Academic literature on the topic 'Probability learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Probability learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Probability learning"
SAEKI, Daisuke. "Probability learning in golden hamsters." Japanese Journal of Animal Psychology 49, no. 1 (1999): 41–47. http://dx.doi.org/10.2502/janip.49.41.
Full textGroth, Randall E., Jennifer A. Bergner, and Jathan W. Austin. "Dimensions of Learning Probability Vocabulary." Journal for Research in Mathematics Education 51, no. 1 (January 2020): 75–104. http://dx.doi.org/10.5951/jresematheduc.2019.0008.
Full textGroth, Randall E., Jennifer A. Bergner, and Jathan W. Austin. "Dimensions of Learning Probability Vocabulary." Journal for Research in Mathematics Education 51, no. 1 (January 2020): 75–104. http://dx.doi.org/10.5951/jresematheduc.51.1.0075.
Full textRivas, Javier. "Probability matching and reinforcement learning." Journal of Mathematical Economics 49, no. 1 (January 2013): 17–21. http://dx.doi.org/10.1016/j.jmateco.2012.09.004.
Full textWest, Bruce J. "Fractal Probability Measures of Learning." Methods 24, no. 4 (August 2001): 395–402. http://dx.doi.org/10.1006/meth.2001.1208.
Full textJiang, Xiaolei. "Conditional Probability in Machine Learning." Journal of Education and Educational Research 4, no. 2 (July 20, 2023): 31–33. http://dx.doi.org/10.54097/jeer.v4i2.10647.
Full textMalley, J. D., J. Kruppa, A. Dasgupta, K. G. Malley, and A. Ziegler. "Probability Machines." Methods of Information in Medicine 51, no. 01 (2012): 74–81. http://dx.doi.org/10.3414/me00-01-0052.
Full textDawson, Michael R. W. "Probability Learning by Perceptrons and People." Comparative Cognition & Behavior Reviews 15 (2022): 1–188. http://dx.doi.org/10.3819/ccbr.2019.140011.
Full textHIRASAWA, Kotaro, Masaaki HARADA, Masanao OHBAYASHI, Juuichi MURATA, and Jinglu HU. "Probability and Possibility Automaton Learning Network." IEEJ Transactions on Industry Applications 118, no. 3 (1998): 291–99. http://dx.doi.org/10.1541/ieejias.118.291.
Full textGroth, Randall E., Jaime Butler, and Delmar Nelson. "Overcoming challenges in learning probability vocabulary." Teaching Statistics 38, no. 3 (May 26, 2016): 102–7. http://dx.doi.org/10.1111/test.12109.
Full textDissertations / Theses on the topic "Probability learning"
Gozenman, Filiz. "Interaction Of Probability Learning And Working Memory." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614535/index.pdf.
Full textRYSZ, TERI. "METACOGNITION IN LEARNING ELEMENTARY PROBABILITY AND STATISTICS." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1099248340.
Full textBouchacourt, Diane. "Task-oriented learning of structured probability distributions." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:0665495b-afbb-483b-8bdf-cbc6ae5baeff.
Full textLi, Chengtao Ph D. Massachusetts Institute of Technology. "Diversity-inducing probability measures for machine learning." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121724.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 163-176).
Subset selection problems arise in machine learning within kernel approximation, experimental design, and numerous other applications. In such applications, one often seeks to select diverse subsets of items to represent the population. One way to select such diverse subsets is to sample according to Diversity-Inducing Probability Measures (DIPMs) that assign higher probabilities to more diverse subsets. DIPMs underlie several recent breakthroughs in mathematics and theoretical computer science, but their power has not yet been explored for machine learning. In this thesis, we investigate DIPMs, their mathematical properties, sampling algorithms, and applications. Perhaps the best known instance of a DIPM is a Determinantal Point Process (DPP). DPPs originally arose in quantum physics, and are known to have deep relations to linear algebra, combinatorics, and geometry. We explore applications of DPPs to kernel matrix approximation and kernel ridge regression.
In these applications, DPPs deliver strong approximation guarantees and obtain superior performance compared to existing methods. We further develop an MCMC sampling algorithm accelerated by Gauss-type quadratures for DPPs. The algorithm runs several orders of magnitude faster than the existing ones. DPPs lie in a larger class of DIPMs called Strongly Rayleigh (SR) Measures. Instances of SR measures display a strong negative dependence property known as negative association, and as such can be used to model subset diversity. We study mathematical properties of SR measures, and construct the first provably fast-mixing Markov chain that samples from general SR measures. As a special case, we consider an SR measure called Dual Volume Sampling (DVS), for which we present the first poly-time sampling algorithm.
While all considered distributions over subsets are unconstrained, those of interest in the real world usually come with constraints due to prior knowledge, resource limitations or personal preferences. Hence we investigate sampling from constrained versions of DIPMs. Specifically, we consider DIPMs with cardinality constraints and matroid base constraints and construct poly-time approximate sampling algorithms for them. Such sampling algorithms will enable practical uses of constrained DIPMs in real world.
by Chengtao Li.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Hunt, Gareth David. "Reinforcement Learning for Low Probability High Impact Risks." Thesis, Curtin University, 2019. http://hdl.handle.net/20.500.11937/77106.
Full textSłowiński, Witold. "Autonomous learning of domain models from probability distribution clusters." Thesis, University of Aberdeen, 2014. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=211059.
Full textBenson, Carol Trinko Jones Graham A. "Assessing students' thinking in modeling probability contexts." Normal, Ill. Illinois State University, 2000. http://wwwlib.umi.com/cr/ilstu/fullcit?p9986725.
Full textTitle from title page screen, viewed May 11, 2006. Dissertation Committee: Graham A. Jones (chair), Kenneth N. Berk, Patricia Klass, Cynthia W. Langrall, Edward S. Mooney. Includes bibliographical references (leaves 115-124) and abstract. Also available in print.
Rast, Jeanne D. "A Comparison of Learning Subjective and Traditional Probability in Middle Grades." Digital Archive @ GSU, 2005. http://digitalarchive.gsu.edu/msit_diss/4.
Full textLindsay, David George. "Machine learning techniques for probability forecasting and their practical evaluations." Thesis, Royal Holloway, University of London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445274.
Full textKornfeld, Sarah. "Predicting Default Probability in Credit Risk using Machine Learning Algorithms." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275656.
Full textDenna uppsats har undersökt internt utvecklade modeller för att estimera sannolikheten för utebliven betalning (PD) inom kreditrisk. Samtidigt som nya regelverk sätter restriktioner på metoder för modellering av kreditrisk och i viss mån hämmar utvecklingen av riskmätning, utvecklas samtidigt mer avancerade metoder inom maskinlärning för riskmätning. Således har avvägningen mellan strängare regelverk av internt utvecklade modeller och framsteg i dataanalys undersökts genom jämförelse av modellprestanda för referens metoden logistisk regression för uppskattning av PD med maskininlärningsteknikerna beslutsträd, Random Forest, Gradient Boosting och artificiella neurala nätverk (ANN). Dataunderlaget kommer från SEB och består utav 45 variabler och 24 635 observationer. När maskininlärningsteknikerna blir mer komplexa för att gynna förbättrad prestanda är det ofta på bekostnad av modellens tolkbarhet. En undersökande analys gjordes därför med målet att mäta förklarningsvariablers betydelse i maskininlärningsteknikerna. Resultaten från den undersökande analysen kommer att jämföras med resultat från etablerade metoder som mäter variabelsignifikans. Resultatet av studien visar att den logistiska regressionen presterade bättre än maskininlärningsteknikerna baserat på prestandamåttet AUC som mätte 0.906. Resultatet from den undersökande analysen för förklarningsvariablers betydelse ökade tolkbarheten för maskininlärningsteknikerna. Resultatet blev även validerat med utkomsten av de etablerade metoderna för att mäta variabelsignifikans.
Books on the topic "Probability learning"
Batanero, Carmen, Egan J. Chernoff, Joachim Engel, Hollylynne S. Lee, and Ernesto Sánchez. Research on Teaching and Learning Probability. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31625-3.
Full textDasGupta, Anirban. Probability for Statistics and Machine Learning. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9634-3.
Full textAggarwal, Charu C. Probability and Statistics for Machine Learning. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53282-5.
Full textEgan, J. Chernoff, Engel Joachim, Lee Hollylynne S, and Sánchez Ernesto, eds. Research on Teaching and Learning Probability. Cham: Springer, 2016.
Find full textUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18545-9.
Full textUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30717-6.
Full textUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04648-3.
Full textPowell, Warren B. Optimal learning. Hoboken, New Jersey: Wiley, 2012.
Find full textPeck, Roxy. Statistics: Learning from data. Australia: Brooks/Cole, Cengage Learning, 2014.
Find full textKnez, Igor. To know what to know before knowing: Acquisition of functional rules in probabilistic ecologies. Uppsala: Uppsala University, 1992.
Find full textBook chapters on the topic "Probability learning"
Glenberg, Arthur M., and Matthew E. Andrzejewski. "Probability." In Learning From Data, 105–19. 4th ed. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003025405-6.
Full textZeugmann, Thomas, Pascal Poupart, James Kennedy, Xin Jin, Jiawei Han, Lorenza Saitta, Michele Sebag, et al. "Posterior Probability." In Encyclopedia of Machine Learning, 780. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_648.
Full textZeugmann, Thomas, Pascal Poupart, James Kennedy, Xin Jin, Jiawei Han, Lorenza Saitta, Michele Sebag, et al. "Prior Probability." In Encyclopedia of Machine Learning, 782. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_658.
Full textKumar Singh, Bikesh, and G. R. Sinha. "Probability Theory." In Machine Learning in Healthcare, 23–33. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003097808-2.
Full textUnpingco, José. "Probability." In Python for Probability, Statistics, and Machine Learning, 35–100. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30717-6_2.
Full textUnpingco, José. "Probability." In Python for Probability, Statistics, and Machine Learning, 39–121. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18545-9_2.
Full textUnpingco, José. "Probability." In Python for Probability, Statistics, and Machine Learning, 47–134. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04648-3_2.
Full textFaul, A. C. "Probability Theory." In A Concise Introduction to Machine Learning, 7–61. Boca Raton, Florida : CRC Press, [2019] | Series: Chapman & Hall/CRC machine learning & pattern recognition: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781351204750-2.
Full textAggarwal, Charu C. "Probability Distributions." In Probability and Statistics for Machine Learning, 127–90. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53282-5_4.
Full textGhatak, Abhijit. "Probability and Distributions." In Machine Learning with R, 31–56. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6808-9_2.
Full textConference papers on the topic "Probability learning"
Temlyakov, V. N. "Optimal estimators in learning theory." In Approximation and Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc72-0-23.
Full textNeville, Jennifer, David Jensen, Lisa Friedland, and Michael Hay. "Learning relational probability trees." In the ninth ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/956750.956830.
Full textArieli, Itai, Yakov Babichenko, and Manuel Mueller-Frank. "Naive Learning Through Probability Matching." In EC '19: ACM Conference on Economics and Computation. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3328526.3329601.
Full textSánchez, Emesta, Sibel Kazak, and Egan J. Chernoff. "Teaching and Learning of Probability." In The 14th International Congress on Mathematical Education. WORLD SCIENTIFIC, 2024. http://dx.doi.org/10.1142/9789811287152_0035.
Full textHa, Ming-hu, Zhi-fang Feng, Er-ling Du, and Yun-chao Bai. "Further Discussion on Quasi-Probability." In 2006 International Conference on Machine Learning and Cybernetics. IEEE, 2006. http://dx.doi.org/10.1109/icmlc.2006.258542.
Full textBurgos, María, María Del Mar López-Martín, and Nicolás Tizón-Escamilla. "ALGEBRAIC REASONING IN PROBABILITY TASKS." In 14th International Conference on Education and New Learning Technologies. IATED, 2022. http://dx.doi.org/10.21125/edulearn.2022.0777.
Full textHerlau, Tue. "Active learning of causal probability trees." In 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2022. http://dx.doi.org/10.1109/icmla55696.2022.00193.
Full textEugênio, Robson, Carlos Monteiro, Liliane Carvalho, José Roberto Costa Jr., and Karen François. "MATHEMATICS TEACHERS LEARNING ABOUT PROBABILITY LITERACY." In 14th International Technology, Education and Development Conference. IATED, 2020. http://dx.doi.org/10.21125/inted.2020.0272.
Full textStruski, Łukasz, Adam Pardyl, Jacek Tabor, and Bartosz Zieliński. "ProPML: Probability Partial Multi-label Learning." In 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2023. http://dx.doi.org/10.1109/dsaa60987.2023.10302620.
Full textRamishetty, Sravani, and Abolfazl Hashemi. "High Probability Guarantees For Federated Learning." In 2023 59th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2023. http://dx.doi.org/10.1109/allerton58177.2023.10313468.
Full textReports on the topic "Probability learning"
Shute, Valerie J., and Lisa A. Gawlick-Grendell. An Experimental Approach to Teaching and Learning Probability: Stat Lady. Fort Belvoir, VA: Defense Technical Information Center, April 1996. http://dx.doi.org/10.21236/ada316969.
Full textIlyin, M. E. The distance learning course «Theory of probability, mathematical statistics and random functions». OFERNIO, December 2018. http://dx.doi.org/10.12731/ofernio.2018.23529.
Full textKriegel, Francesco. Learning description logic axioms from discrete probability distributions over description graphs (Extended Version). Technische Universität Dresden, 2018. http://dx.doi.org/10.25368/2022.247.
Full textKriegel, Francesco. Learning General Concept Inclusions in Probabilistic Description Logics. Technische Universität Dresden, 2015. http://dx.doi.org/10.25368/2022.220.
Full textGribok, Andrei V., Kevin P. Chen, and Qirui Wang. Machine-Learning Enabled Evaluation of Probability of Piping Degradation In Secondary Systems of Nuclear Power Plants. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1634815.
Full textde Luis, Mercedes, Emilio Rodríguez, and Diego Torres. Machine learning applied to active fixed-income portfolio management: a Lasso logit approach. Madrid: Banco de España, September 2023. http://dx.doi.org/10.53479/33560.
Full textDinarte, Lelys, Pablo Egaña del Sol, and Claudia Martínez. When Emotion Regulation Matters: The Efficacy of Socio-Emotional Learning to Address School-Based Violence in Central America. Inter-American Development Bank, March 2024. http://dx.doi.org/10.18235/0012854.
Full textMoreno Pérez, Carlos, and Marco Minozzo. “Making Text Talk”: The Minutes of the Central Bank of Brazil and the Real Economy. Madrid: Banco de España, November 2022. http://dx.doi.org/10.53479/23646.
Full textRobson, Jennifer. The Canada Learning Bond, financial capability and tax-filing: Results from an online survey of low and modest income parents. SEED Winnipeg/Carleton University Arthur Kroeger College of Public Affairs, March 2022. http://dx.doi.org/10.22215/clb20220301.
Full textSchiefelbein, Ernesto, Paulina Schiefelbein, and Laurence Wolff. Cost-Effectiveness of Education Policies in Latin America: A Survey of Expert Opinion. Inter-American Development Bank, December 1998. http://dx.doi.org/10.18235/0008789.
Full text