Academic literature on the topic 'Probabilistic Bayesian Network'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Probabilistic Bayesian Network.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Probabilistic Bayesian Network"
Motomura, Yoichi. "Bayesian Network: Probabilistic Reasoning, Statistical Learning, and Applications." Journal of Advanced Computational Intelligence and Intelligent Informatics 8, no. 2 (March 20, 2004): 93–99. http://dx.doi.org/10.20965/jaciii.2004.p0093.
Full textTERZIYAN, VAGAN. "A BAYESIAN METANETWORK." International Journal on Artificial Intelligence Tools 14, no. 03 (June 2005): 371–84. http://dx.doi.org/10.1142/s0218213005002156.
Full textLIU, WEI-YI, and KUN YUE. "BAYESIAN NETWORK WITH INTERVAL PROBABILITY PARAMETERS." International Journal on Artificial Intelligence Tools 20, no. 05 (October 2011): 911–39. http://dx.doi.org/10.1142/s0218213011000449.
Full textHerskovits, E. H., and G. F. Cooper. "Algorithms for Bayesian Belief-Network Precomputation." Methods of Information in Medicine 30, no. 02 (1991): 81–89. http://dx.doi.org/10.1055/s-0038-1634820.
Full textPENG, YUN, ZHONGLI DING, SHENYONG ZHANG, and RONG PAN. "BAYESIAN NETWORK REVISION WITH PROBABILISTIC CONSTRAINTS." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 20, no. 03 (May 17, 2012): 317–37. http://dx.doi.org/10.1142/s021848851250016x.
Full textVÉRONIQUE, DELCROIX, MAALEJ MOHAMED-AMINE, and PIECHOWIAK SYLVAIN. "BAYESIAN NETWORKS VERSUS OTHER PROBABILISTIC MODELS FOR THE MULTIPLE DIAGNOSIS OF LARGE DEVICES." International Journal on Artificial Intelligence Tools 16, no. 03 (June 2007): 417–33. http://dx.doi.org/10.1142/s0218213007003345.
Full textRiali, Ishak, Messaouda Fareh, and Hafida Bouarfa. "Fuzzy Probabilistic Ontology Approach." International Journal on Semantic Web and Information Systems 15, no. 4 (October 2019): 1–20. http://dx.doi.org/10.4018/ijswis.2019100101.
Full textSu, Jie, Jun Li, and Jifeng Chen. "Probabilistic Graph Model Mining User Affinity in Social Networks." International Journal of Web Services Research 18, no. 3 (July 2021): 22–41. http://dx.doi.org/10.4018/ijwsr.2021070102.
Full textZhu, Xianyou, and Songlin Tang. "Design of an Artificial Intelligence Algorithm Teaching System for Universities Based on Probabilistic Neuronal Network Model." Scientific Programming 2022 (April 9, 2022): 1–10. http://dx.doi.org/10.1155/2022/4131058.
Full textBaskara Nugraha, I. Gusti Bagus, Imaniar Ramadhani, and Jaka Sembiring. "Probabilistic Inference Hybrid IT Value Model Using Bayesian Network." International Journal on Electrical Engineering and Informatics 12, no. 4 (December 31, 2020): 770–85. http://dx.doi.org/10.15676/ijeei.2020.12.4.5.
Full textDissertations / Theses on the topic "Probabilistic Bayesian Network"
Sahin, Elvan. "Discrete-Time Bayesian Networks Applied to Reliability of Flexible Coping Strategies of Nuclear Power Plants." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103817.
Full textMaster of Science
Some external events like earthquakes, flooding, and severe wind, may cause damage to the nuclear reactors. To reduce the consequences of these damages, the Nuclear Energy Institute (NEI) has proposed mitigating strategies known as FLEX (Diverse and Flexible Coping Strategies). After the implementation of FLEX in nuclear power plants, we need to analyze the failure or success probability of these engineering systems through one of the existing methods. However, the existing methods are limited in analyzing the dependencies among components in complex systems. Bayesian networks (BNs) are a graphical and quantitative technique that is utilized to model dependency among events. This thesis shows the effectiveness and applicability of BNs in the reliability analysis of FLEX strategies by comparing it with two other reliability analysis tools, known as Fault Tree Analysis and Markov Chain. According to the reliability analysis results, BN is a powerful and promising method in modeling and analyzing FLEX strategies.
Yoo, Keunyoung. "Probabilistic SEM : an augmentation to classical Structural equation modelling." Diss., University of Pretoria, 2018. http://hdl.handle.net/2263/66521.
Full textMini Dissertation (MCom)--University of Pretoria, 2018.
Statistics
MCom
Unrestricted
Zhao, Wenyu. "A Probabilistic Approach for Prognostics of Complex Rotary Machinery Systems." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1423581651.
Full textBjörkman, Peter. "Probabilistic Safety Assessment using Quantitative Analysis Techniques : Application in the Heavy Automotive Industry." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-163262.
Full textQuer, Giorgio. "Optimization of Cognitive Wireless Networks using Compressive Sensing and Probabilistic Graphical Models." Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3421992.
Full textLa combinazione delle informazioni nelle reti di sensori wireless è una soluzione promettente per aumentare l'efficienza delle techiche di raccolta dati. Nella prima parte di questa tesi viene affrontato il problema della ricostruzione di segnali distribuiti tramite la raccolta di un piccolo numero di campioni al punto di raccolta dati (DCP). Viene sfruttato il metodo dell'analisi delle componenti principali (PCA) per ricostruire al DCP le caratteristiche statistiche del segnale di interesse. Questa informazione viene utilizzata al DCP per determinare la matrice richiesta dalle tecniche di recupero che sfruttano algoritmi di ottimizzazione convessa (Compressive Sensing, CS) per ricostruire l'intero segnale da una sua versione campionata. Per integrare questo modello di monitoraggio in un framework di compressione e recupero del segnale, viene applicata la logica del paradigma 'cognitive': prima si osserva la rete; poi dall'osservazione si derivano le statistiche di interesse, che vengono applicate per il recupero del segnale; si sfruttano queste informazioni statistiche per prenderere decisioni e infine si rendono effettive queste decisioni con un controllo in retroazione. Il framework di compressione e recupero con controllo in retroazione è chiamato "Sensing, Compression and Recovery through ONline Estimation" (SCoRe1). L'intero framework è stato implementato in una architettura per WSN detta WSN-control, accessibile da Internet. Le scelte nella progettazione del protocollo sono state giustificate da un'analisi teorica con un approccio di tipo Bayesiano. Nella seconda parte della tesi il paradigma cognitive viene utilizzato per l'ottimizzazione di reti locali wireless (WLAN). L'architetture della rete cognitive viene integrata nello stack protocollare della rete wireless. Nello specifico, vengono utilizzati dei modelli grafici probabilistici per modellare lo stack protocollare: le relazioni probabilistiche tra alcuni parametri di diversi livelli vengono studiate con il modello delle reti Bayesiane (BN). In questo modo, è possibile utilizzare queste informazioni provenienti da diversi livelli per ottimizzare le prestazioni della rete, utilizzando un approccio di tipo cross-layer. Ad esempio, queste informazioni sono utilizzate per predire il throughput a livello di trasporto in una rete wireless di tipo single-hop, o per prevedere il verificarsi di eventi di congestione in una rete wireless di tipo multi-hop. L'approccio seguito nei due argomenti principali che compongono questa tesi è il seguente: (i) viene applicato il paradigma cognitive per ricostruire specifiche caratteristiche probabilistiche della rete, (ii) queste informazioni vengono utilizzate per progettare nuove tecniche protocollari, (iii) queste tecniche vengono analizzate teoricamente e confrontate con altre tecniche esistenti, e (iv) le prestazioni vengono simulate, confrontate con quelle di altre tecniche e valutate in scenari di rete realistici.
Ramani, Shiva Shankar. "Graphical Probabilistic Switching Model: Inference and Characterization for Power Dissipation in VLSI Circuits." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000497.
Full textBortolini, Rafaela. "Enhancing building performance : a Bayesian network model to support facility management." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/666187.
Full textActualmente, el desempeño de los edificios existentes es de gran interés debido a la necesidad de renovar el stock de edificios antiguos, proporcionando así una mejor calidad de vida a los usuarios finales. El estado de conservación de los edificios y las condiciones ambientales interiores se relacionan con el bienestar, la salud y la productividad de los ocupantes. Al mismo tiempo, existe la necesidad de edificios más sostenibles con un menor consumo energético. El desempeño de un edificio se ve afectado por varios factores (p.ej., agentes ambientales, comportamiento de los ocupantes, operación, mantenimiento, etc.). La mayoría de estos aspectos y causas muestran complejas relaciones, y consecuentemente existe una gran incertidumbre para predecirlo. Sin embargo, las investigaciones anteriores no contemplan estas relaciones causales y, a menudo, se basan en modelos lineales. Aunque el desempeño de los edificios se debe abordar teniendo en cuenta los requisitos de las diferentes partes interesadas, pocos estudios se centran en este enfoque. Los estudios anteriores tienden a analizar aspectos particulares del desempeño, ignorando las posibles relaciones que pueden ocurrir entre ellos. Los gestores de edificios deben abordar eficientemente la incertidumbre, gestionar los riesgos e identificar, analizar, evaluar y mitigar sistemáticamente los factores que pueden afectar el desempeño del edificio. Teniendo en cuenta los aspectos comentados anteriormente, el objetivo de esta tesis es desarrollar un modelo de red bayesiana (BN) para gestionar holísticamente el desempeño operativo de los edificios y apoyar su gestión. El modelo propuesto consiste en un enfoque probabilístico para evaluar el desempeño de los edificios existentes, considerando tres categorías: seguridad y funcionalidad, salud y confort, y eficiencia energética. El modelo también proporciona una interpretación de la cadena de causalidad entre los múltiples factores e indicadores relacionados con el desempeño del edificio. El análisis de las relaciones entre los diferentes aspectos del desempeño de los edificios (estado de conservación del edificio, el confort del usuario final y la eficiencia energética del edificio) va a permitir explicar y entender sus factores causales y va a posibilitar mejorar la gestión de estos edificios. La verificación del modelo propuesto se lleva a cabo mediante análisis de sensibilidad y datos de edificios existentes. Las aplicaciones del modelo incluyen: la evaluación del desempeño de edificios de forma integrada; la identificación de factores causales; la predicción del desempeño de los edificios a través de escenarios de renovación y modernización; y la priorización de las acciones de mantenimiento. La implementación del modelo en diversos casos de estudio permite ilustrar su aplicabilidad y validar su uso. Los resultados de esta tesis también incluyen métodos de recogida de datos para las variables del modelo propuesto. De hecho, se propone un sistema de inspección de edificios para evaluar el desempeño técnico de los edificios, se desarrolla un sistema de text mining para analizar las solicitudes de mantenimiento de los usuarios finales y se formula un cuestionario para recoger la satisfacción de los usuarios finales en relación a los espacios de los edificios en los que interactúan. Para concluir, este trabajo propone el uso del Building Information Modeling (BIM) para almacenar y acceder a la información necesaria para el modelo.
Klukowski, Piotr. "Nuclear magnetic resonance spectroscopy interpretation for protein modeling using computer vision and probabilistic graphical models." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4720.
Full textRamalingam, Nirmal Munuswamy. "A complete probabilistic framework for learning input models for power and crosstalk estimation in VLSI circuits." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000505.
Full textTran, Thanh Binh. "A Bayesian Network framework for probabilistic identification of model parameters from normal and accelerated tests : application to chloride ingress into conrete." Nantes, 2015. https://archive.bu.univ-nantes.fr/pollux/show/show?id=1bd3c7d5-c357-43f1-b430-bb5e97e9ef3c.
Full textChloride ingress into concrete is one of the major causes leading to the degradation of reinforced concrete (RC) structures. Under chloride attack important damages are generated after 10 to 20 years. Consequently, they should be periodically inspected and repaired to ensure an optimal level of serviceability and safety during its lifecycle. Relevant material and environmental parameters for reliability analysis could be determined from inspection data. In natural conditions, chloride ingress involves a large number of uncertainties related to material properties and exposure conditions. However, due to the slow process of chloride ingress and the difficulties for implementing the inspection techniques, it is difficult to obtain sufficient inspection data to characterise the mid- and long-term behaviour of this phenomenon. The main objective of this thesis is to develop a framework based on Bayesian Network updating for improving the identification of uncertainties related to material and environmental model parameters in case of limited amount of measurements in time and space. The identification process is based on results coming from in-lab normal and accelerated tests that simulate tidal conditions. Based on these data, several procedures are proposed to: (1) identify input random variables from normal or natural tests; (2) determine an equivalent exposure time (and a scale factor) for accelerated tests; and (3) characterise time-dependent parameters combining information from normal and accelerated tests. The results indicate that the proposed framework could be a useful tool to identify model parameters even from limited
Books on the topic "Probabilistic Bayesian Network"
Lim, Chee Peng. Probabilistic fuzzy ARTMAP: An autonomous neural network architecture for Bayesian probability estimation. Sheffield: University of Sheffield, Dept. of Automatic Control & Systems Engineering, 1995.
Find full textA, Gammerman, and UNICOM Seminars, eds. Probabilistic reasoning and Bayesian belief networks. Henley-on-Thames: Alfred Waller in association with UNICOM, 1995.
Find full textTaroni, Franco, Colin Aitken, Paolo Garbolino, and Alex Biedermann. Bayesian Networks and Probabilistic Inference in Forensic Science. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470091754.
Full textProbabilistic methods for bionformatics: With an introduction to Bayesian networks. Burlington, MA: Morgan Kaufmann Publishers, 2009.
Find full textTaroni, Franco, Alex Biedermann, Silvia Bozza, Paolo Garbolino, and Colin Aitken. Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118914762.
Full text1955-, Lucas Peter, Gámez José A, and Salmerón Antonio, eds. Advances in probabilistic graphical models. Berlin: Springer, 2007.
Find full textTaroni, Franco, Colin Aitken, Paolo Garbolino, and Alex Biedermann. Bayesian Networks and Probabilistic Inference in Forensic Science. Wiley & Sons, Limited, John, 2006.
Find full textCowell, Robert G., David J. Spiegelhalter, Steffen L. Lauritzen, and Philip Dawid. Probabilistic Networks and Expert Systems: Exact Computational Methods for Bayesian Networks. Springer London, Limited, 2006.
Find full textNeapolitan, Richard E. Probabilistic Methods for Bioinformatics: With an Introduction to Bayesian Networks. Elsevier Science & Technology Books, 2009.
Find full textProbabilistic Reasoning and Bayesian Belief Networks (UNICOM - Information & Communications Technology). Nelson Thornes Ltd, 1998.
Find full textBook chapters on the topic "Probabilistic Bayesian Network"
Butz, Cory J., Jhonatan de S. Oliveira, and Anders L. Madsen. "Bayesian Network Inference Using Marginal Trees." In Probabilistic Graphical Models, 81–96. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11433-0_6.
Full textCastillo, Enrique, José Manuel Gutiérrez, and Ali S. Hadi. "Learning Bayesian Networks." In Expert Systems and Probabilistic Network Models, 481–527. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2270-5_11.
Full textLand, Walker H., and J. David Schaffer. "Bayesian Probabilistic Neural Network (BPNN)." In The Art and Science of Machine Intelligence, 187–210. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18496-4_7.
Full textMuller, Alexandre, Marie-Christine Suhner, and Benoît Iung. "Bayesian Network-based Proactive Maintenance." In Probabilistic Safety Assessment and Management, 2066–71. London: Springer London, 2004. http://dx.doi.org/10.1007/978-0-85729-410-4_332.
Full textBen Mrad, Ali, Véronique Delcroix, Sylvain Piechowiak, and Philip Leicester. "From Information to Evidence in a Bayesian Network." In Probabilistic Graphical Models, 33–48. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11433-0_3.
Full textKraisangka, Jidapa, and Marek J. Druzdzel. "Discrete Bayesian Network Interpretation of the Cox’s Proportional Hazards Model." In Probabilistic Graphical Models, 238–53. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11433-0_16.
Full textZhang, Chenjing, Kun Yue, Jinghua Zhu, Xiaoling Wang, and Aoying Zhou. "Bayesian Network-Based Probabilistic XML Keywords Filtering." In Database Systems for Advanced Applications, 274–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29023-7_28.
Full textSuzuki, Joe. "Learning Bayesian Network Structures When Discrete and Continuous Variables Are Present." In Probabilistic Graphical Models, 471–86. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11433-0_31.
Full textZhou, Yun, Norman Fenton, and Martin Neil. "An Extended MPL-C Model for Bayesian Network Parameter Learning with Exterior Constraints." In Probabilistic Graphical Models, 581–96. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11433-0_38.
Full textLee, Chang-Ju, and Kun-Jai Lee. "Application of Bayesian Network Considering the Special Dependency to Stochastic Events." In Probabilistic Safety Assessment and Management, 2866–71. London: Springer London, 2004. http://dx.doi.org/10.1007/978-0-85729-410-4_459.
Full textConference papers on the topic "Probabilistic Bayesian Network"
Moura, Gabriel, and Mauro Roisenberg. "Probabilistic Fuzzy Bayesian Network." In 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2015. http://dx.doi.org/10.1109/fskd.2015.7381989.
Full textGoštautaitė, Daiva. "DYNAMIC LEARNING STYLE MODELLING USING PROBABILISTIC BAYESIAN NETWORK." In 11th International Conference on Education and New Learning Technologies. IATED, 2019. http://dx.doi.org/10.21125/edulearn.2019.0781.
Full textXu, Jie, Xingyu Chen, Xuguang Lan, and Nanning Zheng. "Probabilistic Human Motion Prediction via A Bayesian Neural Network." In 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021. http://dx.doi.org/10.1109/icra48506.2021.9561665.
Full textBourgault, Frederic, Nisar Ahmed, Danelle Shah, and Mark Campbell. "Probabilistic Operator-Multiple Robot Modeling Using Bayesian Network Representation." In AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-6589.
Full textShoji, Tomoaki, Wataru Hirohashi, Yu Fujimoto, and Yasuhiro Hayashi. "Home energy management based on Bayesian network considering resident convenience." In 2014 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). IEEE, 2014. http://dx.doi.org/10.1109/pmaps.2014.6960597.
Full textGour, Riti, Genya Ishigaki, Jian Kong, and Jason P. Jue. "Localization of Probabilistic Correlated Failures in Virtual Network Infrastructures using Bayesian Networks." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/ofc.2020.th1f.4.
Full textChakroun, Imen, Tom Haber, Tom Vander Aa, and Thomas Kovac. "Exploring Parallel Implementations of the Bayesian Probabilistic Matrix Factorization." In 2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP). IEEE, 2016. http://dx.doi.org/10.1109/pdp.2016.48.
Full textKwag, Shinyoung, and Abhinav Gupta. "Bayesian Network Technique in Probabilistic Risk Assessment for Multiple Hazards." In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60723.
Full textSee, John. "Probabilistic Bayesian network classifier for face recognition in video sequences." In 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA). IEEE, 2011. http://dx.doi.org/10.1109/isda.2011.6121770.
Full textGuan, Xuefei, Ratneshwar Jha, and Yongming Liu. "A probabilistic multi-model Bayesian network for fatigue damage prognosis." In 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-1702.
Full textReports on the topic "Probabilistic Bayesian Network"
Moler, Edward J., and I. S. Mian. Analysis of molecular expression patterns and integration with other knowledge bases using probabilistic Bayesian network models. Office of Scientific and Technical Information (OSTI), March 2000. http://dx.doi.org/10.2172/753888.
Full textGroth, Katrina, and Laura Swiler. Use of limited data to construct Bayesian networks for probabilistic risk assessment. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1095131.
Full textUtsugi, Akio, and Motoyuki Akamatsu. Analysis of Car-Following Behavior Using Dynamic Probabilistic Models~Identification of Driving Mode Transition Using Dynamic Bayesian Networks. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0241.
Full textRoberson, Madeleine, Kathleen Inman, Ashley Carey, Isaac Howard, and Jameson Shannon. Probabilistic neural networks that predict compressive strength of high strength concrete in mass placements using thermal history. Engineer Research and Development Center (U.S.), June 2022. http://dx.doi.org/10.21079/11681/44483.
Full text