Academic literature on the topic 'Printed Oxide TFTs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Printed Oxide TFTs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Printed Oxide TFTs"
Chen, Siting, Yuzhi Li, Yilong Lin, Penghui He, Teng Long, Caihao Deng, Zhuo Chen, et al. "Inkjet-Printed Top-Gate Thin-Film Transistors Based on InGaSnO Semiconductor Layer with Improved Etching Resistance." Coatings 10, no. 4 (April 24, 2020): 425. http://dx.doi.org/10.3390/coatings10040425.
Full textLi, Yuzhi, and Shengdong Zhang. "Fully Inkjet-Printed Short-Channel Metal-Oxide Thin-Film Transistors Based on Semitransparent ITO/Au Source/Drain Electrodes." Coatings 10, no. 10 (September 30, 2020): 942. http://dx.doi.org/10.3390/coatings10100942.
Full textScheideler, William J., and Vivek Subramanian. "How to print high-mobility metal oxide transistors—Recent advances in ink design, processing, and device engineering." Applied Physics Letters 121, no. 22 (November 28, 2022): 220502. http://dx.doi.org/10.1063/5.0125055.
Full textChoi, Seungbeom, Kyung-Tae Kim, Sung Park, and Yong-Hoon Kim. "High-Mobility Inkjet-Printed Indium-Gallium-Zinc-Oxide Thin-Film Transistors Using Sr-Doped Al2O3 Gate Dielectric." Materials 12, no. 6 (March 13, 2019): 852. http://dx.doi.org/10.3390/ma12060852.
Full textChoi, Woon-Seop. "Preparation of Li-Doped Indium-Zinc Oxide Thin-Film Transistor at Relatively Low Temperature Using Inkjet Printing Technology." Korean Journal of Metals and Materials 59, no. 5 (May 5, 2021): 314–20. http://dx.doi.org/10.3365/kjmm.2021.59.5.314.
Full textLee, S. H., Y. J. Kwack, J. S. Lee, and W. S. Choi. "Inkjet-Printed Oxide TFTs with Solution-Processed Dual Semiconductors." ECS Transactions 75, no. 10 (September 23, 2016): 127–31. http://dx.doi.org/10.1149/07510.0127ecst.
Full textYe, Heqing, Hyeok-Jin Kwon, Xiaowu Tang, Dong Yun Lee, Sooji Nam, and Se Hyun Kim. "Direct Patterned Zinc-Tin-Oxide for Solution-Processed Thin-Film Transistors and Complementary Inverter through Electrohydrodynamic Jet Printing." Nanomaterials 10, no. 7 (July 3, 2020): 1304. http://dx.doi.org/10.3390/nano10071304.
Full textChang, Yeoungjin, Ravindra Naik Bukke, Jinbaek Bae, and Jin Jang. "Low-Temperature Solution-Processed HfZrO Gate Insulator for High-Performance of Flexible LaZnO Thin-Film Transistor." Nanomaterials 13, no. 17 (August 25, 2023): 2410. http://dx.doi.org/10.3390/nano13172410.
Full textLee, Yong Gu, and Woon-Seop Choi. "Electrohydrodynamic Jet-Printed Zinc–Tin Oxide TFTs and Their Bias Stability." ACS Applied Materials & Interfaces 6, no. 14 (July 15, 2014): 11167–72. http://dx.doi.org/10.1021/am5009826.
Full textChandra, Aditi, Mao Takashima, and Arvind Kamath. "Silicon and Dopant Ink-Based CMOS TFTs on Flexible Steel Foils." MRS Advances 2, no. 23 (2017): 1259–65. http://dx.doi.org/10.1557/adv.2017.227.
Full textDissertations / Theses on the topic "Printed Oxide TFTs"
Nehru, Devabharathi. "Inkjet-Printed Co-continuous Mesoporous Oxides for Surface Dominated Functional Devices." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5856.
Full textPereira, Rita de Vasconcelos. "Printing of eco-friendly solution based zinc-tin oxide for device applications." Master's thesis, 2019. http://hdl.handle.net/10362/88071.
Full textSantos, Ângelo Emanuel Neves dos. "Design and simulation of a smart bottle with fill-level sensing based on oxide TFT technology." Master's thesis, 2016. http://hdl.handle.net/10362/19593.
Full textConference papers on the topic "Printed Oxide TFTs"
Han, Y., Y. Wang, H. T. Dai, S. G. Wang, J. L. Zhao, and X. W. Sun. "Influence of the metallic electrodes on the contact resistance of the ink-jet printed In-Ga-Zn oxide TFTs." In SPIE OPTO, edited by Ferechteh Hosseini Teherani, David C. Look, and David J. Rogers. SPIE, 2013. http://dx.doi.org/10.1117/12.2002885.
Full textWang, Y., T. P. Chen, X. W. Sun, J. I. Wong, H. Y. Yang, and J. L. Zhao. "Ink-jet printed In-Ga-Zn oxide nonvolatile TFT memory utilizing silicon nanocrystals embedded in SiO2 gate dielectric." In 2013 IEEE International Nanoelectronics Conference (INEC). IEEE, 2013. http://dx.doi.org/10.1109/inec.2013.6466004.
Full text