Academic literature on the topic 'Principal components'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Principal components.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Principal components"
Sutter, Jon M., John H. Kalivas, and Patrick M. Lang. "Which principal components to utilize for principal component regression." Journal of Chemometrics 6, no. 4 (July 1992): 217–25. http://dx.doi.org/10.1002/cem.1180060406.
Full textAbegaz, Fentaw, Kridsadakorn Chaichoompu, Emmanuelle Génin, David W. Fardo, Inke R. König, Jestinah M. Mahachie John, and Kristel Van Steen. "Principals about principal components in statistical genetics." Briefings in Bioinformatics 20, no. 6 (September 14, 2018): 2200–2216. http://dx.doi.org/10.1093/bib/bby081.
Full textHaswell, S. J. "Principal Components." Analytica Chimica Acta 309, no. 1-3 (June 1995): 405–6. http://dx.doi.org/10.1016/0003-2670(95)90335-6.
Full textMiyazaki, Haruo, and Youichi Seki. "Principal Components and Principal Clusters." Journal of Information and Optimization Sciences 8, no. 2 (May 1987): 189–99. http://dx.doi.org/10.1080/02522667.1987.10698885.
Full textFujiwara, Masakazu, Tomohiro Minamidani, Isamu Nagai, and Hirofumi Wakaki. "Principal Components Regression by Using Generalized Principal Components Analysis." JOURNAL OF THE JAPAN STATISTICAL SOCIETY 43, no. 1 (2013): 57–78. http://dx.doi.org/10.14490/jjss.43.57.
Full textSaegusa, Ryo, Hitoshi Sakano, and Shuji Hashimoto. "Nonlinear principal component analysis to preserve the order of principal components." Neurocomputing 61 (October 2004): 57–70. http://dx.doi.org/10.1016/j.neucom.2004.03.004.
Full textMertens, B. J. A., T. Fearn, and M. Thompson. "Efficient cross-validation of principal components applied to principal component regression." Statistics and Computing 6, no. 2 (June 1996): 178. http://dx.doi.org/10.1007/bf00162530.
Full textWhitlark, David, and George H. Dunteman. "Principal Components Analysis." Journal of Marketing Research 27, no. 2 (May 1990): 243. http://dx.doi.org/10.2307/3172855.
Full textAmmann, Larry P. "Robust Principal Components." Communications in Statistics - Simulation and Computation 18, no. 3 (January 1989): 857–74. http://dx.doi.org/10.1080/03610918908812795.
Full textFranses, Philip Hans, and Eva Janssens. "Spurious principal components." Applied Economics Letters 26, no. 1 (February 2018): 37–39. http://dx.doi.org/10.1080/13504851.2018.1433292.
Full textDissertations / Theses on the topic "Principal components"
Nunes, Madalena Baioa Paraíso. "Portfolio selection : a study using principal component analysis." Master's thesis, Instituto Superior de Economia e Gestão, 2017. http://hdl.handle.net/10400.5/14598.
Full textNesta tese aplicámos a análise de componentes principais ao mercado bolsista português usando os constituintes do índice PSI-20, de Julho de 2008 a Dezembro de 2016. Os sete primeiros componentes principais foram retidos, por se ter verificado que estes representavam as maiores fontes de risco deste mercado em específico. Assim, foram construídos sete portfólios principais e comparámo-los com outras estratégias de alocação. Foram construídos o portfólio 1/N (portfólio com investimento igual para cada um dos 26 ativos), o PPEqual (portfólio com igual investimento em cada um dos 7 principal portfólios) e o portfólio MV (portfólio que tem por base a teoria moderna de gestão de carteiras de Markowitz (1952)). Concluímos que estes dois últimos portfólios apresentavam os melhores resultados em termos de risco e retorno, sendo o portfólio PPEqual mais adequado a um investidor com maior grau de aversão ao risco e o portfólio MV mais adequado a um investidor que estaria disposto a arriscar mais em prol de maior retorno. No que diz respeito ao nível de risco, o PPEqual é o portfólio com melhores resultados e nenhum outro portfólio conseguiu apresentar valores semelhantes. Assim encontrámos um portfólio que é a ponderação de todos os portfólios principais por nós construídos e este era o portfólio mais eficiente em termos de risco.
In this thesis we apply principal component analysis to the Portuguese stock market using the constituents of the PSI-20 index from July 2008 to December 2016. The first seven principal components were retained, as we verified that these represented the major risk sources in this specific market. Seven principal portfolios were constructed and we compared them with other allocation strategies. The 1/N portfolio (with an equal investment in each of the 26 stocks), the PPEqual portfolio (with an equal investment in each of the 7 principal portfolios) and the MV portfolio (based on Markowitz's (1952) mean-variance strategy) were constructed. We concluded that these last two portfolios presented the best results in terms of return and risk, with PPEqual portfolio being more suitable for an investor with a greater degree of risk aversion and the MV portfolio more suitable for an investor willing to risk more in favour of higher returns. Regarding the level of risk, PPEqual is the portfolio with the best results and, so far, no other portfolio has presented similar values. Therefore, we found an equally-weighted portfolio among all the principal portfolios we built, which was the most risk efficient.
info:eu-repo/semantics/publishedVersion
Kassaye, Meseret Haile, and Yigit Demir. "Calibration Based On Principal Components." Thesis, Örebro universitet, Handelshögskolan vid Örebro Universitet, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-26582.
Full textSun, Linjuan. "Simple principal components." Thesis, Open University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429528.
Full textDuras, Toni. "Aspects of common principal components." Licentiate thesis, Internationella Handelshögskolan, Högskolan i Jönköping, IHH, Statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-38587.
Full textBrubaker, S. Charles. "Extensions of principal components analysis." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29645.
Full textCommittee Chair: Santosh Vempala; Committee Member: Adam Kalai; Committee Member: Haesun Park; Committee Member: Ravi Kannan; Committee Member: Vladimir Koltchinskii. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Khwambala, Patricia Helen. "The importance of selecting the optimal number of principal components for fault detection using principal component analysis." Master's thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/11930.
Full textIncludes bibliographical references.
Fault detection and isolation are the two fundamental building blocks of process monitoring. Accurate and efficient process monitoring increases plant availability and utilization. Principal component analysis is one of the statistical techniques that are used for fault detection. Determination of the number of PCs to be retained plays a big role in detecting a fault using the PCA technique. In this dissertation focus has been drawn on the methods of determining the number of PCs to be retained for accurate and effective fault detection in a laboratory thermal system. SNR method of determining number of PCs, which is a relatively recent method, has been compared to two commonly used methods for the same, the CPV and the scree test methods.
Zavala, Frank Alcorta. "Principals' Perceptions of the Most Important Components in an Effective Principal Preparation Program." ScholarWorks, 2014. https://scholarworks.waldenu.edu/dissertations/26.
Full textBrandenberg, Romano Rodolfo. "Principal Components Analysis of Commodity Trading Advisors." St. Gallen, 2008. http://www.biblio.unisg.ch/org/biblio/edoc.nsf/wwwDisplayIdentifier/02604577002/$FILE/02604577002.pdf.
Full textUddin, Mudassir. "Interpretation of results from simplified principal components." Thesis, University of Aberdeen, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301216.
Full textNeuenschwander, Beat. "Common principal components for dependent random vectors /." [Bern] : [s.n.], 1991. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.
Full textBooks on the topic "Principal components"
Principal components analysis. Newbury Park, Calif: Sage, 1989.
Find full textDunteman, George. Principal Components Analysis. 2455 Teller Road, Newbury Park California 91320 United States of America: SAGE Publications, Inc., 1989. http://dx.doi.org/10.4135/9781412985475.
Full textDunteman, George H. Principal components analysis. Newbury Park: Sage Publications, 1989.
Find full textDunteman, George H. Principal components analysis. Newbury Park: Sage Publications, 1989.
Find full textPrincipal component analysis. New York: Springer-Verlag, 1986.
Find full textJolliffe, I. T. Principal component analysis. 2nd ed. New York: Springer, 2010.
Find full textPrincipal component analysis. 2nd ed. New York: Springer, 2002.
Find full textA user's guide to principal components. Hoboken, N.J: Wiley-Interscience, 2003.
Find full textLeBlanc, Michael R. Adaptive principal surfaces. Toronto: University of Toronto, Dept. of Statistics, 1991.
Find full textJackson, J. Edward. A user's guide to principal components. New York: Wiley, 1991.
Find full textBook chapters on the topic "Principal components"
Kloek, T. "Principal Components." In Time Series and Statistics, 204–7. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20865-4_27.
Full textFalk, Michael, Frank Marohn, and Bernward Tewes. "Principal Components." In Foundations of Statistical Analyses and Applications with SAS, 321–61. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-8195-1_8.
Full textBrown, Charles E. "Principal Components." In Applied Multivariate Statistics in Geohydrology and Related Sciences, 103–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80328-4_9.
Full textKloek, T. "Principal Components." In The New Palgrave Dictionary of Economics, 1–4. London: Palgrave Macmillan UK, 1987. http://dx.doi.org/10.1057/978-1-349-95121-5_1776-1.
Full textKloek, T. "Principal Components." In The New Palgrave Dictionary of Economics, 10747–49. London: Palgrave Macmillan UK, 2018. http://dx.doi.org/10.1057/978-1-349-95189-5_1776.
Full textHatanaka, Michio, and Hiroshi Yamada. "Principal Components." In Co-trending: A Statistical System Analysis of Economic Trends, 25–27. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-65912-9_4.
Full textJolicoeur, Pierre. "Principal components or principal axes." In Introduction to Biometry, 280–302. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4777-8_32.
Full textHilbert, Sven, and Markus Bühner. "Principal Components Analysis." In Encyclopedia of Personality and Individual Differences, 4030–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-24612-3_1340.
Full textHärdle, Wolfgang, and Léopold Simar. "Principal Components Analysis." In Applied Multivariate Statistical Analysis, 233–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05802-2_9.
Full textEveritt, Brian S., and Graham Dunn. "Principal Components Analysis." In Applied Multivariate Data Analysis, 48–73. West Sussex, United Kingdom: John Wiley & Sons, Ltd,., 2013. http://dx.doi.org/10.1002/9781118887486.ch3.
Full textConference papers on the topic "Principal components"
SAUCIER, ANTOINE. "LOCALIZED PRINCIPAL COMPONENTS." In Conference on Fractals 2002. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777720_0028.
Full textSAUCIER, ANTOINE. "MULTISCALE PRINCIPAL COMPONENTS." In Fractals and Related Phenomena in Nature. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702746_0024.
Full textBishop, C. M. "Variational principal components." In 9th International Conference on Artificial Neural Networks: ICANN '99. IEE, 1999. http://dx.doi.org/10.1049/cp:19991160.
Full textGuo, Hao, Kurt J. Marfurt, Jianlei Liu, and Qifeng Dou. "Principal components analysis of spectral components." In SEG Technical Program Expanded Abstracts 2006. Society of Exploration Geophysicists, 2006. http://dx.doi.org/10.1190/1.2370422.
Full textAquilina, Kirsty, David A. W. Barton, and Nathan F. Lepora. "Principal Components of Touch." In 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018. http://dx.doi.org/10.1109/icra.2018.8461045.
Full textBoutsidis, Christos, Dan Garber, Zohar Karnin, and Edo Liberty. "Online Principal Components Analysis." In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2014. http://dx.doi.org/10.1137/1.9781611973730.61.
Full textFoi, Alessandro, and Giacomo Boracchi. "Nonlocal foveated principal components." In 2014 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2014. http://dx.doi.org/10.1109/ssp.2014.6884596.
Full textFirmansyah, Gerry, Zainal A. Hasibuan, and Yudho Giri Sucahyo. "Indonesia e-Government components: A principal component analysis approach." In 2014 International Conference on Information Technology Systems and Innovation (ICITSI). IEEE, 2014. http://dx.doi.org/10.1109/icitsi.2014.7048255.
Full textWei-min, Liu, and Chang Chein-I. "Variants of Principal Components Analysis." In 2007 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2007. http://dx.doi.org/10.1109/igarss.2007.4422989.
Full textHoang, A. "Information retrieval with principal components." In International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004. IEEE, 2004. http://dx.doi.org/10.1109/itcc.2004.1286463.
Full textReports on the topic "Principal components"
Chen, Xiaohong, Jose A. Scheinkman, and Lars Peter Hansen. Principal components and the long run. Institute for Fiscal Studies, May 2009. http://dx.doi.org/10.1920/wp.cem.2009.0709.
Full textNeumann, Michael, and Hans Schneider. Principal Components of Minus M-Matrices. Fort Belvoir, VA: Defense Technical Information Center, February 1991. http://dx.doi.org/10.21236/ada232354.
Full textLiu, Yong, and Harel Shouval. Principal Components of Natural Images: An Analytical Solution. Fort Belvoir, VA: Defense Technical Information Center, May 1993. http://dx.doi.org/10.21236/ada264800.
Full textFekedulegn, B. Desta, J. J. Colbert, R. R. ,. Jr Hicks, and Michael E. Schuckers. Coping with Multicollinearity: An Example on Application of Principal Components Regression in Dendroecology. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station, 2002. http://dx.doi.org/10.2737/ne-rp-721.
Full textHarter, Rachel M., Pinliang (Patrick) Chen, Joseph P. McMichael, Edgardo S. Cureg, Samson A. Adeshiyan, and Katherine B. Morton. Constructing Strata of Primary Sampling Units for the Residential Energy Consumption Survey. RTI Press, May 2017. http://dx.doi.org/10.3768/rtipress.2017.op.0041.1705.
Full textMARTIN, SHAWN B. Kernel Near Principal Component Analysis. Office of Scientific and Technical Information (OSTI), July 2002. http://dx.doi.org/10.2172/810934.
Full textSchennach, Susanne M., and Florian Gunsilius. A nonlinear principal component decomposition. The IFS, March 2017. http://dx.doi.org/10.1920/wp.cem.2017.1617.
Full textFlicker, Dawn, James Carney, Mary Cusentino, Khalid Hattar, Michael Steinkamp, and Larico Treadwell. Assessment of Sandia?s 2021 Pilot Program for Research Traineeships to Broaden and Diversify Fusion Energy Science: Development and Rapid Screening of Refractory Multi-Principal Elemental Composites for Plasma Facing Components. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1855066.
Full textAït-Sahalia, Yacine, and Dacheng Xiu. Principal Component Analysis of High Frequency Data. Cambridge, MA: National Bureau of Economic Research, September 2015. http://dx.doi.org/10.3386/w21584.
Full textDing, Chris H. Q., Xiaofeng He, Hongyuan Zha, and Horst D. Simon. Self-aggregation in scaled principal component space. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/820779.
Full text