be placed inside the cryostat
Roccia, Jerome. "La Densité de niveaux du Problème à N-corps." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00176867.
Full textDamak, Mondher. "C*-algebres et probleme a n-corps." Cergy-Pontoise, 2000. http://www.theses.fr/2000CERG0091.
Full textMinganti, Fabrizio. "Out-of-Equilibrium Phase Transitions in Nonlinear Optical Systems." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC004/document.
Full textIn this thesis we theoretically study driven-dissipative nonlinear systems, whosedynamics is capture by a Lindblad master equation. In particular, we investigate theemergence of criticality in out-of-equilibrium dissipative systems. We present a generaland model-independent spectral theory relating first- and second-order dissipative phasetransitions to the spectral properties of the Liouvillian superoperator. In the critical region,we determine the general form of the steady-state density matrix and of the Liouvillianeigenmatrix whose eigenvalue defines the Liouvillian spectral gap. We discuss the relevanceof individual quantum trajectories to unveil phase transitions. After these general results,we analyse the inset of criticality in several models. First, a nonlinear Kerr resonator in thepresence of both coherent (one-photon) and parametric (two-photon) driving and dissipation.We then explore the dynamical properties of the coherently-driven Bose-Hubbard and of thedissipative XYZ Heisenberg model presenting a first-order and a second-order dissipativephase transition, respectively. Finally, we investigate the physics of photonic Schrödingercat states in driven-dissipative resonators subject to engineered two-photon processes andone-photon losses. We propose and study a feedback protocol to generate a pure cat-likesteady state
Lavarelo, Arthur. "De la frustration et du désordre dans les chaînes et les échelles de spins quantiques." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00923197.
Full textDelange, Pascal. "Many-electron effects in transition metal and rare earth compounds : Electronic structure, magnetic properties and point defects from first principles." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX040/document.
Full textThe topic of this thesis is the first-principles theory of the electronic structure of materials with strong electronic correlations. Tremendous progress has been made in this field thanks to modern implementations of Density Functional Theory (DFT). However, the DFT framework has some limits. First, it is designed to predict ground state but not excited state properties of materials, even though the latter may be just as important for many applications. Second, the approximate functionals used in actual calculations have more limited validity than conceptually exact DFT: in particular, they are not able to describe those materials where many-electron effects are most important.Since the 1990's, different many-body theories have been used to improve or complement DFT calculations of materials. One of the most significant non-perturbative methods is Dynamical Mean-Field Theory (DMFT), where a lattice model is self-consistently mapped onto an impurity model, producing good results if correlations are mostly local. We briefly review these methods in the first part of this thesis. Recent developments on DMFT and its extensions were aimed at better describing non-local effects, understanding out-of-equilibrium properties or describing real materials rather than model systems, among others. Here, we focus on the latter aspect.In order to describe real materials with DMFT, one typically needs to start with an electronic structure calculation that treats all the electrons of the system on the same footing, and apply a many-body correction on a well-chosen subspace of orbitals near the Fermi level. Defining such a low-energy subspace consistently requires to integrate out the motion of the electrons outside this subspace. Taking this into account correctly is crucial: it is, for instance, the screening by electrons outside the subspace strongly reduces the Coulomb interaction between electrons within the subspace. Yet it is a complex task, not least because DFT and DMFT are working on different observables. In the second part of this thesis, we discuss low-energy models in the context of the recently proposed Screened Exchange + DMFT scheme. In particular, we study the importance of non-local exchange and dynamically-screened Coulomb interactions. We illustrate this by discussing semi-core states in the d10 metals Zn and Cd.In the third and last part, we use the methods described above to study the electronic structure of three fundamentally and technologically important correlated materials. First, we discuss the physics of point defects in the paramagnetic phase of bcc Fe, more precisely the simplest of them: the monovacancy. Surprisingly for such a simple point defect, its formation energy had not yet been reported consistently from calculations and experiments. We show that this is due to subtle but nevertheless important correlation effects around the vacancy in the high-temperature paramagnetic phase, which is significantly more strongly correlated than the ferromagnetic phase where DFT calculations had been done.Second, we study the metal-insulator phase transition in the metastable VO2 B phase. We show that this transition is similar to that between the conventional rutile and M2 VO2 phases, involving both bonding physics in the dimer and an atom-selective Mott transition on the remaining V atoms. Motivated by recent calculations on SrVO3, we study the possible effect of oxygen vacancies on the electronic structure of VO2.Finally, we propose a scheme beyond DFT for calculating the crystal field splittings in rare earth intermetallics or oxides. While the magnitude of this splitting for the localized 4f shell of lanthanides does not typically exceed a few hundred Kelvin, it is crucial for their hard-magnetic properties. Using a modified Hubbard I approximation as DMFT solver, we avoid a nominally small but important self-interaction error, stressing again the importance of carefully tailored low-energy models
Féjoz, Jacques. "Mouvements périodiques et quasi-périodiques dans le problème des n corps." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2010. http://tel.archives-ouvertes.fr/tel-00702650.
Full textBommier, Antoine. "Regularite et prolongement meromorphe de la matrice de diffusion pour les problemes a n corps a longue portee." Palaiseau, Ecole polytechnique, 1993. http://www.theses.fr/1993EPXX0014.
Full textBang, Dominique. "Configurations polygonales en équilibre relatif : existence, stabilité et problème restreint." Observatoire de Paris (1667-....), 2002. https://hal.science/tel-02095308.
Full textNiederman, Laurent. "Résonances et stabilité dans le problème planétaire : solutions de seconde espèce." Paris 6, 1993. http://www.theses.fr/1993PA066615.
Full textBeck, Arnaud. "Simulation N-Corps d'un plasma." Phd thesis, Observatoire de Paris, 2008. http://tel.archives-ouvertes.fr/tel-00359057.
Full textTout d'abord les problèmes d'expansion de plasma dans le vide. Ce genre de simulation fait coexister des densités d'ordres de grandeur très différents. Certaines zones peuvent avoir un comportement hydrodynamique pendant que d'autres sont peuplées de particules avec des trajectoires balistiques car trop énergétiques. Les protons, notamment, peuvent ainsi être accélérés à des vitesses requises pour la fusion. Ce type de problème, faisant intervenir une interface plasma-vide, est pratiquement impossible à étudier à l'aide des techniques de simulation courantes (e.g. codes MHD, Vlasov, Fokker-Planck, ...).
L'autre champ d'application est celui de la simulation des plasmas modérément ou fortement couplés qui concerne de nombreux plasmas de laboratoire, mais également des plasmas astrophysiques, tels, par exemple, la zone convective du Soleil. Dans les plasmas dits couplés, les collisions ``binaires proches'' entre charges ne peuvent pas être négligées. Or, les modèles numériques de type Fokker-Planck, très majoritairement utilisés pour simuler des plasmas faiblement collisionnels, n'en tiennent pas compte ce qui les rends inadéquats à ce type de plasma. La technique N-Corps, quant à elle, gère chaque particule individuellement et peut très bien décrire précisément les trajectoires de particules subissant ce genre de déviation violente.
Dufour, Marianne. "Sur la façon d'approcher les solutions de modèles algébriques du problème à N corps." Université Louis Pasteur (Strasbourg) (1971-2008), 1986. http://www.theses.fr/1986STR13130.
Full textWe have studied a class of algebraic eigenvalue problems that generate tridiagonal matrices. The Lipkin Hamiltonian was chosen as representative. Three methods have been implemented, whose extension to more general many body problems seems possible. 1) Degenerate Linked Cluster Theory (LCT), which disregards special symmetries of the interaction and defines a hierarchy of approximation based on model spaces at fixed number of particule-hole excitation of the unperturbed Hamiltonian. The method works for small perturbations but does not yield a complete description. 2) A new linearization method that replaces the matrix to be diagonalized by local (tangent) approximations by harmonic matrices [. . . ]
Michel-Dansac, Léo. "Evolution des disques de galaxies isolées dans l'univers proche : apport de la calibration spectro-photométrique de simulations numériques par des modèles de synthèse de populations stellaires." Aix-Marseille 1, 2003. http://www.theses.fr/2003AIX11055.
Full textBesse, Grégoire. "Description théorique de la dynamique nucléaire lors des collisions d'ions lourds aux énergies de Fermi." Thesis, Nantes, 2017. http://www.theses.fr/2017NANT4061/document.
Full textThis PhD-work is about nuclear physics for low and intermediate energies, the incident energy from tens MeV to energies about the Fermi-energy. This work consists essentially in the development of microscopic models describing the N-body nuclear problem, the main goal is to provide some theoretical tools adapted to the study of phenomena linked to international experimental programs such as LNL-FAZIA, GANILSpiral 2, GSI-FAIR and LBL-FRIB. These new experiments will produce high-quality radioactive beams that will provide us to explore nuclear matter far from stability, especially in isospin and therefore to progress in the comprehension of fundamental interactions. Interdisciplinary applications in the field of compact stars can be envisaged as due to this work. Indeed, astrophysics and nuclear physics are two disciplines that intertwine inextricably. In particular, experiments with new radioactive beams will enable us to obtain information on rare isotopes having an important role in astrophysical processes and to answer basic questions about the nature of neutron stars
Calmels, Lionel. "Effets à N-corps dans les gaz d'électrons unidimensionnels : la correction de champ local." Toulouse 3, 1996. http://www.theses.fr/1996TOU30223.
Full textMorisseau, François. "Simulations de collisions entre systèmes classiques à N-corps en interactions." Phd thesis, Université de Caen, 2006. http://tel.archives-ouvertes.fr/tel-00108025.
Full textD'une part certaines approches théoriques supposent que les phénomènes observés lors des collisions d'ions lourds sont d'origine thermique. Pour notre cas classique, nous montrons qu'au contraire la voie d'entrée y joue un rôle important. De plus, les noyaux en collisions sont censés présenter une transition de phase de type liquid-gaz du premier ordre.
Idier, Déborah. "Modélisation d'un système de nucléons : Propriétés statiques et dynamiques ; fluctuations de densité." Nantes, 1993. http://www.theses.fr/1993NANT2018.
Full textDuguet, Thomas. "Problème à N corps nucléaire et force effective dans les méthodes de champ moyen auto-cohérent." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2002. http://tel.archives-ouvertes.fr/tel-00001784.
Full textDuguet, Thomas. "Problème à N corps nucléaire et force effective dans les méthodes du champ moyen auto-cohérent." Paris 6, 2002. https://tel.archives-ouvertes.fr/tel-00001784.
Full textVuatelet, Vincent. "Localisation dynamique à N-corps d'un gaz de Tonks-Girardeau." Electronic Thesis or Diss., Université de Lille (2022-....), 2022. http://www.theses.fr/2022ULILR033.
Full textThe Kicked Rotor, paradigm of quantum chaos, is the analog in momentum space of a disordered Anderson system, due to the fact that the system displays the phenomenon of so-called dynamic localization. We study the effect of interactions on dynamical localization in a strongly interacting Bose gas, called the Tonks-Girardeau gas. Exploiting this limit and the Bose-Fermi mapping, we study the physics of a Tonks-Girardeau gas kicked through the reduce one-body density matrix of the system. We find similarity of the system with a Bose gas at finite temperature, we characterize the observables of the system, in particular its energy, its momentum distribution, and the correlations. We relate the emerging effective temperature to the localization characteristics of the system, being in a dynamically localized N-body phase. We also present a characterization of the quasi-periodic version of the Kicked Rotor, analog of a three-dimensional Anderson system, marked by a phase transition between a localized and diffusive regime. We finally analyze the momentum distribution at the critical threshold, and characterize its behavior in its center, at small and large momenta, marked by three different scalings
Venturelli, Andrea. "Application de la minimisation de l'action au problème des N corps dans le plan et dans l'espace." Paris 7, 2002. http://www.theses.fr/2002PA077190.
Full textGrasso, M. "Systèmes à N fermions corrélés. Les modèles de champ moyen pour la physique des noyaux et d'autres systèmes à N corps." Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00450182.
Full text