Academic literature on the topic 'Probabilistic deep models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Probabilistic deep models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Probabilistic deep models"
Masegosa, Andrés R., Rafael Cabañas, Helge Langseth, Thomas D. Nielsen, and Antonio Salmerón. "Probabilistic Models with Deep Neural Networks." Entropy 23, no. 1 (2021): 117. http://dx.doi.org/10.3390/e23010117.
Full textVillanueva Llerena, Julissa, and Denis Deratani Maua. "Efficient Predictive Uncertainty Estimators for Deep Probabilistic Models." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 10 (2020): 13740–41. http://dx.doi.org/10.1609/aaai.v34i10.7142.
Full textKarami, Mahdi, and Dale Schuurmans. "Deep Probabilistic Canonical Correlation Analysis." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 8055–63. http://dx.doi.org/10.1609/aaai.v35i9.16982.
Full textLu, Ming, Zhihao Duan, Fengqing Zhu, and Zhan Ma. "Deep Hierarchical Video Compression." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (2024): 8859–67. http://dx.doi.org/10.1609/aaai.v38i8.28733.
Full textMaroñas, Juan, Roberto Paredes, and Daniel Ramos. "Calibration of deep probabilistic models with decoupled bayesian neural networks." Neurocomputing 407 (September 2020): 194–205. http://dx.doi.org/10.1016/j.neucom.2020.04.103.
Full textLi, Zhenjun, Xi Liu, Dawei Kou, Yi Hu, Qingrui Zhang, and Qingxi Yuan. "Probabilistic Models for the Shear Strength of RC Deep Beams." Applied Sciences 13, no. 8 (2023): 4853. http://dx.doi.org/10.3390/app13084853.
Full textSerpell, Cristián, Ignacio A. Araya, Carlos Valle, and Héctor Allende. "Addressing model uncertainty in probabilistic forecasting using Monte Carlo dropout." Intelligent Data Analysis 24 (December 4, 2020): 185–205. http://dx.doi.org/10.3233/ida-200015.
Full textBoursin, Nicolas, Carl Remlinger, and Joseph Mikael. "Deep Generators on Commodity Markets Application to Deep Hedging." Risks 11, no. 1 (2022): 7. http://dx.doi.org/10.3390/risks11010007.
Full textZuidberg Dos Martires, Pedro. "Probabilistic Neural Circuits." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 15 (2024): 17280–89. http://dx.doi.org/10.1609/aaai.v38i15.29675.
Full textRavuri, Suman, Karel Lenc, Matthew Willson, et al. "Skilful precipitation nowcasting using deep generative models of radar." Nature 597, no. 7878 (2021): 672–77. http://dx.doi.org/10.1038/s41586-021-03854-z.
Full textDissertations / Theses on the topic "Probabilistic deep models"
Misino, Eleonora. "Deep Generative Models with Probabilistic Logic Priors." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24058/.
Full textZhai, Menghua. "Deep Probabilistic Models for Camera Geo-Calibration." UKnowledge, 2018. https://uknowledge.uky.edu/cs_etds/74.
Full textWu, Di. "Human action recognition using deep probabilistic graphical models." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/6603/.
Full textRossi, Simone. "Improving Scalability and Inference in Probabilistic Deep Models." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS042.
Full textHager, Paul Andrew. "Investigation of connection between deep learning and probabilistic graphical models." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119552.
Full textFarouni, Tarek. "An Overview of Probabilistic Latent Variable Models with anApplication to the Deep Unsupervised Learning of ChromatinStates." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492189894812539.
Full textQian, Weizhu. "Discovering human mobility from mobile data : probabilistic models and learning algorithms." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCA025.
Full textSYED, MUHAMMAD FARRUKH SHAHID. "Data-Driven Approach based on Deep Learning and Probabilistic Models for PHY-Layer Security in AI-enabled Cognitive Radio IoT." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1048543.
Full textEl-Shaer, Mennat Allah. "An Experimental Evaluation of Probabilistic Deep Networks for Real-time Traffic Scene Representation using Graphical Processing Units." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1546539166677894.
Full textHu, Xu. "Towards efficient learning of graphical models and neural networks with variational techniques." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC1037.
Full textBooks on the topic "Probabilistic deep models"
Oaksford, Mike, and Nick Chater. Causal Models and Conditional Reasoning. Edited by Michael R. Waldmann. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199399550.013.5.
Full textTutino, Stefania. Uncertainty in Post-Reformation Catholicism. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190694098.001.0001.
Full textTrappenberg, Thomas P. Fundamentals of Machine Learning. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198828044.001.0001.
Full textLevinson, Stephen C. Speech Acts. Edited by Yan Huang. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199697960.013.22.
Full textBook chapters on the topic "Probabilistic deep models"
Sucar, Luis Enrique. "Deep Learning and Graphical Models." In Probabilistic Graphical Models. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61943-5_16.
Full textBahadir, Cagla Deniz, Benjamin Liechty, David J. Pisapia, and Mert R. Sabuncu. "Characterizing the Features of Mitotic Figures Using a Conditional Diffusion Probabilistic Model." In Deep Generative Models. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53767-7_12.
Full textGustafsson, Fredrik K., Martin Danelljan, Goutam Bhat, and Thomas B. Schön. "Energy-Based Models for Deep Probabilistic Regression." In Computer Vision – ECCV 2020. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58565-5_20.
Full textHung, Alex Ling Yu, Zhiqing Sun, Wanwen Chen, and John Galeotti. "Hierarchical Probabilistic Ultrasound Image Inpainting via Variational Inference." In Deep Generative Models, and Data Augmentation, Labelling, and Imperfections. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88210-5_7.
Full textNkambule, Tshepo, and Ritesh Ajoodha. "Classification of Music by Genre Using Probabilistic Models and Deep Learning Models." In Proceedings of Sixth International Congress on Information and Communication Technology. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2102-4_17.
Full textVölcker, Claas, Alejandro Molina, Johannes Neumann, Dirk Westermann, and Kristian Kersting. "DeepNotebooks: Deep Probabilistic Models Construct Python Notebooks for Reporting Datasets." In Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43823-4_3.
Full textDinh, Xuan Truong, and Hai Van Pham. "Social Network Analysis Based on Combining Probabilistic Models with Graph Deep Learning." In Communication and Intelligent Systems. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1089-9_76.
Full textLinghu, Yuan, Xiangxue Li, and Zhenlong Zhang. "Deep Learning vs. Traditional Probabilistic Models: Case Study on Short Inputs for Password Guessing." In Algorithms and Architectures for Parallel Processing. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38991-8_31.
Full textLiu, Zheng, and Hao Wang. "Research on Process Diagnosis of Severe Accidents Based on Deep Learning and Probabilistic Safety Analysis." In Springer Proceedings in Physics. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_54.
Full textStojanovski, David, Uxio Hermida, Pablo Lamata, Arian Beqiri, and Alberto Gomez. "Echo from Noise: Synthetic Ultrasound Image Generation Using Diffusion Models for Real Image Segmentation." In Simplifying Medical Ultrasound. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44521-7_4.
Full textConference papers on the topic "Probabilistic deep models"
Sidheekh, Sahil, Saurabh Mathur, Athresh Karanam, and Sriraam Natarajan. "Deep Tractable Probabilistic Models." In CODS-COMAD 2024: 7th Joint International Conference on Data Science & Management of Data (11th ACM IKDD CODS and 29th COMAD). ACM, 2024. http://dx.doi.org/10.1145/3632410.3633295.
Full textLiu, Xixi, Che-Tsung Lin, and Christopher Zach. "Energy-based Models for Deep Probabilistic Regression." In 2022 26th International Conference on Pattern Recognition (ICPR). IEEE, 2022. http://dx.doi.org/10.1109/icpr56361.2022.9955636.
Full textAsgariandehkordi, Hojat, Sobhan Goudarzi, Adrian Basarab, and Hassan Rivaz. "Deep Ultrasound Denoising Using Diffusion Probabilistic Models." In 2023 IEEE International Ultrasonics Symposium (IUS). IEEE, 2023. http://dx.doi.org/10.1109/ius51837.2023.10306544.
Full textVillanueva Llerena, Julissa. "Predictive Uncertainty Estimation for Tractable Deep Probabilistic Models." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/745.
Full textCotterell, Ryan, and Jason Eisner. "Probabilistic Typology: Deep Generative Models of Vowel Inventories." In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 2017. http://dx.doi.org/10.18653/v1/p17-1109.
Full textZHANG, YANG, YOU-WU WANG, and YI-QING NI. "HYBRID PROBABILISTIC DEEP LEARNING FOR DAMAGE IDENTIFICATION." In Structural Health Monitoring 2023. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/shm2023/37014.
Full textLi, Xiucheng, Gao Cong, and Yun Cheng. "Spatial Transition Learning on Road Networks with Deep Probabilistic Models." In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 2020. http://dx.doi.org/10.1109/icde48307.2020.00037.
Full textZhu, Jun. "Probabilistic Machine Learning: Models, Algorithms and a Programming Library." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/823.
Full textSaleem, Rabia, Bo Yuan, Fatih Kurugollu, and Ashiq Anjum. "Explaining probabilistic Artificial Intelligence (AI) models by discretizing Deep Neural Networks." In 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC). IEEE, 2020. http://dx.doi.org/10.1109/ucc48980.2020.00070.
Full textBejarano, Gissella. "PhD Forum: Deep Learning and Probabilistic Models Applied to Sequential Data." In 2018 IEEE International Conference on Smart Computing (SMARTCOMP). IEEE, 2018. http://dx.doi.org/10.1109/smartcomp.2018.00066.
Full text