Academic literature on the topic 'Probabilistic deep models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Probabilistic deep models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Probabilistic deep models"
Masegosa, Andrés R., Rafael Cabañas, Helge Langseth, Thomas D. Nielsen, and Antonio Salmerón. "Probabilistic Models with Deep Neural Networks." Entropy 23, no. 1 (2021): 117. http://dx.doi.org/10.3390/e23010117.
Full textVillanueva Llerena, Julissa, and Denis Deratani Maua. "Efficient Predictive Uncertainty Estimators for Deep Probabilistic Models." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 10 (2020): 13740–41. http://dx.doi.org/10.1609/aaai.v34i10.7142.
Full textKarami, Mahdi, and Dale Schuurmans. "Deep Probabilistic Canonical Correlation Analysis." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 8055–63. http://dx.doi.org/10.1609/aaai.v35i9.16982.
Full textLu, Ming, Zhihao Duan, Fengqing Zhu, and Zhan Ma. "Deep Hierarchical Video Compression." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (2024): 8859–67. http://dx.doi.org/10.1609/aaai.v38i8.28733.
Full textSerpell, Cristián, Ignacio A. Araya, Carlos Valle, and Héctor Allende. "Addressing model uncertainty in probabilistic forecasting using Monte Carlo dropout." Intelligent Data Analysis 24 (December 4, 2020): 185–205. http://dx.doi.org/10.3233/ida-200015.
Full textJiang, Yiyang. "Research on Denoising Diffusion Probabilistic Models." Highlights in Science, Engineering and Technology 107 (August 15, 2024): 560–72. http://dx.doi.org/10.54097/sxd49274.
Full textMaroñas, Juan, Roberto Paredes, and Daniel Ramos. "Calibration of deep probabilistic models with decoupled bayesian neural networks." Neurocomputing 407 (September 2020): 194–205. http://dx.doi.org/10.1016/j.neucom.2020.04.103.
Full textLi, Zhenjun, Xi Liu, Dawei Kou, Yi Hu, Qingrui Zhang, and Qingxi Yuan. "Probabilistic Models for the Shear Strength of RC Deep Beams." Applied Sciences 13, no. 8 (2023): 4853. http://dx.doi.org/10.3390/app13084853.
Full textZhang, Ruqi. "Scalable and Efficient Probabilistic Inference for Bayesian Deep Learning and Generative Modeling." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 27 (2025): 28737. https://doi.org/10.1609/aaai.v39i27.35129.
Full textZheng, Chenyiqiu. "A comprehensive review of probabilistic and statistical methods in social network sentiment analysis." Advances in Engineering Innovation 16, no. 3 (2025): 38–43. https://doi.org/10.54254/2977-3903/2025.21918.
Full textDissertations / Theses on the topic "Probabilistic deep models"
Misino, Eleonora. "Deep Generative Models with Probabilistic Logic Priors." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24058/.
Full textZhai, Menghua. "Deep Probabilistic Models for Camera Geo-Calibration." UKnowledge, 2018. https://uknowledge.uky.edu/cs_etds/74.
Full textWu, Di. "Human action recognition using deep probabilistic graphical models." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/6603/.
Full textRossi, Simone. "Improving Scalability and Inference in Probabilistic Deep Models." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS042.
Full textHager, Paul Andrew. "Investigation of connection between deep learning and probabilistic graphical models." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119552.
Full textFarouni, Tarek. "An Overview of Probabilistic Latent Variable Models with anApplication to the Deep Unsupervised Learning of ChromatinStates." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492189894812539.
Full textMorales, quinga Katherine Tania. "Generative Markov models for sequential bayesian classification." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAS019.
Full textQian, Weizhu. "Discovering human mobility from mobile data : probabilistic models and learning algorithms." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCA025.
Full textSYED, MUHAMMAD FARRUKH SHAHID. "Data-Driven Approach based on Deep Learning and Probabilistic Models for PHY-Layer Security in AI-enabled Cognitive Radio IoT." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1048543.
Full textEl-Shaer, Mennat Allah. "An Experimental Evaluation of Probabilistic Deep Networks for Real-time Traffic Scene Representation using Graphical Processing Units." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1546539166677894.
Full textBooks on the topic "Probabilistic deep models"
Oaksford, Mike, and Nick Chater. Causal Models and Conditional Reasoning. Edited by Michael R. Waldmann. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199399550.013.5.
Full textTutino, Stefania. Uncertainty in Post-Reformation Catholicism. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190694098.001.0001.
Full textTrappenberg, Thomas P. Fundamentals of Machine Learning. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198828044.001.0001.
Full textLevinson, Stephen C. Speech Acts. Edited by Yan Huang. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199697960.013.22.
Full textBook chapters on the topic "Probabilistic deep models"
Sucar, Luis Enrique. "Deep Learning and Graphical Models." In Probabilistic Graphical Models. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61943-5_16.
Full textTomczak, Jakub M. "Probabilistic Modeling: From Mixture Models to Probabilistic Circuits." In Deep Generative Modeling. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-64087-2_2.
Full textBahadir, Cagla Deniz, Benjamin Liechty, David J. Pisapia, and Mert R. Sabuncu. "Characterizing the Features of Mitotic Figures Using a Conditional Diffusion Probabilistic Model." In Deep Generative Models. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53767-7_12.
Full textGustafsson, Fredrik K., Martin Danelljan, Goutam Bhat, and Thomas B. Schön. "Energy-Based Models for Deep Probabilistic Regression." In Computer Vision – ECCV 2020. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58565-5_20.
Full textKucharavy, Andrei. "From Deep Neural Language Models to LLMs." In Large Language Models in Cybersecurity. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54827-7_1.
Full textHung, Alex Ling Yu, Zhiqing Sun, Wanwen Chen, and John Galeotti. "Hierarchical Probabilistic Ultrasound Image Inpainting via Variational Inference." In Deep Generative Models, and Data Augmentation, Labelling, and Imperfections. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88210-5_7.
Full textNkambule, Tshepo, and Ritesh Ajoodha. "Classification of Music by Genre Using Probabilistic Models and Deep Learning Models." In Proceedings of Sixth International Congress on Information and Communication Technology. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2102-4_17.
Full textVölcker, Claas, Alejandro Molina, Johannes Neumann, Dirk Westermann, and Kristian Kersting. "DeepNotebooks: Deep Probabilistic Models Construct Python Notebooks for Reporting Datasets." In Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43823-4_3.
Full textFernández-Rodríguez, Jose David, Jesús Benito-Picazo, Iván García-Aguilar, and Ezequiel López-Rubio. "Automated Semantic Labelling of Images Generated with Deep Diffusion Probabilistic Models." In Lecture Notes in Networks and Systems. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-75013-7_4.
Full textContreras, Victor, Michael Schumacher, and Davide Calvaresi. "Explanation of Deep Learning Models via Logic Rules Enhanced by Embeddings Analysis, and Probabilistic Models." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70074-3_9.
Full textConference papers on the topic "Probabilistic deep models"
Zheng, Laura, Sanghyun Son, Jing Liang, Xijun Wang, Brian Clipp, and Ming C. Lin. "Deep Stochastic Kinematic Models for Probabilistic Motion Forecasting in Traffic." In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10802164.
Full textArif, Arooj. "TESTIFAI: Probabilistic Context-Aware Testing for Safe Deep Learning Models." In 2025 IEEE/ACM 47th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 2025. https://doi.org/10.1109/icse-companion66252.2025.00037.
Full textSattarzadeh, Ali Reza, and Pubudu N. Pathirana. "Probabilistic Graph Models: A Key to Boosting Deep Reinforcement Learning in Urban Traffic Networks." In 2025 17th International Conference on Computer and Automation Engineering (ICCAE). IEEE, 2025. https://doi.org/10.1109/iccae64891.2025.10980562.
Full textSutjiadi, Raymond, Siti Sendari, Heru Wahyu Herwanto, and Yosi Kristian. "Generating High-quality Synthetic Mammogram Images Using Denoising Diffusion Probabilistic Models: a Novel Approach for Augmenting Deep Learning Datasets." In 2024 International Conference on Information Technology Systems and Innovation (ICITSI). IEEE, 2024. https://doi.org/10.1109/icitsi65188.2024.10929446.
Full textShahab, Mohammad, Sunidhi Bachawala, Marcial Gonzalez, Gintaras Reklaitis, and Zoltan Nagy. "Design Space Identification of the Rotary Tablet Press." In Foundations of Computer-Aided Process Design. PSE Press, 2024. http://dx.doi.org/10.69997/sct.156711.
Full textKojima, Keisuke, Jianing Liu, and Roberto Paiella. "Inverse Design of Plasmonic Phase-Contrast Image Sensors Using Denoising Diffusion Probabilistic Model." In CLEO: Fundamental Science. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth1r.4.
Full textLi, Zhongya, An Yan, Junhao Zhao, et al. "Model-Free Deep Learning of Joint GS and PS for 300G Flexible Coherent PON based on Direct Information Interaction between OLT and ONUs." In Optical Fiber Communication Conference. Optica Publishing Group, 2025. https://doi.org/10.1364/ofc.2025.th1j.2.
Full textGhahfarokhi, Sepehr Salem, Tyrell To, Julie Jorns, Tina Yen, Bing Yu, and Dong Hye Ye. "Deep Learning for Automated Detection of Breast Cancer in Deep Ultraviolet Fluorescence Images with Diffusion Probabilistic Model." In 2024 IEEE International Symposium on Biomedical Imaging (ISBI). IEEE, 2024. http://dx.doi.org/10.1109/isbi56570.2024.10635349.
Full textSyed, Shakir, Lakshminarayana Reddy Kothapalli Sondinti, Puneet Sapra, Amit Joshi, Shobana M, and Deepan Chakravarthi A. V. "Probabilistic Prediction for Start-Up Success through Deep Learning based Stacked DAE Model." In 2025 3rd International Conference on Integrated Circuits and Communication Systems (ICICACS). IEEE, 2025. https://doi.org/10.1109/icicacs65178.2025.10967987.
Full textSidheekh, Sahil, Saurabh Mathur, Athresh Karanam, and Sriraam Natarajan. "Deep Tractable Probabilistic Models." In CODS-COMAD 2024: 7th Joint International Conference on Data Science & Management of Data (11th ACM IKDD CODS and 29th COMAD). ACM, 2024. http://dx.doi.org/10.1145/3632410.3633295.
Full textReports on the topic "Probabilistic deep models"
Pasupuleti, Murali Krishna. Stochastic Computation for AI: Bayesian Inference, Uncertainty, and Optimization. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv325.
Full textPasupuleti, Murali Krishna. Decision Theory and Model-Based AI: Probabilistic Learning, Inference, and Explainability. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv525.
Full textPasupuleti, Murali Krishna. Quantum-Enhanced Machine Learning: Harnessing Quantum Computing for Next-Generation AI Systems. National Education Services, 2025. https://doi.org/10.62311/nesx/rrv125.
Full text