Journal articles on the topic 'Probabilistic deep models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Probabilistic deep models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Masegosa, Andrés R., Rafael Cabañas, Helge Langseth, Thomas D. Nielsen, and Antonio Salmerón. "Probabilistic Models with Deep Neural Networks." Entropy 23, no. 1 (January 18, 2021): 117. http://dx.doi.org/10.3390/e23010117.
Full textVillanueva Llerena, Julissa, and Denis Deratani Maua. "Efficient Predictive Uncertainty Estimators for Deep Probabilistic Models." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 10 (April 3, 2020): 13740–41. http://dx.doi.org/10.1609/aaai.v34i10.7142.
Full textKarami, Mahdi, and Dale Schuurmans. "Deep Probabilistic Canonical Correlation Analysis." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (May 18, 2021): 8055–63. http://dx.doi.org/10.1609/aaai.v35i9.16982.
Full textLu, Ming, Zhihao Duan, Fengqing Zhu, and Zhan Ma. "Deep Hierarchical Video Compression." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (March 24, 2024): 8859–67. http://dx.doi.org/10.1609/aaai.v38i8.28733.
Full textMaroñas, Juan, Roberto Paredes, and Daniel Ramos. "Calibration of deep probabilistic models with decoupled bayesian neural networks." Neurocomputing 407 (September 2020): 194–205. http://dx.doi.org/10.1016/j.neucom.2020.04.103.
Full textLi, Zhenjun, Xi Liu, Dawei Kou, Yi Hu, Qingrui Zhang, and Qingxi Yuan. "Probabilistic Models for the Shear Strength of RC Deep Beams." Applied Sciences 13, no. 8 (April 12, 2023): 4853. http://dx.doi.org/10.3390/app13084853.
Full textSerpell, Cristián, Ignacio A. Araya, Carlos Valle, and Héctor Allende. "Addressing model uncertainty in probabilistic forecasting using Monte Carlo dropout." Intelligent Data Analysis 24 (December 4, 2020): 185–205. http://dx.doi.org/10.3233/ida-200015.
Full textBoursin, Nicolas, Carl Remlinger, and Joseph Mikael. "Deep Generators on Commodity Markets Application to Deep Hedging." Risks 11, no. 1 (December 23, 2022): 7. http://dx.doi.org/10.3390/risks11010007.
Full textZuidberg Dos Martires, Pedro. "Probabilistic Neural Circuits." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 15 (March 24, 2024): 17280–89. http://dx.doi.org/10.1609/aaai.v38i15.29675.
Full textRavuri, Suman, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr Mirowski, Megan Fitzsimons, et al. "Skilful precipitation nowcasting using deep generative models of radar." Nature 597, no. 7878 (September 29, 2021): 672–77. http://dx.doi.org/10.1038/s41586-021-03854-z.
Full textAdams, Jadie. "Probabilistic Shape Models of Anatomy Directly from Images." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (June 26, 2023): 16107–8. http://dx.doi.org/10.1609/aaai.v37i13.26914.
Full textQian, Weizhu, Fabrice Lauri, and Franck Gechter. "Supervised and semi-supervised deep probabilistic models for indoor positioning problems." Neurocomputing 435 (May 2021): 228–38. http://dx.doi.org/10.1016/j.neucom.2020.12.131.
Full textSinha, Mourani, Mrinmoyee Bhattacharya, M. Seemanth, and Suchandra A. Bhowmick. "Probabilistic Models and Deep Learning Models Assessed to Estimate Design and Operational Ocean Wave Statistics to Reduce Coastal Hazards." Geosciences 13, no. 12 (December 12, 2023): 380. http://dx.doi.org/10.3390/geosciences13120380.
Full textAndrianomena, Sambatra. "Probabilistic learning for pulsar classification." Journal of Cosmology and Astroparticle Physics 2022, no. 10 (October 1, 2022): 016. http://dx.doi.org/10.1088/1475-7516/2022/10/016.
Full textD’Andrea, Fabio, Pierre Gentine, Alan K. Betts, and Benjamin R. Lintner. "Triggering Deep Convection with a Probabilistic Plume Model." Journal of the Atmospheric Sciences 71, no. 11 (October 29, 2014): 3881–901. http://dx.doi.org/10.1175/jas-d-13-0340.1.
Full textMurad, Abdulmajid, Frank Alexander Kraemer, Kerstin Bach, and Gavin Taylor. "Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting." Sensors 21, no. 23 (November 30, 2021): 8009. http://dx.doi.org/10.3390/s21238009.
Full textBuda-Ożóg, Lidia. "Probabilistic assessment of load-bearing capacity of deep beams designed by strut-and-tie method." MATEC Web of Conferences 262 (2019): 08001. http://dx.doi.org/10.1051/matecconf/201926208001.
Full textDuan, Yun. "A Novel Interval Energy-Forecasting Method for Sustainable Building Management Based on Deep Learning." Sustainability 14, no. 14 (July 13, 2022): 8584. http://dx.doi.org/10.3390/su14148584.
Full textMashlakov, Aleksei, Toni Kuronen, Lasse Lensu, Arto Kaarna, and Samuli Honkapuro. "Assessing the performance of deep learning models for multivariate probabilistic energy forecasting." Applied Energy 285 (March 2021): 116405. http://dx.doi.org/10.1016/j.apenergy.2020.116405.
Full textLiu, Mao-Yi, Zheng Li, and Hang Zhang. "Probabilistic Shear Strength Prediction for Deep Beams Based on Bayesian-Optimized Data-Driven Approach." Buildings 13, no. 10 (September 28, 2023): 2471. http://dx.doi.org/10.3390/buildings13102471.
Full textNye, Logan, Hamid Ghaednia, and Joseph H. Schwab. "Generating synthetic samples of chondrosarcoma histopathology with a denoising diffusion probabilistic model." Journal of Clinical Oncology 41, no. 16_suppl (June 1, 2023): e13592-e13592. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e13592.
Full textBentivoglio, Roberto, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina. "Deep learning methods for flood mapping: a review of existing applications and future research directions." Hydrology and Earth System Sciences 26, no. 16 (August 25, 2022): 4345–78. http://dx.doi.org/10.5194/hess-26-4345-2022.
Full textEdie, Stewart M., Peter D. Smits, and David Jablonski. "Probabilistic models of species discovery and biodiversity comparisons." Proceedings of the National Academy of Sciences 114, no. 14 (March 21, 2017): 3666–71. http://dx.doi.org/10.1073/pnas.1616355114.
Full textAvaylon, Matthew, Robbie Sadre, Zhe Bai, and Talita Perciano. "Adaptable Deep Learning and Probabilistic Graphical Model System for Semantic Segmentation." Advances in Artificial Intelligence and Machine Learning 02, no. 01 (2022): 288–302. http://dx.doi.org/10.54364/aaiml.2022.1119.
Full textSansine, Vateanui, Pascal Ortega, Daniel Hissel, and Franco Ferrucci. "Hybrid Deep Learning Model for Mean Hourly Irradiance Probabilistic Forecasting." Atmosphere 14, no. 7 (July 24, 2023): 1192. http://dx.doi.org/10.3390/atmos14071192.
Full textHou, Yuxin, Ari Heljakka, and Arno Solin. "Gaussian Process Priors for View-Aware Inference." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (May 18, 2021): 7762–70. http://dx.doi.org/10.1609/aaai.v35i9.16948.
Full textNguyen, Minh Truong, Viet-Hung Dang, and Truong-Thang Nguyen. "Applying Bayesian neural network to evaluate the influence of specialized mini projects on final performance of engineering students: A case study." Ministry of Science and Technology, Vietnam 64, no. 4 (December 15, 2022): 10–15. http://dx.doi.org/10.31276/vjste.64(4).10-15.
Full textNor, Ahmad Kamal Mohd. "Failure Prognostic of Turbofan Engines with Uncertainty Quantification and Explainable AI (XIA)." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 3 (April 11, 2021): 3494–504. http://dx.doi.org/10.17762/turcomat.v12i3.1624.
Full textGhobadi, Fatemeh, and Doosun Kang. "Multi-Step Ahead Probabilistic Forecasting of Daily Streamflow Using Bayesian Deep Learning: A Multiple Case Study." Water 14, no. 22 (November 14, 2022): 3672. http://dx.doi.org/10.3390/w14223672.
Full textBentsen, Lars Ødegaard, Narada Dilp Warakagoda, Roy Stenbro, and Paal Engelstad. "Probabilistic Wind Park Power Prediction using Bayesian Deep Learning and Generative Adversarial Networks." Journal of Physics: Conference Series 2362, no. 1 (November 1, 2022): 012005. http://dx.doi.org/10.1088/1742-6596/2362/1/012005.
Full textLee, Taehee, Devin Rand, Lorraine E. Lisiecki, Geoffrey Gebbie, and Charles Lawrence. "Bayesian age models and stacks: combining age inferences from radiocarbon and benthic δ18O stratigraphic alignment." Climate of the Past 19, no. 10 (October 17, 2023): 1993–2012. http://dx.doi.org/10.5194/cp-19-1993-2023.
Full textLi, Longyuan, Jihai Zhang, Junchi Yan, Yaohui Jin, Yunhao Zhang, Yanjie Duan, and Guangjian Tian. "Synergetic Learning of Heterogeneous Temporal Sequences for Multi-Horizon Probabilistic Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 10 (May 18, 2021): 8420–28. http://dx.doi.org/10.1609/aaai.v35i10.17023.
Full textPang, Bo, Erik Nijkamp, and Ying Nian Wu. "Deep Learning With TensorFlow: A Review." Journal of Educational and Behavioral Statistics 45, no. 2 (September 10, 2019): 227–48. http://dx.doi.org/10.3102/1076998619872761.
Full textLim, Heejong, Kwanghun Chung, and Sangbok Lee. "Probabilistic Forecasting for Demand of a Bike-Sharing Service Using a Deep-Learning Approach." Sustainability 14, no. 23 (November 29, 2022): 15889. http://dx.doi.org/10.3390/su142315889.
Full textBi, Wei, Wenhua Chen, and Jun Pan. "Multidisciplinary Reliability Design Considering Hybrid Uncertainty Incorporating Deep Learning." Wireless Communications and Mobile Computing 2022 (November 18, 2022): 1–11. http://dx.doi.org/10.1155/2022/5846684.
Full textT, Ermolieva, Ermoliev Y, Zagorodniy) A, Bogdanov V, Borodina O, Havlik P, Komendantova N, Knopov P, Gorbachuk V, and Zaslavskyi V. "Artificial Intelligence, Machine Learning, and Intelligent Decision Support Systems: Iterative “Learning” SQG-based procedures for Distributed Models’ Linkage." Artificial Intelligence 27, AI.2022.27(2) (December 29, 2022): 92–97. http://dx.doi.org/10.15407/jai2022.02.092.
Full textLiu, Xi, Tao Wu, Yuanyuan An, and Yang Liu. "Probabilistic models of the strut efficiency factor for RC deep beams with MCMC method." Structural Concrete 21, no. 3 (January 22, 2020): 917–33. http://dx.doi.org/10.1002/suco.201900249.
Full textde Zarzà, I., J. de Curtò, Gemma Roig, and Carlos T. Calafate. "LLM Multimodal Traffic Accident Forecasting." Sensors 23, no. 22 (November 16, 2023): 9225. http://dx.doi.org/10.3390/s23229225.
Full textAli, Abdullah Marish, Fuad A. Ghaleb, Mohammed Sultan Mohammed, Fawaz Jaber Alsolami, and Asif Irshad Khan. "Web-Informed-Augmented Fake News Detection Model Using Stacked Layers of Convolutional Neural Network and Deep Autoencoder." Mathematics 11, no. 9 (April 23, 2023): 1992. http://dx.doi.org/10.3390/math11091992.
Full textChipofya, Mapopa, Hilal Tayara, and Kil To Chong. "Deep Probabilistic Learning Model for Prediction of Ionic Liquids Toxicity." International Journal of Molecular Sciences 23, no. 9 (May 9, 2022): 5258. http://dx.doi.org/10.3390/ijms23095258.
Full textMeng, Fan, Kunlin Yang, Yichen Yao, Zhibin Wang, and Tao Song. "Tropical Cyclone Intensity Probabilistic Forecasting System Based on Deep Learning." International Journal of Intelligent Systems 2023 (March 18, 2023): 1–17. http://dx.doi.org/10.1155/2023/3569538.
Full textPomponi, Jary, Simone Scardapane, and Aurelio Uncini. "A Probabilistic Re-Intepretation of Confidence Scores in Multi-Exit Models." Entropy 24, no. 1 (December 21, 2021): 1. http://dx.doi.org/10.3390/e24010001.
Full textZhong, Z., and M. Mehltretter. "MIXED PROBABILITY MODELS FOR ALEATORIC UNCERTAINTY ESTIMATION IN THE CONTEXT OF DENSE STEREO MATCHING." ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-2-2021 (June 17, 2021): 17–26. http://dx.doi.org/10.5194/isprs-annals-v-2-2021-17-2021.
Full textShao, Mingyue, Wei Song, and Xiaobing Zhao. "Polymetallic Nodule Resource Assessment of Seabed Photography Based on Denoising Diffusion Probabilistic Models." Journal of Marine Science and Engineering 11, no. 8 (July 27, 2023): 1494. http://dx.doi.org/10.3390/jmse11081494.
Full textXu, Duo, Jonathan C. Tan, Chia-Jung Hsu, and Ye Zhu. "Denoising Diffusion Probabilistic Models to Predict the Density of Molecular Clouds." Astrophysical Journal 950, no. 2 (June 1, 2023): 146. http://dx.doi.org/10.3847/1538-4357/accae5.
Full textPandarinathan, Mr, S. Velan, and S. Deepak. "Human Emotion Detection Using Deep Learning." International Journal for Research in Applied Science and Engineering Technology 11, no. 5 (May 31, 2023): 2225–29. http://dx.doi.org/10.22214/ijraset.2023.52016.
Full textCandela, Alberto, David R. Thompson, David Wettergreen, Kerry Cawse-Nicholson, Sven Geier, Michael L. Eastwood, and Robert O. Green. "Probabilistic Super Resolution for Mineral Spectroscopy." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 08 (April 3, 2020): 13241–47. http://dx.doi.org/10.1609/aaai.v34i08.7030.
Full textM. Rajalakshmi and V. Sulochana. "Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured parzen estimators." Scientific Temper 14, no. 04 (December 30, 2023): 1244–50. http://dx.doi.org/10.58414/scientifictemper.2023.14.4.27.
Full textTürkmen, Ali Caner, Tim Januschowski, Yuyang Wang, and Ali Taylan Cemgil. "Forecasting intermittent and sparse time series: A unified probabilistic framework via deep renewal processes." PLOS ONE 16, no. 11 (November 29, 2021): e0259764. http://dx.doi.org/10.1371/journal.pone.0259764.
Full textLi, Zhanli, Xinyu Zhang, Fan Deng, and Yun Zhang. "Integrating deep neural network with logic rules for credit scoring." Intelligent Data Analysis 27, no. 2 (March 15, 2023): 483–500. http://dx.doi.org/10.3233/ida-216460.
Full text