To see the other types of publications on this topic, follow the link: Pro-p groups.

Journal articles on the topic 'Pro-p groups'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Pro-p groups.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Quadrelli, Claudio. "$1$-smooth pro-$p$ groups and Bloch–Kato pro-$p$ groups." Homology, Homotopy and Applications 24, no. 2 (2022): 53–67. http://dx.doi.org/10.4310/hha.2022.v24.n2.a3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mel'nikov, O. V. "Aspherical pro-$ p$-groups." Sbornik: Mathematics 193, no. 11 (December 31, 2002): 1639–70. http://dx.doi.org/10.1070/sm2002v193n11abeh000692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Salehi Golsefidy, Alireza. "Character degrees of p-groups and pro-p groups." Journal of Algebra 286, no. 2 (April 2005): 476–91. http://dx.doi.org/10.1016/j.jalgebra.2004.12.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Herfort, Wolfgang, and Pavel Zalesskii. "Virtually free pro-p groups." Publications mathématiques de l'IHÉS 118, no. 1 (February 16, 2013): 193–211. http://dx.doi.org/10.1007/s10240-013-0051-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mattarei, Sandro. "Some Thin Pro-p-Groups." Journal of Algebra 220, no. 1 (October 1999): 56–72. http://dx.doi.org/10.1006/jabr.1998.7809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Afanas’eva, S. G., and N. S. Romanovskii. "Rigid Metabelian Pro-p-Groups." Algebra and Logic 53, no. 2 (May 2014): 102–13. http://dx.doi.org/10.1007/s10469-014-9274-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gavioli, Norberto, Valerio Monti, and Carlo Maria Scoppola. "Pro-p groups with waists." Journal of Algebra 351, no. 1 (February 2012): 130–37. http://dx.doi.org/10.1016/j.jalgebra.2011.11.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Morishita, Masanori, and Yuji Terashima. "p -Johnson homomorphisms and pro- p groups." Journal of Algebra 479 (June 2017): 102–36. http://dx.doi.org/10.1016/j.jalgebra.2017.01.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Herfort, Wolfgang, Pavel Zalesskii, and Theo Zapata. "Splitting theorems for pro-p groups acting on pro-p trees." Selecta Mathematica 22, no. 3 (January 8, 2016): 1245–68. http://dx.doi.org/10.1007/s00029-015-0217-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Andozhskiĭ, I. V., and V. M. Tsvetkov. "ANALYTIC PRO-p-GROUPS OF RANK 3 AND CLOSED PRO-p-GROUPS OF TYPE (3,4)." Mathematics of the USSR-Izvestiya 27, no. 3 (June 30, 1986): 593–99. http://dx.doi.org/10.1070/im1986v027n03abeh001202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sonn, Jack. "Free pro-p groups as galois groups over ℚ(p)(t)." Israel Journal of Mathematics 119, no. 1 (December 2000): 1–8. http://dx.doi.org/10.1007/bf02810660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Afanaseva, S. G., and E. I. Timoshenko. "Partially commutative metabelian pro-$p$-groups." Sibirskii matematicheskii zhurnal 60, no. 4 (June 30, 2019): 717–23. http://dx.doi.org/10.33048/smzh.2019.60.401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hillman, Jonathan A., and Alexander Schmidt. "Pro-p groups of positive deficiency." Bulletin of the London Mathematical Society 40, no. 6 (October 3, 2008): 1065–69. http://dx.doi.org/10.1112/blms/bdn089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Leedham-Green, C. R. "Pro-p -Groups of Finite Coclass." Journal of the London Mathematical Society 50, no. 1 (August 1994): 43–48. http://dx.doi.org/10.1112/jlms/50.1.43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Afanaseva, S. G., and E. I. Timoshenko. "Partially Commutative Metabelian Pro-P-Groups." Siberian Mathematical Journal 60, no. 4 (July 2019): 559–64. http://dx.doi.org/10.1134/s0037446619040013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Shalev, A., and E. I. Zelmanov. "Pro-p groups of finite coclass." Mathematical Proceedings of the Cambridge Philosophical Society 111, no. 3 (May 1992): 417–21. http://dx.doi.org/10.1017/s0305004100075514.

Full text
Abstract:
In 1980 Leedham-Green and Newman made a series of conjectures on the structure of pro-p groups and finite p-groups of a given coclass [10]. These insightful conjectures have gradually been proved, in a series of papers (some of which are still unpublished) by Leedham-Green, Donkin, McKay and Plesken (see, e.g. [11, 2, 8, 9, 13, 14]). Some simplifications (as well as additional information) have recently been given in [12, 15].
APA, Harvard, Vancouver, ISO, and other styles
17

KOCHLOUKOVA, DESSISLAVA H., and PAVEL A. ZALESSKII. "Subdirect products of pro-p groups." Mathematical Proceedings of the Cambridge Philosophical Society 158, no. 2 (January 9, 2015): 289–303. http://dx.doi.org/10.1017/s030500411400067x.

Full text
Abstract:
AbstractWe study when a pro-p subdirect product S ⩽ G1 × . . . × Gn is of type FPm for m ⩾ 2 for some special pro-p groups Gi. In particular we treat the case when Gi is a finitely generated non-trivial free pro-p product different from C2 ∐ C2 if p = 2 or a non-abelian pro-p group from the class $\mathcal{L}$ defined in [12].
APA, Harvard, Vancouver, ISO, and other styles
18

KING, JEREMY D. "Embedding theorems for pro-p groups." Mathematical Proceedings of the Cambridge Philosophical Society 123, no. 2 (March 1998): 217–26. http://dx.doi.org/10.1017/s0305004197002181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wilkes, Gareth. "On accessibility for pro-p groups." Journal of Algebra 525 (May 2019): 1–18. http://dx.doi.org/10.1016/j.jalgebra.2019.01.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Baumann, B. "Free pro-p groups with operators." Manuscripta Mathematica 73, no. 1 (December 1991): 385–96. http://dx.doi.org/10.1007/bf02567649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zubkov, A. N. "Varieties of metabelian pro-p-groups." Siberian Mathematical Journal 33, no. 5 (1992): 816–25. http://dx.doi.org/10.1007/bf00970989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Fernández-Alcober, Gustavo A., Jon González-Sánchez, and Andrei Jaikin-Zapirain. "Omega subgroups of pro-p groups." Israel Journal of Mathematics 166, no. 1 (August 2008): 393–412. http://dx.doi.org/10.1007/s11856-008-1036-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Efrat, Ido. "Small maximal pro-p Galois groups." Manuscripta Mathematica 95, no. 1 (December 1998): 237–49. http://dx.doi.org/10.1007/bf02678028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kochloukova, D. H., and P. A. Zalesskii. "Fully residually free pro-p groups." Journal of Algebra 324, no. 4 (August 2010): 782–92. http://dx.doi.org/10.1016/j.jalgebra.2010.04.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kochloukova, Dessislava H., and Pavel Zalesskii. "Free-by-Demushkin pro-p groups." Mathematische Zeitschrift 249, no. 4 (October 15, 2004): 731–39. http://dx.doi.org/10.1007/s00209-004-0720-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Efrat, Ido. "Small maximal pro-p Galois groups." manuscripta mathematica 95, no. 2 (February 1998): 237–49. http://dx.doi.org/10.1007/s002290050026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Pinto, Aline G. S. "Homological finiteness properties of pro-p modules over metabelian pro-p groups." Journal of Algebra 301, no. 1 (July 2006): 96–111. http://dx.doi.org/10.1016/j.jalgebra.2005.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wilson, John S. "Finite presentations of pro-p groups and discrete groups." Inventiones Mathematicae 105, no. 1 (December 1991): 177–83. http://dx.doi.org/10.1007/bf01232262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wilson, Lawrence E. "Torsion elements in p-adic analytic pro-p groups." Journal of Algebra 277, no. 2 (July 2004): 806–24. http://dx.doi.org/10.1016/s0021-8693(03)00534-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

SALLE, LANDRY. "MILD PRO-p-GROUPS AS GALOIS GROUPS OVER GLOBAL FIELDS." International Journal of Number Theory 05, no. 05 (August 2009): 779–95. http://dx.doi.org/10.1142/s1793042109002377.

Full text
Abstract:
This paper is devoted to finding new examples of mild pro-p-groups as Galois groups over global fields, following the work of Labute ([6]). We focus on the Galois group [Formula: see text] of the maximal T-split S-ramified pro-p-extension of a global field k. We first retrieve some facts on presentations of such a group, including a study of the local-global principle for the cohomology group [Formula: see text], then we show separately in the case of function fields and in the case of number fields how it can be used to find some mild pro-p-groups.
APA, Harvard, Vancouver, ISO, and other styles
31

Kochloukova, Dessislava H., and Pavel Zalesskii. "Homological Invariants for pro-p Groups and Some Finitely Presented pro- ${\cal C}$ Groups." Monatshefte f�r Mathematik 144, no. 4 (March 23, 2005): 285–96. http://dx.doi.org/10.1007/s00605-004-0269-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Würfel, Tilmann. "Dimension-Preserving Extensions of Pro-p-Groups." Canadian Mathematical Bulletin 34, no. 1 (March 1, 1991): 136–40. http://dx.doi.org/10.4153/cmb-1991-022-3.

Full text
Abstract:
AbstractWe investigate extensions of pro-p-groups 1 —> N —> G —> Γ —> 1 where N is pro-p-free and Nab, is a free Zp[Γ]-module. In case Γ is finite we show that such an extension splits modulo the second derived group N".
APA, Harvard, Vancouver, ISO, and other styles
33

Jaikin-Zapirain, Andrei, and Benjamin Klopsch. "Analytic groups over general pro-p domains." Journal of the London Mathematical Society 76, no. 2 (October 2007): 365–83. http://dx.doi.org/10.1112/jlms/jdm055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Engler, Antonio José, and Jochen Koenigsmann. "Abelian subgroups of pro-$p$ Galois groups." Transactions of the American Mathematical Society 350, no. 6 (1998): 2473–85. http://dx.doi.org/10.1090/s0002-9947-98-02063-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Barnea, Yiftach, and Robert Guralnick. "Subgroup growth in some pro-$p$ groups." Proceedings of the American Mathematical Society 130, no. 3 (August 29, 2001): 653–59. http://dx.doi.org/10.1090/s0002-9939-01-06099-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

BARNEA, YIFTACH. "RESIDUAL PROPERTIES OF FREE PRO-P GROUPS." Bulletin of the London Mathematical Society 33, no. 5 (September 2001): 578–82. http://dx.doi.org/10.1112/s0024609301008281.

Full text
Abstract:
Recall that if S is a class of groups, then a group G is residually-S if, for any element 1 ≠ g ∈ G, there is a normal subgroup N of G such that g ∉ N and G/N ∈ S. Let Λ be a commutative Noetherian local pro-p ring, with a maximal ideal M. Recall that the first congruence subgroup of SLd(Λ) is: SL1d(Λ) = ker (SLd(Λ) → SLd(Λ/M)).Let K ⊆ ℕ. We define SΛ(K) = ∪d∈K{open subgroups of SL1d(Λ)}. We show that if K is infinite, then for Λ = [ ]p[[t]] and for Λ = ℤp a finitely generated non-abelian free pro-p group is residually-SΛ(K). We apply a probabilistic method, combined with Lie methods and a result on random generation in simple algebraic groups over local fields. It is surprising that the case of zero characteristic is deduced from the positive characteristic case.
APA, Harvard, Vancouver, ISO, and other styles
37

Jaikin-Zapirain, Andrei. "On linear just infinite pro-p groups." Journal of Algebra 255, no. 2 (September 2002): 392–404. http://dx.doi.org/10.1016/s0021-8693(02)00024-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Koenigsmann, Jochen. "Pro-p galois groups of rank ≤4." Manuscripta Mathematica 95, no. 1 (December 1998): 251–71. http://dx.doi.org/10.1007/bf02678029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hillman, Jonathan, Dessislava Kochloukova, and Igor Lima. "Pro-p completions of Poincaré duality groups." Israel Journal of Mathematics 200, no. 1 (June 2014): 1–17. http://dx.doi.org/10.1007/s11856-013-0074-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Klopsch, B., and I. Snopce. "A CHARACTERIZATION OF UNIFORM PRO-p GROUPS." Quarterly Journal of Mathematics 65, no. 4 (March 11, 2014): 1277–91. http://dx.doi.org/10.1093/qmath/hau005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Herfort, W., and P. A. Zalesskii. "Cyclic Extensions of Free Pro-p Groups." Journal of Algebra 216, no. 2 (June 1999): 511–47. http://dx.doi.org/10.1006/jabr.1998.7787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lubotzky, Alexander, and Aner Shalev. "On some Λ-analytic pro-p groups." Israel Journal of Mathematics 85, no. 1-3 (February 1994): 307–37. http://dx.doi.org/10.1007/bf02758646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bush, Michael R., and John Labute. "Mild pro-p-groups with 4 generators." Journal of Algebra 308, no. 2 (February 2007): 828–39. http://dx.doi.org/10.1016/j.jalgebra.2006.08.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Barnea, Y., N. Gavioli, A. Jaikin-Zapirain, V. Monti, and C. M. Scoppola. "Pro-p groups with few normal subgroups." Journal of Algebra 321, no. 2 (January 2009): 429–49. http://dx.doi.org/10.1016/j.jalgebra.2008.10.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Moravec, Primož. "On pro-p groups with potent filtrations." Journal of Algebra 322, no. 1 (July 2009): 254–58. http://dx.doi.org/10.1016/j.jalgebra.2009.01.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

MacQuarrie, J. W. "Green correspondence for virtually pro-p groups." Journal of Algebra 323, no. 8 (April 2010): 2203–8. http://dx.doi.org/10.1016/j.jalgebra.2010.02.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ribes, Luis. "Virtually free factors of pro-p groups." Israel Journal of Mathematics 74, no. 2-3 (October 1991): 337–46. http://dx.doi.org/10.1007/bf02775795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Klopsch, Benjamin. "Pro- p groups with linear subgroup growth." Mathematische Zeitschrift 245, no. 2 (October 1, 2003): 335–70. http://dx.doi.org/10.1007/s00209-003-0548-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Koenigsmann, Jochen. "Pro-p Galois groups of rank ≤ 4." manuscripta mathematica 95, no. 2 (February 1998): 251–71. http://dx.doi.org/10.1007/s002290050027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Roman'kov, V. A. "Infinite generation of automorphism groups of free pro-p groups." Siberian Mathematical Journal 34, no. 4 (1993): 727–32. http://dx.doi.org/10.1007/bf00975176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography