Dissertations / Theses on the topic 'Probabilistic number theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'Probabilistic number theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Harper, Adam James. "Some topics in analytic and probabilistic number theory." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/265539.
Full textHughes, Garry. "Distribution of additive functions in algebraic number fields." Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09SM/09smh893.pdf.
Full textZhao, Wenzhong. "Probabilistic databases and their application." Lexington, Ky. : [University of Kentucky Libraries], 2004. http://lib.uky.edu/ETD/ukycosc2004d00183/wzhao0.pdf.
Full textTitle from document title page (viewed Jan. 7, 2005). Document formatted into pages; contains x, 180p. : ill. Includes abstract and vita. Includes bibliographical references (p. 173-178).
Lloyd, James Robert. "Representation, learning, description and criticism of probabilistic models with applications to networks, functions and relational data." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709264.
Full textLi, Xiang, and 李想. "Managing query quality in probabilistic databases." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47753134.
Full textpublished_or_final_version
Computer Science
Master
Master of Philosophy
Rotondo, Pablo. "Probabilistic studies in number theory and word combinatorics : instances of dynamical analysis." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC213/document.
Full textDynamical Analysis incorporates tools from dynamical systems, namely theTransfer Operator, into the framework of Analytic Combinatorics, permitting the analysis of numerous algorithms and objects naturally associated with an underlying dynamical system.This dissertation presents, in the integrated framework of Dynamical Analysis, the probabilistic analysis of seemingly distinct problems in a unified way: the probabilistic study of the recurrence function of Sturmian words, and the probabilistic study of the Continued Logarithm algorithm.Sturmian words are a fundamental family of words in Word Combinatorics. They are in a precise sense the simplest infinite words that are not eventually periodic. Sturmian words have been well studied over the years, notably by Morse and Hedlund (1940) who demonstrated that they present a notable number theoretical characterization as discrete codings of lines with irrationalslope, relating them naturally to dynamical systems, in particular the Euclidean dynamical system. These words have never been studied from a probabilistic perspective. Here, we quantify the recurrence properties of a ``random'' Sturmian word, which are dictated by the so-called ``recurrence function''; we perform a complete asymptotic probabilistic study of this function, quantifying its mean and describing its distribution under two different probabilistic models, which present different virtues: one is a naturaly choice from an algorithmic point of view (but is innovative from the point of view of dynamical analysis), while the other allows a natural quantification of the worst-case growth of the recurrence function. We discuss the relation between these two distinct models and their respective techniques, explaining also how the two seemingly different techniques employed could be linked through the use of the Mellin transform. In this dissertation we also discuss our ongoing work regarding two special families of Sturmian words: those associated with a quadratic irrational slope, and those with a rational slope (not properly Sturmian). Our work seems to show the possibility of a unified study.The Continued Logarithm Algorithm, introduced by Gosper in Hakmem (1978) as a mutation of classical continued fractions, computes the greatest common divisor of two natural numbers by performing division-like steps involving only binary shifts and substractions. Its worst-case performance was studied recently by Shallit (2016), who showed a precise upper-bound for the number of steps and gave a family of inputs attaining this bound. In this dissertation we employ dynamical analysis to study the average running time of the algorithm, giving precise mathematical constants for the asymptotics, as well as other parameters of interest. The underlying dynamical system is akin to the Euclidean one, and was first studied by Chan (around 2005) from an ergodic, but the presence of powers of 2 in the quotients ingrains into the central parameters a dyadic flavour that cannot be grasped solely by studying this system. We thus introduce a dyadic component and deal with a two-component system. With this new mixed system at hand, we then provide a complete average-case analysis of the algorithm by Dynamical Analysis
Pariente, Cesar Alberto Bravo. "Um método probabilístico em combinatória." Universidade de São Paulo, 1996. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-07052010-163719/.
Full textThe following work is an effort to present, in survey form, a collection of results that illustrate the application of a certain probabilistic method in combinatorics. We do not present new results in the area; however, we do believe that the systematic presentation of these results can help those who use probabilistic methods comprenhend this useful technique. The results we refer to have appeared over the last decade in the research literature and were used in the investigation of problems which have resisted other, more classical, approaches. Instead of theorizing about the method, we adopted the strategy of presenting three problems, using them as practical examples of the application of the method in question. Surpisingly, despite the difficulty of solutions to these problems, they share the characteristic of being able to be formulated very intuitively, as we will see in Chapter One. We should warn the reader that despite the fact that the problems which drive our discussion belong to such different fields as number theory, geometry and combinatorics, our goal is to place emphasis on what their solutions have in common and not on the subsequent implications that these problems have in their respective fields. Occasionally, we will comment on other potential applications of the tools utilized to solve these problems. The problems which we are discussing can be characterized by the decades-long wait for their solution: the first, from number theory, arose from the research in Fourier series conducted by Sidon at the beginning of the century and was proposed by him to Erdös in 1932. Since 1950, there have been diverse advances in the understanding of this problem, but the result we talk of comes from 1981. The second problem, from geometry, is a conjecture formulated in 1951 by Heilbronn and finally refuted in 1982. The last problem, from combinatorics, is a conjecture formulated by Erdös and Hanani in 1963 that was treated in several particular cases but was only solved in its entirety in 1985.
Schimit, Pedro Henrique Triguis. "Modelagem e controle de propagação de epidemias usando autômatos celulares e teoria de jogos." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-05122011-153541/.
Full textThe spreading of contagious diseases is studied by using susceptible-infected-recovered (SIR) models represented by ordinary differential equations (ODE) and by probabilistic cellular automata (PCA) connected by random networks. Each individual (cell) of the PCA lattice experiences the influence of others, where the probability of occurring interaction with the nearest ones is higher. Simulations for investigating how the disease propagation is affected by the coupling topology of the population are performed. The numerical results obtained with the model based on randomly connected PCA are compared to the results obtained with the model described by ODE. It is concluded that considering the topological structure of the population can pose difficulties for characterizing the disease, from the observation of the time evolution of the number of infected individuals. It is also concluded that isolating a few infected subjects can cause the same effect than isolating many susceptible individuals. Furthermore, a vaccination strategy based on game theory is analyzed. In this game, the government tries to minimize the expenses for controlling the epidemic. As consequence, the government implements quasi-periodic vaccination campaigns.
Silva, Everton Juliano da. "Uma demonstração analítica do teorema de Erdös-Kac." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-24032015-132813/.
Full textIn number theory, the Erdös-Kac theorem, also known as the fundamental theorem of probabilistic number theory, states that if w(n) is the number of distinct prime factors of n, then the sequence of distribution functions N, defined by FN(x) = (1/N) #{n <= N : (w(n) log log N)/(log log N)^(1/2)} <= x}, converges uniformly on R to the standard normal distribution. In this work we developed all theorems needed to an analytic demonstration, which will allow us to find an order of error of the above convergence.
Shi, Lingsheng. "Numbers and topologies." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2003. http://dx.doi.org/10.18452/14871.
Full textIn graph Ramsey theory, Burr and Erdos in 1970s posed two conjectures which may be considered as initial steps toward the problem of characterizing the set of graphs for which Ramsey numbers grow linearly in their orders. One conjecture is that Ramsey numbers grow linearly for all degenerate graphs and the other is that Ramsey numbers grow linearly for cubes. Though unable to settle these two conjectures, we have contributed many weaker versions that support the likely truth of the first conjecture and obtained a polynomial upper bound for the Ramsey numbers of cubes that considerably improves all previous bounds and comes close to the linear bound in the second conjecture. In topological Ramsey theory, Kojman recently observed a topological converse of Hindman's theorem and then introduced the so-called Hindman space and van der Waerden space (both of which are stronger than sequentially compact spaces) corresponding respectively to Hindman's theorem and van der Waerden's theorem. In this thesis, we will strengthen the topological converse of Hindman's theorem by using canonical Ramsey theorem, and introduce differential compactness that arises naturally in this context and study its relations to other spaces as well. Also by using compact dynamical systems, we will extend a classical Ramsey type theorem of Brown and Hindman et al on piecewise syndetic sets from natural numbers and discrete semigroups to locally connected semigroups.
Moravej, Hans. "Vibration-based probabilistic model updating of civil structures using structural health monitoring techniques." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/203653/1/Hans%20Moravej%20Thesis.pdf.
Full textBureaux, Julien. "Méthodes probabilistes pour l'étude asymptotique des partitions entières et de la géométrie convexe discrète." Thesis, Paris 10, 2015. http://www.theses.fr/2015PA100160/document.
Full textThis thesis consists of several works dealing with the enumeration and the asymptotic behaviour of combinatorial structures related to integer partitions. A first work concerns partitions of large bipartite integers, which are a bidimensional generalization of integer partitions. Asymptotic formulæ are obtained in the critical regime where one of the numbers is of the order of magnitude of the square of the other number, and beyond this critical regime. This completes the results established in the fifties by Auluck, Nanda, and Wright. The second work deals with lattice convex chains in the plane. In a statistical model introduced by Sinaï, an exact integral representation of the partition function is given. This leads to an asymptotic formula for the number of chains joining two distant points, which involves the non trivial zeros of the Riemann zeta function. A detailed combinatorial analysis of convex chains is presented. It makes it possible to prove the existence of a limit shape for random convex chains with few vertices, answering an open question of Vershik. A third work focuses on lattice zonotopes in higher dimensions. An asymptotic equality is given for the logarithm of the number of zonotopes contained in a convex cone and such that the endings of the zonotope are fixed. A law of large numbers is established and the limit shape is characterized by the Laplace transform of the cone
Lewko, Mark J. 1983. "Combinatorial and probabilistic techniques in harmonic analysis." Thesis, 2012. http://hdl.handle.net/2152/ETD-UT-2012-05-5531.
Full texttext
Xiao, Stanley Yao. "On the Erdös-Turán conjecture and related results." Thesis, 2011. http://hdl.handle.net/10012/6150.
Full textMehdizadeh, Marzieh. "Anatomy of smooth integers." Thèse, 2017. http://hdl.handle.net/1866/19299.
Full textThe object of the first chapter of this thesis is to review the materials and tools in analytic number theory which are used in following chapters. We also give a survey on the development concerning the number of y−smooth integers, which are integers free of prime factors greater than y. In the second chapter, we shall give a brief history about a class of arithmetical functions on a probability space and we discuss on some well-known problems in probabilistic number theory. We present two results in analytic and probabilistic number theory. The Erdos multiplication table problem asks what is the number of distinct integers appearing in the N × N multiplication table. The order of magnitude of this quantity was determined by Kevin Ford (2008). In chapter 3 of this thesis, we study the number of y−smooth entries of the N × N multiplication. More concretely, we focus on the change of behaviour of the function A(x,y) in different ranges of y, where A(x,y) is a function that counts the number of distinct y−smooth integers less than x which can be represented as the product of two y−smooth integers less than p x. In Chapter 4, we prove an Erdos-Kac type of theorem for the set of y−smooth integers. If !(n) is the number of distinct prime factors of n, we prove that the distribution of !(n) is Gaussian for a certain range of y using method of moments.