Academic literature on the topic 'Probabilistic grammar'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Probabilistic grammar.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Probabilistic grammar"
Nitay, Dolav, Dana Fisman, and Michal Ziv-Ukelson. "Learning of Structurally Unambiguous Probabilistic Grammars." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 10 (May 18, 2021): 9170–78. http://dx.doi.org/10.1609/aaai.v35i10.17107.
Full textKROTOV, ALEXANDER, MARK HEPPLE, ROBERT GAIZAUSKAS, and YORICK WILKS. "Evaluating two methods for Treebank grammar compaction." Natural Language Engineering 5, no. 4 (December 1999): 377–94. http://dx.doi.org/10.1017/s1351324900002308.
Full textBenedikt Szmrecsanyi. "Diachronic Probabilistic Grammar." English Language and Linguistics 19, no. 3 (December 2013): 41–68. http://dx.doi.org/10.17960/ell.2013.19.3.002.
Full textDaland, Robert. "Long words in maximum entropy phonotactic grammars." Phonology 32, no. 3 (December 2015): 353–83. http://dx.doi.org/10.1017/s0952675715000251.
Full textShih, Stephanie S. "Constraint conjunction in weighted probabilistic grammar." Phonology 34, no. 2 (August 2017): 243–68. http://dx.doi.org/10.1017/s0952675717000136.
Full textCASACUBERTA, FRANCISCO. "GROWTH TRANSFORMATIONS FOR PROBABILISTIC FUNCTIONS OF STOCHASTIC GRAMMARS." International Journal of Pattern Recognition and Artificial Intelligence 10, no. 03 (May 1996): 183–201. http://dx.doi.org/10.1142/s0218001496000153.
Full textHan, Young S., and Key-Sun Choi. "Best parse parsing with Earley's and Inside algorithms on probabilistic RTN." Natural Language Engineering 1, no. 2 (June 1995): 147–61. http://dx.doi.org/10.1017/s1351324900000127.
Full textKita, Kenji. "Mixture Probabilistic Context-Free Grammar." Journal of Natural Language Processing 3, no. 4 (1996): 103–13. http://dx.doi.org/10.5715/jnlp.3.4_103.
Full textDAI, Yin-Tang, Cheng-Rong WU, Sheng-Xiang MA, and Yi-Ping ZHONG. "Hierarchically Classified Probabilistic Grammar Parsing." Journal of Software 22, no. 2 (March 25, 2011): 245–57. http://dx.doi.org/10.3724/sp.j.1001.2011.03809.
Full textArthi, K., and Kamala Krithivasan. "Probabilistic Parallel Communicating Grammar Systems." International Journal of Computer Mathematics 79, no. 1 (January 2002): 1–26. http://dx.doi.org/10.1080/00207160211914.
Full textDissertations / Theses on the topic "Probabilistic grammar"
Kwiatkowski, Thomas Mieczyslaw. "Probabilistic grammar induction from sentences and structured meanings." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/6190.
Full textStüber, Torsten. "Consistency of Probabilistic Context-Free Grammars." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-86943.
Full textAfrin, Taniza. "Extraction of Basic Noun Phrases from Natural Language Using Statistical Context-Free Grammar." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/33353.
Full textMaster of Science
Hsu, Hsin-jen. "A neurophysiological study on probabilistic grammatical learning and sentence processing." Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/243.
Full textBrookes, James William Rowe. "Probabilistic and multivariate modelling in Latin grammar : the participle-auxiliary alternation as a case study." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/probabilistic-and-multivariate-modelling-in-latin-grammar-the-participleauxiliary-alternation-as-a-case-study(4ff5b912-c410-41f2-94f2-859eb1ce5b21).html.
Full textBuys, Jan Moolman. "Probabilistic tree transducers for grammatical error correction." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85592.
Full textENGLISH ABSTRACT: We investigate the application of weighted tree transducers to correcting grammatical errors in natural language. Weighted finite-state transducers (FST) have been used successfully in a wide range of natural language processing (NLP) tasks, even though the expressiveness of the linguistic transformations they perform is limited. Recently, there has been an increase in the use of weighted tree transducers and related formalisms that can express syntax-based natural language transformations in a probabilistic setting. The NLP task that we investigate is the automatic correction of grammar errors made by English language learners. In contrast to spelling correction, which can be performed with a very high accuracy, the performance of grammar correction systems is still low for most error types. Commercial grammar correction systems mostly use rule-based methods. The most common approach in recent grammatical error correction research is to use statistical classifiers that make local decisions about the occurrence of specific error types. The approach that we investigate is related to a number of other approaches inspired by statistical machine translation (SMT) or based on language modelling. Corpora of language learner writing annotated with error corrections are used as training data. Our baseline model is a noisy-channel FST model consisting of an n-gram language model and a FST error model, which performs word insertion, deletion and replacement operations. The tree transducer model we use to perform error correction is a weighted top-down tree-to-string transducer, formulated to perform transformations between parse trees of correct sentences and incorrect sentences. Using an algorithm developed for syntax-based SMT, transducer rules are extracted from training data of which the correct version of sentences have been parsed. Rule weights are also estimated from the training data. Hypothesis sentences generated by the tree transducer are reranked using an n-gram language model. We perform experiments to evaluate the performance of different configurations of the proposed models. In our implementation an existing tree transducer toolkit is used. To make decoding time feasible sentences are split into clauses and heuristic pruning is performed during decoding. We consider different modelling choices in the construction of transducer rules. The evaluation of our models is based on precision and recall. Experiments are performed to correct various error types on two learner corpora. The results show that our system is competitive with existing approaches on several error types.
AFRIKAANSE OPSOMMING: Ons ondersoek die toepassing van geweegde boomoutomate om grammatikafoute in natuurlike taal outomaties reg te stel. Geweegde eindigetoestand outomate word suksesvol gebruik in ’n wye omvang van take in natuurlike taalverwerking, alhoewel die uitdrukkingskrag van die taalkundige transformasies wat hulle uitvoer beperk is. Daar is die afgelope tyd ’n toename in die gebruik van geweegde boomoutomate en verwante formalismes wat sintaktiese transformasies in natuurlike taal in ’n probabilistiese raamwerk voorstel. Die natuurlike taalverwerkingstoepassing wat ons ondersoek is die outomatiese regstelling van taalfoute wat gemaak word deur Engelse taalleerders. Terwyl speltoetsing in Engels met ’n baie hoë akkuraatheid gedoen kan word, is die prestasie van taalregstellingstelsels nog relatief swak vir meeste fouttipes. Kommersiële taalregstellingstelsels maak oorwegend gebruik van reël-gebaseerde metodes. Die algemeenste benadering in onlangse navorsing oor grammatikale foutkorreksie is om statistiese klassifiseerders wat plaaslike besluite oor die voorkoms van spesifieke fouttipes maak te gebruik. Die benadering wat ons ondersoek is verwant aan ’n aantal ander benaderings wat geïnspireer is deur statistiese masjienvertaling of op taalmodellering gebaseer is. Korpora van taalleerderskryfwerk wat met foutregstellings geannoteer is, word as afrigdata gebruik. Ons kontrolestelsel is ’n geraaskanaal eindigetoestand outomaatmodel wat bestaan uit ’n n-gram taalmodel en ’n foutmodel wat invoegings-, verwyderings- en vervangingsoperasies op woordvlak uitvoer. Die boomoutomaatmodel wat ons gebruik vir grammatikale foutkorreksie is ’n geweegde bo-na-onder boom-na-string omsetteroutomaat geformuleer om transformasies tussen sintaksbome van korrekte sinne en foutiewe sinne te maak. ’n Algoritme wat ontwikkel is vir sintaksgebaseerde statistiese masjienvertaling word gebruik om reëls te onttrek uit die afrigdata, waarvan sintaksontleding op die korrekte weergawe van die sinne gedoen is. Reëlgewigte word ook vanaf die afrigdata beraam. Hipotese-sinne gegenereer deur die boomoutomaat word herrangskik met behulp van ’n n-gram taalmodel. Ons voer eksperimente uit om die doeltreffendheid van verskillende opstellings van die voorgestelde modelle te evalueer. In ons implementering word ’n bestaande boomoutomaat sagtewarepakket gebruik. Om die dekoderingstyd te verminder word sinne in frases verdeel en die soekruimte heuristies besnoei. Ons oorweeg verskeie modelleringskeuses in die samestelling van outomaatreëls. Die evaluering van ons modelle word gebaseer op presisie en herroepvermoë. Eksperimente word uitgevoer om verskeie fouttipes reg te maak op twee leerderkorpora. Die resultate wys dat ons model kompeterend is met bestaande benaderings op verskeie fouttipes.
Shan, Yin Information Technology & Electrical Engineering Australian Defence Force Academy UNSW. "Program distribution estimation with grammar models." Awarded by:University of New South Wales - Australian Defence Force Academy. School of Information Technology and Electrical Engineering, 2005. http://handle.unsw.edu.au/1959.4/38737.
Full textPinnow, Eleni. "The role of probabilistic phonotactics in the recognition of reduced pseudowords." Diss., Online access via UMI:, 2009.
Find full textMora, Randall P., and Jerry L. Hill. "Service-Based Approach for Intelligent Agent Frameworks." International Foundation for Telemetering, 2011. http://hdl.handle.net/10150/595661.
Full textThis paper describes a service-based Intelligent Agent (IA) approach for machine learning and data mining of distributed heterogeneous data streams. We focus on an open architecture framework that enables the programmer/analyst to build an IA suite for mining, examining and evaluating heterogeneous data for semantic representations, while iteratively building the probabilistic model in real-time to improve predictability. The Framework facilitates model development and evaluation while delivering the capability to tune machine learning algorithms and models to deliver increasingly favorable scores prior to production deployment. The IA Framework focuses on open standard interoperability, simplifying integration into existing environments.
Torres, Parra Jimena Cecilia. "A Perception Based Question-Answering Architecture Derived from Computing with Words." Available to subscribers only, 2009. http://proquest.umi.com/pqdweb?did=1967797581&sid=1&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textBooks on the topic "Probabilistic grammar"
C, Bunt Harry, and Nijholt Anton 1946-, eds. Advances in probabilistic and other parsing technologies. Dordrecht: Kluwer Academic Publishers, 2000.
Find full textBunt, Harry. Advances in Probabilistic and Other Parsing Technologies. Dordrecht: Springer Netherlands, 2000.
Find full textLiang, Percy, Michael Jordan, and Dan Klein. Probabilistic grammars and hierarchical Dirichlet processes. Edited by Anthony O'Hagan and Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.27.
Full text(Editor), H. Bunt, and Anton Nijholt (Editor), eds. Advances in Probabilistic and Other Parsing Technologies (Text, Speech and Language Technology, Volume 16) (Text, Speech and Language Technology). Springer, 2000.
Find full textDresher, B. Elan, and Harry van der Hulst, eds. The Oxford History of Phonology. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780198796800.001.0001.
Full textBook chapters on the topic "Probabilistic grammar"
Kanchan Devi, K., and S. Arumugam. "Probabilistic Conjunctive Grammar." In Theoretical Computer Science and Discrete Mathematics, 119–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64419-6_16.
Full textWong, Pak-Kan, Man-Leung Wong, and Kwong-Sak Leung. "Learning Grammar Rules in Probabilistic Grammar-Based Genetic Programming." In Theory and Practice of Natural Computing, 208–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49001-4_17.
Full textEshghi, Arash, Matthew Purver, Julian Hough, and Yo Sato. "Probabilistic Grammar Induction in an Incremental Semantic Framework." In Constraint Solving and Language Processing, 92–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41578-4_6.
Full textAraujo, L. "Evolutionary Parsing for a Probabilistic Context Free Grammar." In Rough Sets and Current Trends in Computing, 590–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45554-x_74.
Full textKim, Hyun-Tae, and Chang Wook Ahn. "A New Grammatical Evolution Based on Probabilistic Context-free Grammar." In Proceedings in Adaptation, Learning and Optimization, 1–12. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13356-0_1.
Full textHoushmand, Shiva, and Sudhir Aggarwal. "Using Personal Information in Targeted Grammar-Based Probabilistic Password Attacks." In Advances in Digital Forensics XIII, 285–303. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67208-3_16.
Full textCsuhaj-Varjú, Erzsébet, and Jürgen Dassow. "On the Size of Components of Probabilistic Cooperating Distributed Grammar Systems." In Theory Is Forever, 49–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27812-2_5.
Full textGoodman, Joshua. "Probabilistic Feature Grammars." In Text, Speech and Language Technology, 63–84. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9470-7_4.
Full textMosbah, Mohamed. "Probabilistic graph grammars." In Graph-Theoretic Concepts in Computer Science, 236–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-56402-0_51.
Full textSaranyadevi, S., R. Murugeswari, S. Bathrinath, and M. S. Sabitha. "Hybrid Association Rule Miner Using Probabilistic Context-Free Grammar and Ant Colony Optimization for Rainfall Prediction." In Advances in Intelligent Systems and Computing, 683–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16657-1_64.
Full textConference papers on the topic "Probabilistic grammar"
Kim, Yoon, Chris Dyer, and Alexander Rush. "Compound Probabilistic Context-Free Grammars for Grammar Induction." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/p19-1228.
Full textNaganuma, Hiroaki, Diptarama Hendrian, Ryo Yoshinaka, Ayumi Shinohara, and Naoki Kobayashi. "Grammar Compression with Probabilistic Context-Free Grammar." In 2020 Data Compression Conference (DCC). IEEE, 2020. http://dx.doi.org/10.1109/dcc47342.2020.00093.
Full textPu, Xiaoying, and Matthew Kay. "A Probabilistic Grammar of Graphics." In CHI '20: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3313831.3376466.
Full textWong, Pak-Kan, Man-Leung Wong, and Kwong-Sak Leung. "Probabilistic grammar-based deep neuroevolution." In GECCO '19: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3319619.3326778.
Full textXiong, Hanwei, Jun Xu, Chenxi Xu, and Ming Pan. "Automating 3D reconstruction using a probabilistic grammar." In Applied Optics and Photonics China (AOPC2015), edited by Chunhua Shen, Weiping Yang, and Honghai Liu. SPIE, 2015. http://dx.doi.org/10.1117/12.2202966.
Full textSaparov, Abulhair, Vijay Saraswat, and Tom Mitchell. "A Probabilistic Generative Grammar for Semantic Parsing." In Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017). Stroudsburg, PA, USA: Association for Computational Linguistics, 2017. http://dx.doi.org/10.18653/v1/k17-1026.
Full textCekan, Ondrej, Jakub Podivinsky, and Zdenek Kotasek. "Program Generation Through a Probabilistic Constrained Grammar." In 2018 21st Euromicro Conference on Digital System Design (DSD). IEEE, 2018. http://dx.doi.org/10.1109/dsd.2018.00049.
Full textKawabata, Takeshi. "Dynamic probabilistic grammar for spoken language disambiguation." In 3rd International Conference on Spoken Language Processing (ICSLP 1994). ISCA: ISCA, 1994. http://dx.doi.org/10.21437/icslp.1994-211.
Full textDevi, K. Kanchan, and S. Arumugam. "Password Cracking Algorithm using Probabilistic Conjunctive Grammar." In 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS). IEEE, 2019. http://dx.doi.org/10.1109/incos45849.2019.8951390.
Full text"Probabilistic Regular Grammar Inference Algorithm Using Incremental Technique." In 2018 the 8th International Workshop on Computer Science and Engineering. WCSE, 2018. http://dx.doi.org/10.18178/wcse.2018.06.129.
Full textReports on the topic "Probabilistic grammar"
Lafferty, John, Saniel Sleator, and Davy Temperley. Grammatical Trigrams: A Probabilistic Model of Link Grammar. Fort Belvoir, VA: Defense Technical Information Center, September 1992. http://dx.doi.org/10.21236/ada256365.
Full text