Academic literature on the topic 'Pro-p-group'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pro-p-group.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pro-p-group"
Dario, R. P., and A. J. Engler. "Relative Brauer group and pro-p Galois group of pre-p-henselian fields." Journal of Algebra and Its Applications 14, no. 06 (April 21, 2015): 1550087. http://dx.doi.org/10.1142/s0219498815500875.
Full textMazza, Nadia. "The pro-p group of upper unitriangular matrices." Journal of Pure and Applied Algebra 221, no. 12 (December 2017): 2928–52. http://dx.doi.org/10.1016/j.jpaa.2017.02.009.
Full textRiley, David M. "Analytic pro-p groups and their graded group rings." Journal of Pure and Applied Algebra 90, no. 1 (November 1993): 69–76. http://dx.doi.org/10.1016/0022-4049(93)90137-i.
Full textKlopsch, Benjamin, and Anitha Thillaisundaram. "A pro-p group with infinite normal Hausdorff spectra." Pacific Journal of Mathematics 303, no. 2 (December 31, 2019): 569–603. http://dx.doi.org/10.2140/pjm.2019.303.569.
Full textAfanas’eva, S. G. "The Coordinate Group of an Affine Space Over a Rigid Metabelian Pro-p-group." Algebra and Logic 53, no. 3 (July 2014): 187–90. http://dx.doi.org/10.1007/s10469-014-9282-9.
Full textKOCHLOUKOVA, DESSISLAVA H., and PAVEL A. ZALESSKII. "Subdirect products of pro-p groups." Mathematical Proceedings of the Cambridge Philosophical Society 158, no. 2 (January 9, 2015): 289–303. http://dx.doi.org/10.1017/s030500411400067x.
Full textHerfort, Wolfgang, and Luis Ribes. "Subgroups of free pro-p-products." Mathematical Proceedings of the Cambridge Philosophical Society 101, no. 2 (March 1987): 197–206. http://dx.doi.org/10.1017/s0305004100066548.
Full textStrojný, L., J. Štofilová, E. Hijová, V. Szabadosová, R. Salaj, I. Bertková, A. Chmelárová, et al. "Effect of Lactobacillus plantarum LS/07 in combination with flaxseed oil on the microflora, enzymatic activity, and histological changes in the development of chemically induced precancerous growth in the rat colon." Czech Journal of Animal Science 59, No. 6 (July 2, 2014): 268–77. http://dx.doi.org/10.17221/7497-cjas.
Full textITOH, TSUYOSHI, and YASUSHI MIZUSAWA. "On tamely ramified pro-p-extensions over -extensions of." Mathematical Proceedings of the Cambridge Philosophical Society 156, no. 2 (November 20, 2013): 281–94. http://dx.doi.org/10.1017/s0305004113000637.
Full textRomanovskii, N. S. "Algebraic Sets in a Finitely Generated 2-Step Solvable Rigid Pro-p-Group." Algebra and Logic 54, no. 6 (January 2016): 478–88. http://dx.doi.org/10.1007/s10469-016-9367-8.
Full textDissertations / Theses on the topic "Pro-p-group"
Smith, Duncan Alexander Mathematics UNSW. "The Families with Period 1 of 2-groups of Coclass 3." Awarded by:University of New South Wales. Mathematics, 2000. http://handle.unsw.edu.au/1959.4/17792.
Full textRougnant, Marine. "Sur quelques aspects des extensions à ramification restreinte." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD015/document.
Full textLet p be a prime number, let K/k be a Galois extension of number fields and let S be a finite set of primes of K. We suppose that the degree of K/k is finite and coprime to p. We denote by G(K,S) the Galois group of the pro-p maximal extension of K unramified outside S. We focus on this thesis on two differents aspects of this pro-p group.We are first interested in the tame case : we suppose that S does not contain any place above p. The works of Labute, Minac and Schmidt about mild pro-p groups brought the first examples of groups G(K,S) of cohomological dimension two. Using a corollary of their criterium, we compute some examples with PARI/GP and we observe a propagation phenomenum : if we take K=Q and if we suppose that G(Q,S) is mild, a large part of the pro-p groups G(K,S) with K imaginary quadratic are mild too. We then associate two oriented graphs to G(K,S) and we show a theoretical criterium proving mildness of some imaginary quadratic fields.We then consider the wild case where all the places dividing p belong to S. The Galois group Δ:=Gal(K/k) acts on G(K,S). The action of Δ is trivial on some quotients of G(K,S) ; we denote by G the maximal one and by H the corresponding closed subgroup of G(K,S). Maire has studied the Zp[[G]]-freeness of the module H^{ab}. We extend his results considering the φ-component of H^{ab} under the action of Δ. In a favourable context and under Leopoldt's conjecture, we show a necessary and sufficient condition for the freeness of the φ-components. This condition is connected to p-rational fields by class field theory. We present experiments with PARI/GP in some families of cubic cyclic, dihedral and quartic cyclic extensions of Q which support the following conjecture from Gras : every number field is p-rational for sufficiently large p
Simons, Nicholas James. "The width of verbal subgroups in profinite groups." Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:01075c36-c7e6-4def-9647-86b4346e4726.
Full textToinet, Emmanuel. "Automorphisms of right-angled Artin groups." Thesis, Dijon, 2012. http://www.theses.fr/2012DIJOS003.
Full textThe purpose of this thesis is to study the automorphisms of right-angled Artin groups. Given a finite simplicial graph G, the right-angled Artin group GG associated to G is the group defined by the presentation whose generators are the vertices of G, and whose relators are commuta-tors of pairs of adjacent vertices. The first chapter is intended as a general introduction to the theory of right-angled Artin groups and their automor-phisms. In a second chapter, we prove that every subnormal subgroup ofp-power index in a right-angled Artin group is conjugacy p-separable. As an application, we prove that every right-angled Artin group is conjugacy separable in the class of torsion-free nilpotent groups. As another applica-tion, we prove that the outer automorphism group of a right-angled Artin group is virtually residually p-finite. We also prove that the Torelli group ofa right-angled Artin group is residually torsion-free nilpotent, hence residu-ally p-finite and bi-orderable. In a third chapter, we give a presentation of the subgroup Conj(GG) of Aut(GG) consisting of the automorphisms thats end each generator to a conjugate of itself
Toinet, Emmanuel. "Automorphismes des groupes d'Artin à angles droits." Phd thesis, Université de Bourgogne, 2012. http://tel.archives-ouvertes.fr/tel-00698614.
Full textPinto, Aline Gomes da Silva. "Propriedades homologicas de grupos pro-p." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306931.
Full textTese (doutorado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-04T14:37:32Z (GMT). No. of bitstreams: 1 Pinto_AlineGomesdaSilva_D.pdf: 2789516 bytes, checksum: 20f42bafb2b08678ceb88f751e8b275e (MD5) Previous issue date: 2005
Resumo: Neste trabalho, provamos dois resultados sobre propriedades homológicas de grupos pro-p. O primeiro responde positivamente à conjectura de J. King que afirma que, se G é um grupo pro-p metabeliano finitamente gerado e m um inteiro positivo, então G mergulha como subgrupo fechado em um grupo pro-p metabeliano de tipo homológico F Pm. O segundo resultado caracteriza módulos pro-p B de tipo homológico F P m sobre [[ZpG]], onde G é um grupo pro-p metabeliano topologicamente finitamente gerado, dado pela extensão de um grupo pro-p abeliano A por um grupo pro-p abeliano Q, e B é um [[ZpQ]]-módulo pro-p finitamente gerado que é visto como um [[ZpG]]-módulo pro-p via a projeção de G -t Q. A caracterização é dada em termos do invariante para grupos pro-p metabelianos introduzido por J. King [15] e é uma generalização do caso onde B = Zp é o anel de inteiros p-ádicos considerado como G-módulo trivial, que dá a classificação dos grupos pro-p metabelianos de tipo homológico FPm, provado por D. Kochloukova [18]
Abstract: In this work, we prove two results about homological properties of metabelian pro-p groups. The first one answers positively a conjecture suggested by J. King that, if G is a finitely generated metabelian pro-p group and m a positive integer, G embeds in a metabelian pro-p group of homological type F P m. The second result caracterize the modules B of homological type F P mover [[ZpG]], where G is a topologically finitely generated metabelian pro-p group that is an extension of A by Q, with A and Q abelian, and B is a finitely generated pro-p [[ZpQ]]-module that is viewed as a pro-p [[ZpG]]-module via the projection G -f Q. The characterization is given in terms of the invariant introduced by J. King [15] and is a generalization of the case when B = Zp is considered as a trivial [[ZpG]]-module, that gives the classification of metabelian pro-p groups of type FPm, proved by D. Kochloukova [18]
Doutorado
Matematica
Doutor em Matemática
Martin, Maria Eugenia. "Propriedades homologicas de grupos pro-p." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306927.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-13T12:02:14Z (GMT). No. of bitstreams: 1 Martin_MariaEugenia_M.pdf: 974097 bytes, checksum: 862be4d1ac3b05cc1a28ba59cf6c0460 (MD5) Previous issue date: 2009
Resumo: Nesta dissertação discutimos propriedades homológicas de grupos discretos e grupos pro-p. Em particular trabalhamos com grupos abstratos de dualidade de Poincaré orientáveis de dimensão três e seu completamento pro-p. Os primeiros capítulos da dissertação incluem uma exposição sobre as propriedades homológicas básicas de grupos abstratos e grupos pro-p. Finalmente, descrevemos um resultado recente de [KZ], publicado em Transactions MAS ( 2008), que clássica quando o completamento pro-p de um grupo de dualidade de Poincaré orientável de dimensão três de um grupo pro-p de dualidade de Poincaré orientável de dimensão três
Abstract: In this dissertation we discuss homological properties of discrete groups and pro-p groups. In particular we work with groups of abstract of Poincaré duality of dimension three steerable and its pro-p completion. The first chapters of the dissertation include a presentation on the basic homological properties of abstract groups and pro-p groups. Finally, we describe a recent result of [KZ], published in Transactions AMS (2008), which ranks as the pro-p completion of a group of Poincare-steerable dual dimension of three is a group of pro-p duality of Poincare -steerable in three dimensions
Mestrado
Mestre em Matemática
Lima, Igor dos Santos 1983. "Completamentos Pro-p de grupos de dualidade de Poincaré." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306926.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-20T17:04:33Z (GMT). No. of bitstreams: 1 Lima_IgordosSantos_D.pdf: 1446540 bytes, checksum: 1e68bfb627d234fa97739cd2e813b4a9 (MD5) Previous issue date: 2012
Resumo: Neste trabalho, nos Teoremas Principais, damos condições suficientes para que o completamento pro-p de um grupo abstrato PDn seja virtualmente um grupo pro-p PDs para algum s ? n - 2 com n ? 4. Esse resultado é uma generalização do Teorema 3 em [K-2009]. Nossa prova é baseada em [K-2009] e nos resultados de A. A. Korenev [Ko-2004] e [Ko-2005]. Além disso, damos alguns exemplos de grupos que satisfazem as condições dos Teoremas Principais
Abstract: In this work we give in the Main Theorems suffiient conditions for that the pro- p completion of an abstract orientable PDn group to be virtually a pro-p PDs group for some s ? n - 2 with n ? 4. This result is a generalization of the Theorem 3 in [K-2009]. Our proof is based on [K-2009] and on the results of A. A. Korenev [Ko-2004] and [Ko-2005]. Furthermore we give some examples of groups that satisfy the conditions of the Main Theorems
Doutorado
Matematica
Doutor em Matemática
Rêgo, Yuri Santos 1989. "A desigualdade de Golod-Safarevic para grupos pro-p e grupos abstratos." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306920.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-25T09:13:05Z (GMT). No. of bitstreams: 1 Rego_YuriSantos_M.pdf: 1142010 bytes, checksum: 548d8ef6ff2800026c8cd65783b81a9f (MD5) Previous issue date: 2014
Resumo: Neste trabalho estuda-se os principais resultados dados por J. Wilson no artigo "Finite Presentations of Pro-p Groups and Discrete Groups", relacionados à Desigualdade de Golod-¿afarevi? para uma ampla classe de grupos pro-p e abstratos infinitos. Apresentamos a teoria básica de grupos livres abstratos, levando à noção de apresentação de grupos, com foco em apresentações finitas. É feito um estudo sobre grupos profinitos, particularmente no caso pro-p. Abrange-se definições, propriedades algébricas e topológicas básicas, bem como o caso de finitos geradores com o subgrupo de Frattini, e conceitos de completamentos, de grupos pro-p livres, de apresentações de grupos pro-p e de álgebras de grupo completas. No capítulo final estudamos os resultados principais para grupos pro-p e abstratos finitamente apresentáveis, que incluem grupos solúveis e implicações na estrutura de certos grupos satisfazendo a Desigualdade. Os anexos relacionam a teoria aqui apresentada a grupos pro-p de posto finito e homologia e cohomologia de grupos pro-p
Abstract: In this work we study the main results presented by J. Wilson in his paper "Finite Presentations of Pro-p Groups and Discrete Groups", which extend the Golod-¿afarevi? Inequality to a large class of infinite pro-p and abstract groups. In the first chapter we present the basic theory of abstract free groups, focusing on finite presentations. Next we study profinite groups, with focus on pro-p groups. This study ranges from definitions to basic algebraic and topological properties, as well as the cases of finitely generated groups and the Frattini subgroup, and notions of completion, free pro-p groups, presentations of pro-p groups and completed group algebras. In the last chapter we study the main results regarding finite presentations of pro-p and abstract groups, which include soluble groups and implications on the structure of certain groups for which the Inequality holds. In the appendixes we briefly relate the presented theory to pro-p groups of finite rank and homology and cohomology of pro-p groups
Mestrado
Matematica
Mestre em Matemática
Schmidt, Nicolas Alexander. "Generic pro-p Hecke algebras, the Hecke algebra of PGL(2, Z), and the cohomology of root data." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/19724.
Full textThe theory of generic pro-$p$ Hecke algebras and their Bernstein maps is developed. For a certain subclass, the \textit{affine} pro-$p$ Hecke algebras, we are able to prove a structure theorem that in particular shows that the latter algebras are always noetherian if the ring of coefficients is. The crucial technical tool are the Bernstein relations, which are proven in an abstract way that generalizes the known cases. Moreover, the topological space of orientations is introduced and studied in the case of the extended modular group $\operatorname{PGL}_2(\mathds{Z})$, and used to determine the structure of its Hecke algebra as a module over a certain subalgebra, attached to the cusp at infinity. Finally, the question of the splitness of the normalizer of a maximal split torus inside a split reductive groups as an extension of the Weyl group by the group of rational points is studied. Using results obtained previously, this questioned is then reduced to a cohomological one. A partial answer to this question is obtained via computer calculations of the cohomology groups of the cocharacter lattices of all almost-simple semisimple root data of rank up to $8$. Using the theory of $\mathbf{FI}$-modules, these computations are used to determine the cohomology of the mod 2 reduction of the coroot lattices for type $A$ and all ranks.
Books on the topic "Pro-p-group"
Sautoy, Marcus Du, D. Segal, and A. Shalev. New Horizons in Pro-p Groups. Birkhauser Verlag AG, 2000.
Find full textBook chapters on the topic "Pro-p-group"
Koch, Helmut. "Group Algebras of pro-p Groups." In Springer Monographs in Mathematics, 59–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04967-9_8.
Full textCamina, Rachel. "The Nottingham Group." In New Horizons in pro-p Groups, 205–21. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1380-2_6.
Full textdu Sautoy, Marcus, and Ivan Fesenko. "Where the Wild Things Are: Ramification Groups and the Nottingham Group." In New Horizons in pro-p Groups, 287–328. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1380-2_10.
Full text"The group algebra." In Analytic Pro-P Groups, 138–70. Cambridge University Press, 1999. http://dx.doi.org/10.1017/cbo9780511470882.011.
Full textConference papers on the topic "Pro-p-group"
Akaa, Obinna, Anthony Abu, and Michael Spearpoint. "Application of Group Analytic Technique in the design decision-making process for a steel building in fire." In IABSE Congress, Christchurch 2021: Resilient technologies for sustainable infrastructure. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/christchurch.2021.0745.
Full textMilazzotto, F., M. Carelli, C. Citone, G. Di Macro Tullio, G. C. Gambelli, P. Giampaolo, U. Malinconico, C. Polizzi, and U. Cornelli. "EFFECTIVENESS OF DEFIBROTIDE IN THE TREATMENT OF ACUTE MYOCARDIAL INFARCTION." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643146.
Full textBabic, Matej, Miroslav Holienka, and Nikolas Nagy. "Internal Load Of Soccer Goalkeepers During A Training Process." In 12th International Conference on Kinanthropology. Brno: Masaryk University Press, 2020. http://dx.doi.org/10.5817/cz.muni.p210-9631-2020-22.
Full textLuczkowski, Marcin, Steinar Hillersøy Dyvik, John Haddal Mork, and Anders Nils Rønnquist. "Digital workflows vs. spatial structures design." In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.0563.
Full textRejman, Krystyna, Marzena Jeżewska-Zychowicz, and Grzegorz Ganczewski. "Understanding the Concept of Sustainable Food Consumption – whether it will Reduce Meat Consumption." In 14th International Scientific Conference "Rural Environment. Education. Personality. (REEP)". Latvia University of Life Sciences and Technologies. Faculty of Engineering. Institute of Education and Home Economics, 2021. http://dx.doi.org/10.22616/reep.2021.14.041.
Full textPaul, Simon, Kadija Dyall, and Quinn Gabriel. "An Independent Analysis of the Performance Characteristics and Economic Outcomes of the Liza Phase 1 Development Offshore Guyana Using Public Domain Data." In SPE Trinidad and Tobago Section Energy Resources Conference. SPE, 2021. http://dx.doi.org/10.2118/200951-ms.
Full text