Dissertations / Theses on the topic 'Probabilistic Bayesian Network'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Probabilistic Bayesian Network.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sahin, Elvan. "Discrete-Time Bayesian Networks Applied to Reliability of Flexible Coping Strategies of Nuclear Power Plants." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103817.
Full textMaster of Science
Some external events like earthquakes, flooding, and severe wind, may cause damage to the nuclear reactors. To reduce the consequences of these damages, the Nuclear Energy Institute (NEI) has proposed mitigating strategies known as FLEX (Diverse and Flexible Coping Strategies). After the implementation of FLEX in nuclear power plants, we need to analyze the failure or success probability of these engineering systems through one of the existing methods. However, the existing methods are limited in analyzing the dependencies among components in complex systems. Bayesian networks (BNs) are a graphical and quantitative technique that is utilized to model dependency among events. This thesis shows the effectiveness and applicability of BNs in the reliability analysis of FLEX strategies by comparing it with two other reliability analysis tools, known as Fault Tree Analysis and Markov Chain. According to the reliability analysis results, BN is a powerful and promising method in modeling and analyzing FLEX strategies.
Yoo, Keunyoung. "Probabilistic SEM : an augmentation to classical Structural equation modelling." Diss., University of Pretoria, 2018. http://hdl.handle.net/2263/66521.
Full textMini Dissertation (MCom)--University of Pretoria, 2018.
Statistics
MCom
Unrestricted
Zhao, Wenyu. "A Probabilistic Approach for Prognostics of Complex Rotary Machinery Systems." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1423581651.
Full textBjörkman, Peter. "Probabilistic Safety Assessment using Quantitative Analysis Techniques : Application in the Heavy Automotive Industry." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-163262.
Full textQuer, Giorgio. "Optimization of Cognitive Wireless Networks using Compressive Sensing and Probabilistic Graphical Models." Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3421992.
Full textLa combinazione delle informazioni nelle reti di sensori wireless è una soluzione promettente per aumentare l'efficienza delle techiche di raccolta dati. Nella prima parte di questa tesi viene affrontato il problema della ricostruzione di segnali distribuiti tramite la raccolta di un piccolo numero di campioni al punto di raccolta dati (DCP). Viene sfruttato il metodo dell'analisi delle componenti principali (PCA) per ricostruire al DCP le caratteristiche statistiche del segnale di interesse. Questa informazione viene utilizzata al DCP per determinare la matrice richiesta dalle tecniche di recupero che sfruttano algoritmi di ottimizzazione convessa (Compressive Sensing, CS) per ricostruire l'intero segnale da una sua versione campionata. Per integrare questo modello di monitoraggio in un framework di compressione e recupero del segnale, viene applicata la logica del paradigma 'cognitive': prima si osserva la rete; poi dall'osservazione si derivano le statistiche di interesse, che vengono applicate per il recupero del segnale; si sfruttano queste informazioni statistiche per prenderere decisioni e infine si rendono effettive queste decisioni con un controllo in retroazione. Il framework di compressione e recupero con controllo in retroazione è chiamato "Sensing, Compression and Recovery through ONline Estimation" (SCoRe1). L'intero framework è stato implementato in una architettura per WSN detta WSN-control, accessibile da Internet. Le scelte nella progettazione del protocollo sono state giustificate da un'analisi teorica con un approccio di tipo Bayesiano. Nella seconda parte della tesi il paradigma cognitive viene utilizzato per l'ottimizzazione di reti locali wireless (WLAN). L'architetture della rete cognitive viene integrata nello stack protocollare della rete wireless. Nello specifico, vengono utilizzati dei modelli grafici probabilistici per modellare lo stack protocollare: le relazioni probabilistiche tra alcuni parametri di diversi livelli vengono studiate con il modello delle reti Bayesiane (BN). In questo modo, è possibile utilizzare queste informazioni provenienti da diversi livelli per ottimizzare le prestazioni della rete, utilizzando un approccio di tipo cross-layer. Ad esempio, queste informazioni sono utilizzate per predire il throughput a livello di trasporto in una rete wireless di tipo single-hop, o per prevedere il verificarsi di eventi di congestione in una rete wireless di tipo multi-hop. L'approccio seguito nei due argomenti principali che compongono questa tesi è il seguente: (i) viene applicato il paradigma cognitive per ricostruire specifiche caratteristiche probabilistiche della rete, (ii) queste informazioni vengono utilizzate per progettare nuove tecniche protocollari, (iii) queste tecniche vengono analizzate teoricamente e confrontate con altre tecniche esistenti, e (iv) le prestazioni vengono simulate, confrontate con quelle di altre tecniche e valutate in scenari di rete realistici.
Ramani, Shiva Shankar. "Graphical Probabilistic Switching Model: Inference and Characterization for Power Dissipation in VLSI Circuits." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000497.
Full textBortolini, Rafaela. "Enhancing building performance : a Bayesian network model to support facility management." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/666187.
Full textActualmente, el desempeño de los edificios existentes es de gran interés debido a la necesidad de renovar el stock de edificios antiguos, proporcionando así una mejor calidad de vida a los usuarios finales. El estado de conservación de los edificios y las condiciones ambientales interiores se relacionan con el bienestar, la salud y la productividad de los ocupantes. Al mismo tiempo, existe la necesidad de edificios más sostenibles con un menor consumo energético. El desempeño de un edificio se ve afectado por varios factores (p.ej., agentes ambientales, comportamiento de los ocupantes, operación, mantenimiento, etc.). La mayoría de estos aspectos y causas muestran complejas relaciones, y consecuentemente existe una gran incertidumbre para predecirlo. Sin embargo, las investigaciones anteriores no contemplan estas relaciones causales y, a menudo, se basan en modelos lineales. Aunque el desempeño de los edificios se debe abordar teniendo en cuenta los requisitos de las diferentes partes interesadas, pocos estudios se centran en este enfoque. Los estudios anteriores tienden a analizar aspectos particulares del desempeño, ignorando las posibles relaciones que pueden ocurrir entre ellos. Los gestores de edificios deben abordar eficientemente la incertidumbre, gestionar los riesgos e identificar, analizar, evaluar y mitigar sistemáticamente los factores que pueden afectar el desempeño del edificio. Teniendo en cuenta los aspectos comentados anteriormente, el objetivo de esta tesis es desarrollar un modelo de red bayesiana (BN) para gestionar holísticamente el desempeño operativo de los edificios y apoyar su gestión. El modelo propuesto consiste en un enfoque probabilístico para evaluar el desempeño de los edificios existentes, considerando tres categorías: seguridad y funcionalidad, salud y confort, y eficiencia energética. El modelo también proporciona una interpretación de la cadena de causalidad entre los múltiples factores e indicadores relacionados con el desempeño del edificio. El análisis de las relaciones entre los diferentes aspectos del desempeño de los edificios (estado de conservación del edificio, el confort del usuario final y la eficiencia energética del edificio) va a permitir explicar y entender sus factores causales y va a posibilitar mejorar la gestión de estos edificios. La verificación del modelo propuesto se lleva a cabo mediante análisis de sensibilidad y datos de edificios existentes. Las aplicaciones del modelo incluyen: la evaluación del desempeño de edificios de forma integrada; la identificación de factores causales; la predicción del desempeño de los edificios a través de escenarios de renovación y modernización; y la priorización de las acciones de mantenimiento. La implementación del modelo en diversos casos de estudio permite ilustrar su aplicabilidad y validar su uso. Los resultados de esta tesis también incluyen métodos de recogida de datos para las variables del modelo propuesto. De hecho, se propone un sistema de inspección de edificios para evaluar el desempeño técnico de los edificios, se desarrolla un sistema de text mining para analizar las solicitudes de mantenimiento de los usuarios finales y se formula un cuestionario para recoger la satisfacción de los usuarios finales en relación a los espacios de los edificios en los que interactúan. Para concluir, este trabajo propone el uso del Building Information Modeling (BIM) para almacenar y acceder a la información necesaria para el modelo.
Klukowski, Piotr. "Nuclear magnetic resonance spectroscopy interpretation for protein modeling using computer vision and probabilistic graphical models." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4720.
Full textRamalingam, Nirmal Munuswamy. "A complete probabilistic framework for learning input models for power and crosstalk estimation in VLSI circuits." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000505.
Full textTran, Thanh Binh. "A Bayesian Network framework for probabilistic identification of model parameters from normal and accelerated tests : application to chloride ingress into conrete." Nantes, 2015. https://archive.bu.univ-nantes.fr/pollux/show/show?id=1bd3c7d5-c357-43f1-b430-bb5e97e9ef3c.
Full textChloride ingress into concrete is one of the major causes leading to the degradation of reinforced concrete (RC) structures. Under chloride attack important damages are generated after 10 to 20 years. Consequently, they should be periodically inspected and repaired to ensure an optimal level of serviceability and safety during its lifecycle. Relevant material and environmental parameters for reliability analysis could be determined from inspection data. In natural conditions, chloride ingress involves a large number of uncertainties related to material properties and exposure conditions. However, due to the slow process of chloride ingress and the difficulties for implementing the inspection techniques, it is difficult to obtain sufficient inspection data to characterise the mid- and long-term behaviour of this phenomenon. The main objective of this thesis is to develop a framework based on Bayesian Network updating for improving the identification of uncertainties related to material and environmental model parameters in case of limited amount of measurements in time and space. The identification process is based on results coming from in-lab normal and accelerated tests that simulate tidal conditions. Based on these data, several procedures are proposed to: (1) identify input random variables from normal or natural tests; (2) determine an equivalent exposure time (and a scale factor) for accelerated tests; and (3) characterise time-dependent parameters combining information from normal and accelerated tests. The results indicate that the proposed framework could be a useful tool to identify model parameters even from limited
Gasse, Maxime. "Apprentissage de Structure de Modèles Graphiques Probabilistes : application à la Classification Multi-Label." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1003/document.
Full textIn this thesis, we address the specific problem of probabilistic graphical model structure learning, that is, finding the most efficient structure to represent a probability distribution, given only a sample set D ∼ p(v). In the first part, we review the main families of probabilistic graphical models from the literature, from the most common (directed, undirected) to the most advanced ones (chained, mixed etc.). Then we study particularly the problem of learning the structure of directed graphs (Bayesian networks), and we propose a new hybrid structure learning method, H2PC (Hybrid Hybrid Parents and Children), which combines a constraint-based approach (statistical independence tests) with a score-based approach (posterior probability of the structure). In the second part, we address the multi-label classification problem, which aims at assigning a set of categories (binary vector y P (0, 1)m) to a given object (vector x P Rd). In this context, probabilistic graphical models provide convenient means of encoding p(y|x), particularly for the purpose of minimizing general loss functions. We review the main approaches based on PGMs for multi-label classification (Probabilistic Classifier Chain, Conditional Dependency Network, Bayesian Network Classifier, Conditional Random Field, Sum-Product Network), and propose a generic approach inspired from constraint-based structure learning methods to identify the unique partition of the label set into irreducible label factors (ILFs), that is, the irreducible factorization of p(y|x) into disjoint marginal distributions. We establish several theoretical results to characterize the ILFs based on the compositional graphoid axioms, and obtain three generic procedures under various assumptions about the conditional independence properties of the joint distribution p(x, y). Our conclusions are supported by carefully designed multi-label classification experiments, under the F-loss and the zero-one loss functions
Ben, Mrad Ali. "Observations probabilistes dans les réseaux bayésiens." Thesis, Valenciennes, 2015. http://www.theses.fr/2015VALE0018/document.
Full textIn a Bayesian network, evidence on a variable usually signifies that this variable is instantiated, meaning that the observer can affirm with certainty that the variable is in the signaled state. This thesis focuses on other types of evidence, often called uncertain evidence, which cannot be represented by the simple assignment of the variables. This thesis clarifies and studies different concepts of uncertain evidence in a Bayesian network and offers various applications of uncertain evidence in Bayesian networks.Firstly, we present a review of uncertain evidence in Bayesian networks in terms of terminology, definition, specification and propagation. It shows that the vocabulary is not clear and that some terms are used to represent different concepts.We identify three types of uncertain evidence in Bayesian networks and we propose the followingterminology: likelihood evidence, fixed probabilistic evidence and not-fixed probabilistic evidence. We define them and describe updating algorithms for the propagation of uncertain evidence. Finally, we propose several examples of the use of fixed probabilistic evidence in Bayesian networks. The first example concerns evidence on a subpopulation applied in the context of a geographical information system. The second example is an organization of agent encapsulated Bayesian networks that have to collaborate together to solve a problem. The third example concerns the transformation of evidence on continuous variables into fixed probabilistic evidence. The algorithm BN-IPFP-1 has been implemented and used on medical data from CHU Habib Bourguiba in Sfax
FALOTICO, ROSA. "Modelli ad Equazioni Strutturali e Reti Probabilistiche Bayesiane: due approcci a confronto nello studio di relazioni causali." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19444.
Full textPetiet, Florence. "Réseau bayésien dynamique hybride : application à la modélisation de la fiabilité de systèmes à espaces d'états discrets." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC2014/document.
Full textReliability analysis is an integral part of system design and operation, especially for systems running critical applications. Recent works have shown the interest of using Bayesian Networks in the field of reliability, for modeling the degradation of a system. The Graphical Duration Models are a specific case of Bayesian Networks, which make it possible to overcome the Markovian property of dynamic Bayesian Networks. They adapt to systems whose sojourn-time in each state is not necessarily exponentially distributed, which is the case for most industrial applications. Previous works, however, have shown limitations in these models in terms of storage capacity and computing time, due to the discrete nature of the sojourn time variable. A solution might be to allow the sojourn time variable to be continuous. According to expert opinion, sojourn time variables follow a Weibull distribution in many systems. The goal of this thesis is to integrate sojour time variables following a Weibull distribution in a Graphical Duration Model by proposing a new approach. After a presentation of the Bayesian networks, and more particularly graphical duration models, and their limitations, this report focus on presenting the new model allowing the modeling of the degradation process. This new model is called Weibull Hybrid Graphical Duration Model. An original algorithm allowing inference in such a network has been deployed. Various so built databases allowed to learn on one hand a Graphical Duration Model, and on an other hand a Graphical Duration Model Hybrid - Weibull, in order to compare them, in term of learning quality, of inference quality, of compute time, and of storage space
SYED, MUHAMMAD FARRUKH SHAHID. "Data-Driven Approach based on Deep Learning and Probabilistic Models for PHY-Layer Security in AI-enabled Cognitive Radio IoT." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1048543.
Full textKoudelka, Vlastimil. "Pravděpodobnostní neuronové sítě pro speciální úlohy v elektromagnetismu." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-233661.
Full textTembo, Mouafo Serge Romaric. "Applications de l'intelligence artificielle à la détection et l'isolation de pannes multiples dans un réseau de télécommunications." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2017. http://www.theses.fr/2017IMTA0004/document.
Full textTelecommunication networks must be reliable and robust to ensure high availability of services. Operators are currently searching to automate as much as possible, complex network management operations such as fault diagnosis.In this thesis we are focused on self-diagnosis of failures in the optical access networks of the operator Orange. The diagnostic tool used up to now, called DELC, is an expert system based on decision rules. This system is efficient but difficult to maintain due in particular to the very large volume of information to analyze. It is also impossible to have a rule for each possible fault configuration, so that some faults are currently not diagnosed.We proposed in this thesis a new approach. In our approach, the diagnosis of the root causes of malfunctions and alarms is based on a Bayesian network probabilistic model of dependency relationships between the different alarms, counters, intermediate faults and root causes at the level of the various network component. This probabilistic model has been designed in a modular way, so as to be able to evolve in case of modification of the physical architecture of the network. Self-diagnosis of the root causes of malfunctions and alarms is made by inference in the Bayesian network model of the state of the nodes not observed in view of observations (counters, alarms, etc.) collected on the operator's network. The structure of the Bayesian network, as well as the order of magnitude of the probabilistic parameters of this model, were determined by integrating in the model the expert knowledge of the diagnostic experts on this segment of the network. The analysis of thousands of cases of fault diagnosis allowed to fine-tune the probabilistic parameters of the model thanks to an Expectation Maximization algorithm. The performance of the developed probabilistic tool, named PANDA, was evaluated over two months of fault diagnosis in Orange's GPON-FTTH network in July-August 2015. In most cases, the new system, PANDA, and the system in production, DELC, make an identical diagnosis. However, a number of cases are not diagnosed by DELC but are correctly diagnosed by PANDA. The cases for which self-diagnosis results of the two systems are different were evaluated manually, which made it possible to demonstrate in each of these cases the relevance of the decisions taken by PANDA
Rodriguez, Martinez Andres Florencio. "A probabilistic examplar based model." Thesis, University of Salford, 1998. http://usir.salford.ac.uk/14725/.
Full textTodeschini, Adrien. "Probabilistic and Bayesian nonparametric approaches for recommender systems and networks." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0237/document.
Full textWe propose two novel approaches for recommender systems and networks. In the first part, we first give an overview of recommender systems and concentrate on the low-rank approaches for matrix completion. Building on a probabilistic approach, we propose novel penalty functions on the singular values of the low-rank matrix. By exploiting a mixture model representation of this penalty, we show that a suitably chosen set of latent variables enables to derive an expectation-maximization algorithm to obtain a maximum a posteriori estimate of the completed low-rank matrix. The resulting algorithm is an iterative soft-thresholded algorithm which iteratively adapts the shrinkage coefficients associated to the singular values. The algorithm is simple to implement and can scale to large matrices. We provide numerical comparisons between our approach and recent alternatives showing the interest of the proposed approach for low-rank matrix completion. In the second part, we first introduce some background on Bayesian nonparametrics and in particular on completely random measures (CRMs) and their multivariate extension, the compound CRMs. We then propose a novel statistical model for sparse networks with overlapping community structure. The model is based on representing the graph as an exchangeable point process, and naturally generalizes existing probabilistic models with overlapping block-structure to the sparse regime. Our construction builds on vectors of CRMs, and has interpretable parameters, each node being assigned a vector representing its level of affiliation to some latent communities. We develop methods for simulating this class of random graphs, as well as to perform posterior inference. We show that the proposed approach can recover interpretable structure from two real-world networks and can handle graphs with thousands of nodes and tens of thousands of edges
Luo, Zhiyuan. "A probabilistic reasoning and learning system based on Bayesian belief networks." Thesis, Heriot-Watt University, 1992. http://hdl.handle.net/10399/1490.
Full textBen, Ishak Mouna. "Probabilistic relational models : learning and evaluation : The relational Bayesian networks case." Nantes, 2015. https://archive.bu.univ-nantes.fr/pollux/show/show?id=28b20e1e-99b3-4956-b3aa-67c1e94e4790.
Full textStatistical relational learning (SRL) appeared in the early 2000s as a new field of machine learning that enables effective and robust reasoning about relational data structures. Several conventional data mining methods have been adapted for direct application to relational data representation. Relational Bayesian Networks (RBNs) extend Bayesian networks (BNs) to a relational data mining context. To use this model, it is first necessary to build it: the structure and parameters of a RBN must be set manually or learned from a relational observational dataset. Learning the structure remains the most complicated issue as it is a NP-hard problem. Existing approaches for RBNs structure learning are inspired from classical methods of learning the structure of BNs. The evaluation of learning approaches requires testing datasets and evaluation measurements. For BNs, datasets are usually sampled from real known networks. Otherwise, processes to randomly generate the model and the data are already established. Both practices are almost absent for RBR. Moreover, metrics to evaluate a RBN structure learning algorithm are not yet proposed. This thesis provides two major contributions. I) A synthetic approach allowing to generate random RBNs from scratch. The proposed method allows to generate RBNs as well as synthetic relational data from a randomly generated relational schema and a random set of probabilistic dependencies. Also, we discuss the adaptation of the evaluation metrics of BNs structure learning algorithms to the relational context and we propose new relational evaluation measurements. II) A hybrid approach for RBNs structure learning. This approach presents an extension of the MMHC algorithm in the relational context. We present an experimental study to compare this new learning algorithm with the state-of-the-art approaches
Ancell, Trueba Rafael. "Aportaciones de las redes bayesianas en meteorología.Predicción probabilística de precipitación. Applications of Bayesian Networks in Meteorology. Probabilistic Forecast of Precipitation." Doctoral thesis, Universidad de Cantabria, 2009. http://hdl.handle.net/10803/113596.
Full textThis thesis is mainly oriented to researchers interested in the data mining techniques applied to Meteorology and other related environmental sciences. It uses probabilistic models to describe systems defined by many variables whose dependencies have to be inferred from a set of representative data. The main purpose is solve practical problems related to the diagnosis and probabilistic local forecasting Meteorology, considering the problem of spatial coherence. Specifically, the focus of this thesis has been the development of Bayesian networks to be applied in the local probabilistic forecasting.
MANFREDOTTI, CRISTINA ELENA. "Modeling and inference with relational dynamic bayesian networks." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2010. http://hdl.handle.net/10281/7829.
Full textKieling, Gustavo Luiz. "Inserção de conhecimento probabilístico para construção de agentes BDI modelados em redes bayesianas." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/28741.
Full textAchieving faithful representation of knowledge is a historic and still unreached goal in the area of Artificial Intelligence. Problems are solved and decisions are made taking into consideration different kinds of knowledge, from which many are biased, inaccurate, ambiguous or still incomplete. Computational systems that store knowledge in many different ways have been built in order to emulate the capacity of human knowledge representation, taking into consideration the several inherent difficulties to it. Within this context, this paper proposes an experiment that utilizes two distinct ways of representing knowledge: symbolic, BDI in this case, and probabilistic, Bayesian Networks in this case. In order to develop a proof of concept of this propose of knowledge representation, examples that will be built through agent oriented programming technology will be used. For that, implementation of a MultiAgent System was developed, extending the Jason framework through the implementation of a plugin called COPA. For the representation of probabilistic knowledge, a Bayesian Network building tool, also adapted to this system, was used. The case studies showed improvement in the management of uncertain knowledge in relation to the building approaches of classic BDI agents, i.e., that do not use probabilistic knowledge.
Haußmann, Manuel [Verfasser], and Fred A. [Akademischer Betreuer] Hamprecht. "Bayesian Neural Networks for Probabilistic Machine Learning / Manuel Haußmann ; Betreuer: Fred A. Hamprecht." Heidelberg : Universitätsbibliothek Heidelberg, 2021. http://d-nb.info/1239116233/34.
Full textLingasubramanian, Karthikeyan. "Estimation of switching activity in sequential circuits using dynamic Bayesian Networks." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000411.
Full textMaturana, Marcos Coelho. "Aplicação de Redes Bayesianas na análise da contribuição do erro humano em acidentes de colisão." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/3/3135/tde-11082010-165909/.
Full textRecently, in the naval industry, the normalization of classification societies and IMO (International Maritime Organization) has presented a gradual change, going from prescriptive procedures to a regulatory structure based on risk. That perspective offers some advantages to operators and constructors: 1) greater capacity to incorporate innovations in design, technically superiors, at acceptable cost; 2) greater confidence as to security; 3) better understanding of hazardous events, the risks faced by new projects and measures of mitigation. Specifically in the oil sector, the analyze, evaluation, and management of risk are vital, in face of the accidents severity potential in respect to human life, environment and property. Given that the greater part of the accidents on this sector is caused by human factors, the purpose of this dissertation is present a methodology and efficient techniques to HRA (Human Reliability Analysis) that can be applied in this industry. During the last decades many techniques were developed to a quantitative study of the human reliability. In the eighties were developed some techniques based in the modeling by means of binaries trees. These techniques do not consider the representation of the context in which the human actions occur. Thus, the representation of individuals, their inter-relationships and dynamics of the system cannot be better worked by the application of these techniques. These issues became the improvement of the used methods for HRA a latent need. With the aim of extinguish, or attenuate at least, these weaknesses some authors proposed the modeling of the human system by means of Bayesians Network. It is expected that with the application of this tool can be suppressed great part of the deficiencies of the human action modeling by means of binaries trees. This work presents a brief description about the application of Bayesians Network in HRA. Additionally, is presented the application of this technique in the study of an oil tanker operation, focusing in the human factor quantification in scenarios of collision. Besides, are presented some considerations about the factors that can influence the human performance and the collision risk.
Graversen, Therese. "Statistical and computational methodology for the analysis of forensic DNA mixtures with artefacts." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:4c3bfc88-25e7-4c5b-968f-10a35f5b82b0.
Full textAli, Agha Mouhamad Shaker. "Probabilistic analysis of supply chains resilience based on their characteristics using dynamic Bayesian networks." Thesis, University of Strathclyde, 2016. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27525.
Full textSrinivasan, Vivekanandan. "Real delay graphical probabilistic switching model for VLSI circuits." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000538.
Full textVenkataramani, Praveen. "Sequential quantum dot cellular automata design and analysis using Dynamic Bayesian Networks." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002787.
Full textFaria, Rodrigo Candido. "Redes probabilísticas: aprendendo estruturas e atualizando probabilidades." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-27062014-224607/.
Full textProbabilistic networks are very versatile models, with growing applicability in many areas. These models are capable of structuring and measuring the interaction among variables, making possible various types of analyses, such as diagnoses of causes for a phenomenon and predictions about some event, besides allowing the construction of automated decision-making models. This work presents the necessary steps to construct those networks and methods used to doing so, emphasizing the so called Bayesian networks, a subclass of probabilistic networks. The Bayesian network modeling is divided in three steps: variables selection, structure learning and estimation of probabilities. The variables selection step is usually based on subjective knowledge about the studied topic. The structure learning can be performed manually, taking into account the causal relations among variables, or semi-automatically, through the use of algorithms. The last step, of probabilities estimation, can be treated following two main approaches: by the frequentist approach, where parameters are considered fixed, and by the Bayesian approach, in which parameters are treated as random variables. Besides the theory contained in this work, showing the relations between graph theory and the construction of probabilistic networks, applications of these models are presented, highlighting problems in marketing and finance.
Boff, Elisa. "Colaboração em ambientes inteligentes de aprendizagem mediada por um agente social probabilístico." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2008. http://hdl.handle.net/10183/15747.
Full textThis research proposes a probabilistic knowledge and reasoning model for an agent, named Social Agent, whose main goal is to analyze students' profiles and to organize them in workgroups. These students are users of an Intelligent Tutoring System named AMPLIA. In order to suggest those groups, the Social Agent considers individual aspects of the students and also strategies for group formation. Collaborative learning involves social relationships with complex processes which are difficult to model computationally. In order to represent these relationships, we should consider several aspects of the student, such as affective state, psychological issues, and cognition. We should also consider social aspects such as social ability, social acceptance and how people relate to each other, and how they compose their workgroups. Intelligent Tutoring Systems, Multiagent Systems and Affective Computing are research areas which our research group have been investigating, in order to represent and to deal computationally with multidisciplinary issues involving individual and collaborative learning. The Social Agent is part of an agent society of the PortEdu Portal, which provides services to AMPLIA. PortEdu is an educational portal which provides facilities to educational environments integrated to it. This portal has been modeled using a multiagent approach and each of its services is represented by a specific agent. The educational environments that make use of the portal's services are also agent societies and, in general, Intelligent Tutoring Systems. AMPLIA (Probabilistic Multiagent Learning Environment) has been designed in order to support diagnostic reasoning and the modeling of diagnostic hypotheses in domains with complex and uncertain knowledge, such as the medical domain. This environment uses a Bayesian Networks approach in which students build their own networks for a clinical case through a Bayesian Network graphical editor. Here, the AMPLIA editor has been adapted and extended to a collaborative version, which enables the network construction for remote students connected to the system. Through this editor, the Social Agent observes and interacts with students, suggesting the composition of workgroups. Practical experiments using assessment tools have been carried out, in order to analyze the workgroups suggested by the Social Agent and to compare them with groups naturally composed by students in the classroom. The results of the work done by individual students and by workgroups were also analyzed and discussed in this research.
Rejimon, Thara. "Reliability-centric probabilistic analysis of VLSI circuits." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001707.
Full textSrivastava, Saket. "Probabilistic modeling of quantum-dot cellular automata." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002399.
Full textGhanem, Amal Saleh. "Probabilistic models for mining imbalanced relational data." Thesis, Curtin University, 2009. http://hdl.handle.net/20.500.11937/2266.
Full textMasood, Adnan. "Measuring Interestingness in Outliers with Explanation Facility using Belief Networks." NSUWorks, 2014. http://nsuworks.nova.edu/gscis_etd/232.
Full textRogge-Solti, Andreas. "Probabilistic Estimation of Unobserved Process Events." Phd thesis, Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7042/.
Full textUnternehmen versuchen Wettbewerbsvorteile zu gewinnen und die Kundenzufriedenheit zu erhöhen. Um die Qualität und die Effizienz ihrer Prozesse zu gewährleisten, wenden Unternehmen Geschäftsprozessmanagement an. Hierbei spielt die Prozesskontrolle im täglichen Betrieb eine wichtige Rolle. Prozesskontrolle wird durch Prozessmonitoring ermöglicht, d.h. durch die Überwachung des Prozessfortschritts laufender Prozessinstanzen. So können Verzögerungen entdeckt und es kann entsprechend reagiert werden, um Prozesse wie erwartet und termingerecht beenden zu können. Um Prozessmonitoring zu ermöglichen, müssen prozessrelevante Ereignisse aus der Prozessumgebung gesammelt und ausgewertet werden. Sofern eine Prozessausführungsengine die Orchestrierung von Geschäftsprozessen übernimmt, kann jede Prozessaktivität überwacht werden. Aber viele Geschäftsprozesse eignen sich nicht für automatisierte Orchestrierung, da sie z.B. besonders viel Handlungsfreiheit erfordern. Dies ist in Krankenhäusern der Fall, in denen Geschäftsprozesse oft manuell durchgeführt werden. Daher ist es meist umständlich oder unmöglich, jeden Prozessfortschritt zu erfassen. Zudem ist händische Prozessausführung und -dokumentation fehleranfällig, so wird z.B. manchmal vergessen zu dokumentieren. Eine Herausforderung für Unternehmen ist, dass manche Prozessereignisse nicht im Prozessmonitoring erfasst werden. Solch unbeobachtete Prozessereignisse können jedoch als Entscheidungsgrundlage dienen, selbst wenn kein exaktes Wissen über den Zeitpunkt ihres Auftretens vorliegt. Zum Beispiel ist bei der Prozesskontrolle zu entscheiden, ob zusätzliche Ressourcen eingesetzt werden sollen, wenn eine Verspätung angenommen wird. Diese Arbeit stellt einen probabilistischen Ansatz für den Umgang mit unbeobachteten Prozessereignissen vor. Dabei werden entscheidende Fragen von Prozessmanagern beantwortet (z.B. "Wann werden wir den Fall beenden?", oder "Wann wurde die Aktivität ausgeführt, die nicht dokumentiert wurde?"). Der Hauptbeitrag der Arbeit ist die Einführung eines erweiterten probabilistischen Modells ins Geschäftsprozessmanagement, das auf stochastischen Petri Netzen basiert. Dabei wird ein ganzheitlicher Ansatz zur Unterstützung der einzelnen Phasen des Geschäftsprozesslebenszyklus verfolgt. Es werden Techniken zum Lernen des probabilistischen Modells, zum Vorhersagen des Zeitpunkts des Prozessendes, zum Qualitätsmanagement von Dokumentationen durch Erkennung fehlender Einträge, und zur Optimierung von Monitoringkonfigurationen bereitgestellt. Letztere dient zur Auswahl von relevanten Stellen im Prozess, die beobachtet werden sollten. Diese Techniken wurden in einer quelloffenen prototypischen Anwendung implementiert. Zur Evaluierung wird der Ansatz mit existierenden Alternativen an echten Prozessdaten eines Krankenhauses gemessen. Die generelle Anwendbarkeit in weiteren Domänen wird examplarisch an Prozessdaten aus der Logistik und dem Finanzwesen gezeigt.
Dabla, Essi Ahoefa. "Approche bayesienne multiéchelle pour la modélisation de la fiabilité d'un module de puissance en environnement ferroviaire." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0102.
Full textThe reliability control of critical electronic components is one of the challenges to be faced by railway stakeholders. IGBT (Insulated Gate Bipolar Transistors) power modules belong to this list of components. They are subject to high stresses corresponding to those encountered in harsh railway environments. The environmental conditions encountered in rail operations and the demanding availability requirements impose high levels of reliability on IGBT. In order to improve their reliability, an evaluation methodology has been developed based on a probabilistic approach and supported by a Bayesian network. For the implementation of the model, several working elements were assembled. First, an original approach called "U-Cycle" was proposed, highlighting in a one-to-one way a system level associated with the train and a component level similar to the IGBT considered simultaneously according to functional and dysfunctional views. In this context, the work led, first, to highlight the mechanisms characterizing, in a top-down logic, the influence of train loading on component stress and, in a bottom-up logic, the dysfunctional impact of the failure at component level on system reliability. In a second step, the results of this analysis led to the implementation of the structure of a Bayesian model whose generic nature allows it to be deployed for the reliable modelling of any type of rail system. The modelling work based on Bayesian networks is used to support the reconciliation between analytical models (failure physics) and data from the use of the elementary component in its operating environment. The model was used to model the reliability of an IGBT in an application framework corresponding to the metro in the city of Chennai, India. The data and expert knowledge collected on the project made it possible to determine the probability tables of the Bayesian network. The probabilistic results of the model have been translated into reliability indicators
König, Johan. "Analyzing Substation Automation System Reliability using Probabilistic Relational Models and Enterprise Architecture." Doctoral thesis, KTH, Industriella informations- och styrsystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145006.
Full textQC 20140505
Jackson, Zara. "Basal Metabolic Rate (BMR) estimation using Probabilistic Graphical Models." Thesis, Uppsala universitet, Statistiska institutionen, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384629.
Full textLeite, Filho Hugo Pereira. "APLICABILIDADE DE MEMÓRIA LÓGICA COMO FERRAMENTA COADJUVANTE NO DIAGNÓSTICO DAS DOENÇAS GENÉTICAS." Pontifícia Universidade Católica de Goiás, 2006. http://localhost:8080/tede/handle/tede/3073.
Full textThis study has involved the interaction among knowledge in very distinctive areas, or else: informatics, engineering e genetics, emphasizing the building of a taking decision backing system methodology. The aim of this study has been the development of a tool to help in the diagnosis of chromosomal aberrations, presenting like tutorial model the Turner Syndrome. So to do that there have been used classification techniques based in decision trees, probabilistic networks (Naïve Bayes, TAN e BAN) and neural MLP network (from English, Multi- Layer Perception) and training algorithm by error retro propagation. There has been chosen an algorithm and a tool able to propagate evidence and develop efficient inference techniques able to originate appropriate techniques to combine the expert knowledge with defined data in a databank. We have come to a conclusion about the best solution to work out the shown problem in this study that was the Naïve Bayes model, because this one presented the greatest accuracy. The decision - ID3, TAN e BAN tree models presented solutions to the indicated problem, but those were not as much satisfactory as the Naïve Bayes. However, the neural network did not promote a satisfactory solution.
O estudo envolveu a interação entre áreas de conhecimento bastante distintas, a saber: informática, engenharia e genética, com ênfase na metodologia da construção de um sistema de apoio à tomada de decisão. Este estudo tem como objetivo o desenvolvimento de uma ferramenta para o auxílio no diagnóstico de anomalias cromossômicas, apresentando como modelo tutorial a Síndrome de Turner. Para isso foram utilizadas técnicas de classificação baseadas em árvores de decisão, redes probabilísticas (Naïve Bayes, TAN e BAN) e rede neural MLP (do inglês, Multi- Layer Perceptron) com algoritmo de treinamento por retropropagação de erro. Foi escolhido um algoritmo e uma ferramenta capaz de propagar evidências e desenvolver as técnicas de inferência eficientes capazes de gerar técnicas apropriadas para combinar o conhecimento do especialista com dados definidos em uma base de dados. Chegamos a conclusão que a melhor solução para o domínio do problema apresentado neste estudo foi o modelo Naïve Bayes, pois este modelo apresentou maior acurácia. Os modelos árvore de decisão-ID3, TAN e BAN apresentaram soluções para o domínio do problema sugerido, mas as soluções não foram tão satisfatória quanto o Naïve Bayes. No entanto, a rede neural não promoveu solução satisfatória.
Tran, Ngoc Hoang. "Extension des systèmes MES au diagnostic des performances des systèmes de production au travers d'une approche probabiliste Bayésienne." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI048/document.
Full textThis Phd thesis takes place in the diagnostic field, especially in contexte of Manufacturing Execution System (MES). It contributes to the diagnostic system in the presence of potential failures following a triggering signal OEE drift, an indicator performance that gives a picture of the production system state (equipment, production line, site, and enterprise) by estimating downtime from 3 major origins: availability, performance, and quality. Our objective is to provide maximum information of the origins of an OEE variation and to support making the best decision for four categories users of OEE (operator, leader team, supervisor, direction). Also, basis on that model, the purpose will provides a deployment methodology to integrate with MES solution in an industrial context
Foulliaron, Josquin. "Utilisation des modèles graphiques probabilistes pour la mise en place d'une politique de maintenance à base de pronostic." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1205/document.
Full textOne of the most important consequences due to current developments in the rail industry is the increase of stresses on tracks and rolling stock; in terms of loads, frequencies, and both in terms of availability and security requirements. Therefore, looking for optimal maintenance policies to meet the availability, cost and security objectives has become a particularly topical subject. To address this need of maintenance strategy adjustment, approaches using bayesian networks have increasingly been used for the development of decision support tools. To overcome the restrictive Markovian assumption induced by the use of standard bayesian networks, a specific structure has been proposed to accurately model a degradation process in discrete case using any kind of sojourn time distributions. This approach called "Graphical duration model" make possible to describe multicomponent and multi state system behaviours by taking into account many exogenous variables. This semi-markovian modelling of the degradation has mainly been used to evaluate and compare different maintenance strategies based on corrective, systematic and conditional approaches. This PhD thesis aims to extend previous works to predictive maintenance policies. This approach, based on prognosis computations, has the advantage to predict the optimal intervention time maximizing the remaining useful life of the system and both satisfying operating and maintaining constraints. Considered systems have finite discrete state spaces and are periodically observable as many existing ones in the industry and particularly in the field of transport systems. The presented works, based on the dynamic bayesian network formalism and the graphical duration model, propose prognostic tools in order to model the set of predictive maintenance policies. A prognosis algorithm is first introduced to compute the remaining useful life (RUL) of the system and update this estimation each time a new diagnosis is available. To improve the prognosis estimation accuracy, a new degradation model is proposed to take into account the possible existence of many coexisting degradation modes. The principle is to identify at each time the active degradation mode and then to use this information to choose sojourn times considered in next states using conditional sojourn times distributions. At last, some solutions to reduce the complexity of inference computations are proposed
Mroszczyk, Przemyslaw. "Computation with continuous mode CMOS circuits in image processing and probabilistic reasoning." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/computation-with-continuous-mode-cmos-circuits-in-image-processing-and-probabilistic-reasoning(57ae58b7-a08c-4a67-ab10-5c3a3cf70c09).html.
Full textKosgodagan, Alex. "High-dimensional dependence modelling using Bayesian networks for the degradation of civil infrastructures and other applications." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2017. http://www.theses.fr/2017IMTA0020/document.
Full textThis thesis explores high-dimensional deterioration-related problems using Bayesian networks (BN). Asset managers become more and more familiar on how to reason with uncertainty as traditional physics-based models fail to fully encompass the dynamics of large-scale degradation issues. Probabilistic dependence is able to achieve this while the ability to incorporate randomness is enticing.In fact, dependence in BN is mainly expressed in two ways. On the one hand, classic conditional probabilities that lean on thewell-known Bayes rule and, on the other hand, a more recent classof BN featuring copulae and rank correlation as dependence metrics. Both theoretical and practical contributions are presented for the two classes of BN referred to as discrete dynamic andnon-parametric BN, respectively. Issues related to the parametrization for each class of BN are addressed. For the discrete dynamic class, we extend the current framework by incorporating an additional dimension. We observed that this dimension allows to have more control on the deterioration mechanism through the main endogenous governing variables impacting it. For the non-parametric class, we demonstrate its remarkable capacity to handle a high-dimension crack growth issue for a steel bridge. We further show that this type of BN can characterize any Markov process
Nguyen, Dang-Trinh. "Diagnostic en ligne des systèmes à événements discrets complexes : approche mixte logique/probabiliste." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT067/document.
Full textToday's manufacturing systems are challenged by increasing demand diversity and volume that result in short product life cycles with the emergence of high-mix low-volume production. Therefore, one of the main objectives in the manufacturing domain is to reduce cycle time (CT) while ensuring product quality at reduced cost. In such competitive environment, product quality is ensured by introducing more rigorous controls at each production step that results in extended cycle times and increased production costs. This can be reduced by introducing R2R (run to run) loops where control on the product quality is carried out after multiple consecutive production steps. However, product quality drift, detected by metrology at the end of run-to-run loop, results in stopping respective sequence of production equipment. The manufacturing systems are equipped with sensors that provide basis for real time monitoring and diagnosis; however, placement of these sensors is constrained by its structure and the functions they perform. Besides this, these sensors cannot be placed across the equipment due to associated big data analyses challenge. This also results in non-observable components that limit our ability to support effective real time monitoring and fault diagnosis initiatives. Consequently, production equipment in R2R loop are stopped upon product quality drift detection at the inspection step. It is because of the fact that we are unable to diagnose that which equipment or components are responsible for the product quality drift. As a result, production capacities are reduced not because of faulty equipment or components but due to our inability for efficient and effective diagnosis.In this scenario, the key challenge is to diagnose faulty equipment and localize failure(s) against these unscheduled equipment breakdowns. Moreover, the situation becomes more complex if the potential failure(s) is unknown and requires experts' intervention before corrective maintenance can be applied. In addition to this, new failures can emerge as a consequence of different failures and associated delay in its localization and detection. Therefore, success of the manufacturing domain, in such competitive environment, depends on quick and more accurate fault isolation, detection and diagnosis. This paper proposes a methodology that exploits historical data over unobserved equipment components to reduce search space of potential faulty components followed by more accurate diagnosis of failures and causes. The key focus is to improve the effectiveness and efficiency of real time monitoring of potential faulty components and causes diagnoses.This research focuses on potential diagnosis using Logical Diagnosis model (Deschamps et al., 2007) which that offers real time diagnosis in an automated production system. This reduces the search space for faulty equipment from a given production flow and optimizes the learning step for the subsequent BN. The BN model, based on the graphical structure, received from Logical Diagnosis model then computes joint and conditional probabilities for each node, to support corrective maintenance decisions upon scheduled and unscheduled equipment breakdowns. The proposed method enables real time diagnosis for corrective maintenance in fully or semi-automated manufacturing systems
Wang, Zhiyi. "évaluation du risque sismique par approches neuronales." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC089/document.
Full textSeismic probabilistic risk assessment (SPRA) is one of the most widely used methodologiesto assess and to ensure the performance of critical infrastructures, such as nuclear power plants (NPPs),faced with earthquake events. SPRA adopts a probabilistic approach to estimate the frequency ofoccurrence of severe consequences of NPPs under seismic conditions. The thesis provides discussionson the following aspects: (i) Construction of meta-models with ANNs to build the relations betweenseismic IMs and engineering demand parameters of the structures, for the purpose of accelerating thefragility analysis. The uncertainty related to the substitution of FEMs models by ANNs is investigated.(ii) Proposal of a Bayesian-based framework with adaptive ANNs, to take into account different sourcesof information, including numerical simulation results, reference values provided in the literature anddamage data obtained from post-earthquake observations, in the fragility analysis. (iii) Computation ofGMPEs with ANNs. The epistemic uncertainties of the GMPE input parameters, such as the magnitudeand the averaged thirty-meter shear wave velocity, are taken into account in the developed methodology.(iv) Calculation of the annual failure rate by combining results from the fragility and hazard analyses.The fragility curves are determined by the adaptive ANN, whereas the hazard curves are obtained fromthe GMPEs calibrated with ANNs. The proposed methodologies are applied to various industrial casestudies, such as the KARISMA benchmark and the SMART model
Luna, José Eduardo Ochoa. "Lógicas probabilísticas com relações de independência: representação de conhecimento e aprendizado de máquina." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/3/3152/tde-17082011-090935/.
Full textThe combination of logic and probabilities (probabilistic logics) is a topic that has been extensively explored in past decades. The majority of work in probabilistic logics assumes that both logical sentences and probabilities are specified by experts. As relational data is increasingly available, machine learning algorithms have been used to induce both logical sentences and probabilities. This work contributes in knowledge representation and learning. First, a rst-order probabilistic logic is proposed. Then, three algorithms for learning probabilistic description logic crALC are given: a probabilistic algorithm focused on learning logical sentences and based on Noisy-OR classiers; an algorithm that aims at learning probabilistic inclusions (probabilistic component of crALC) and; an algorithm that using a probabilistic setting, induces either logical sentences or probabilistic inclusions. Evaluation of these proposals has been performed in two situations: by measuring learning accuracy of both description logics and probabilistic terminologies. In addition, these learning algorithms have been applied to information retrieval processes: two approaches for semantic query extension through probabilistic ontologies are discussed.
De, Galizia Antonello. "Évaluation probabiliste de l’efficacité des barrières humaines prises dans leur contexte organisationnel." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0018/document.
Full textThe work carried out in this CIFRE PhD thesis is part of a long-term collaboration between CRAN and EDF R&D, one of the major results of which was the development of a risk analysis methodology called Integrated Risk Analysis (AiDR). This methodology deals with sociotechnical systems from technical, human and organizational points of view and whose equipment is subjected to maintenance and/or operation activities. This thesis aims to propose an evolution of the so-called "human barrier" model developed in the AiDR in order to evaluate the effectiveness of these human actions taken their organizational context. Our major contributions are organized around 3 axes: 1. Improvement of the pre-existing structure of the human barrier model to achieve a model based on performance shaping factors (PSF) provided by the Human Reliability Assessment (HRA) methods; 2. Integration of resilience and modeling of the interaction between resilient and pathogenic mechanisms impacting the effectiveness of activities in a probabilistic causal framework; 3. A global treatment of the expert judgments consistent with the mathematical structure of the proposed model in order to objectively estimate the parameters of the model. This treatment is based on a questionnaire to guide experts towards the evaluation of joint effects resulting from the interaction between pathogenic and resilient mechanisms. All of the proposed contributions have been validated on an application case involving a human barrier put in place during an external flooding occurring at an EDF power plant